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We propose a novel methodology for solving retrial systems which is based

on the aggregation of levels of the Markov model beyond a given one. Its

evaluation concludes that is more accurate than previous approximations

while requiring a low computational cost.

Introduction:

A common assumption when evaluating the performance of communica-

tion systems is that users that do not obtain an immediate service leave the

system without retrying. However, due to the increasing number of users

and the complexity of current systems the impact of retrials is no longer

negligible. This is particularly true in mobile cellular networks [1].

In many cases the dimension of Markovian models makes it necessary to

resort to approximate methodologies to solve them. In this letter we develop
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a methodology to reduce the state space in such a way that the accuracy is

not compromised and the computation cost is greatly reduced. Our work has

been motivated by the study in [2], where the authors develop different mo-

dels to study the impact of retries in a single service mobile cellular network.

One of the main contributions of the study is an approximation to reduce the

dimension of the state space, which the authors show is a good approximation

to obtain accurate values for the the blocking probability (Pb). We postulate

that this approximation was too simple to obtain accurate values for other

common performance parameter used in retrial systems like the immediate

service probability (Pis), the delayed service probability (Pds) and the non-

service probability (Pns), being Pis + Pds + Pns = 1. To justify our postulate

we study a finite population model that can be considered representative of

the systems studied in [2]. Finite population models are more appropriate

to evaluate the impact of retrials [2, 3], although our methodology can be

equally applied to infinite population models.

Application Model:

We study a system in which a group of M users contend for access to a

system with C servers, requesting an exponentially distributed service time

with rate µ. When a new request finds all servers busy, it is moved to a retrial

orbit with infinite capacity. Calls in the orbit retry after an exponentially

distributed time with rate µr. The retry is successful if it finds a free server.
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Otherwise, the user leaves the system with probability Pi or goes back to the

retrial orbit with probability (1−Pi). It is clear that Pi models the customer

impatience.

The arrival process is modeled as an state-dependent Poisson process

with rate λ (k, m) = (M − k − m)λ, being λ the individual user arrival

rate when idle, and k (m) the number of users in service (retrying). The

infinitesimal generator matrix (Q) presents a tridiagonal structure being its

elements also matrices, i.e. a quasi-birth-death (QBD) process. The statio-

nary state probability vector π can be obtained by solving πQ = 0. The

desired performance parameters we can be computed by using the stationary

state probability distribution.

Proposed Approximation Methodology:

We define the state space as S := {(k, m) : 0 ≤ k ≤ C; 0 ≤ m ≤

M − C}, where k is the number of occupied servers and m is the number of

users retrying. We also define a threshold (Q) for aggregating states when

there are Q or more users in the retrial orbit, i.e. states (k, Q) correspond

to the situation where Q or more users are retrying. Figure 1 shows the

state transition diagram of the proposed approximate model, where the first

Q − 1 columns remain the same as in the exact model. For column Q we

approximate the arrival rate of new users by λ(k, Q) = (M −k−m)λ, where

m denotes the average number of users retrying when the orbit holds Q or
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more users. When a user executes a successful retrial, the number of users

retrying can drop below Q with probability (1 − p) or not with probability

p. Therefore, the retrial rate in states (k, Q) can be split in two contributing

rates. The first one corresponds to transitions from (k, Q) to (k + 1, Q − 1)

and is approximated by α = mµr(1 − p), and the second one from (k, Q) to

(k + 1, Q) and is approximated by β = mµrp.

Parameters p and m can be estimated balancing the probability flux cros-

sing each vertical cut of the state transition diagram and are given by

p =
λ(C, Q)π(C, Q)

λ(C, Q − 1)π(C, Q − 1) + λ(C, Q)π(C, Q)

m =
λ(C, Q − 1)π(C, Q− 1) + λ(C, Q)π(C, Q)

µr[
∑k=C−1

k=0 π(k, Q) + Piπ(C, Q)]

To find the values of p and m an iterative procedure must be followed

starting with p = 0 and m = Q. We have used a relative precision of 10−4

for that procedure. In [2] the convergence of the iterative procedure was

assumed. We evaluated a wide range of scenarios with different configuration

parameters and the procedure converged in all cases.

Results:

The numerical evaluation is done by computing the relative error of the

performance parameters respect to the exact model, defined as | P exact
xx −

P approx
xx | /P exact

xx , xx ∈ {b, is, ds, ns}. For the evaluation we have chosen
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the following system parameter values: M = 120 users, C = 30 servers,

µ−1 = 180 seconds, µ−1
r = 10 seconds and Pi = 0.5. We define the offered load

as ρ = λ/(λ + µ) and vary it from ρ = 0.14 to ρ = 0.44. We tested different

algorithms [4, 5] for solving the resulting QBD, selecting the Algorithm 0

proposed in [4]. This choice only affects the computational cost not the

accuracy.

Figure 2 shows the relative error of the performance parameters for two

values of Q. Q = 1 represents the case described in [2] while Q = 10 re-

presents a compromise between computation cost and accuracy. Note that

using Q = 1 might not be a good choice because the relative error in Pis,

Pds and Pns is not negligible. In general, the relative error in all performance

parameters decreases as Q increases towards the exact model Q = M − C.

As observed in Fig. 2, the precision is also a function of the system load,

given that as more load is offered more users will be retrying.

In regard to the state space reduction, with Q = 10 we benefit from a

90% reduction while achieving a very low relative error. The computation

cost savings for a systems with ρ = 0.22 (Pb = 0.12) is of 99.95% for Q = 1

and 99.5% for Q = 10, with respect to the exact model. Finally, note that

a rule of thumb to determine a suitable value for Q could be to try with a

value around Q � 0.15(M −C), independently of the system load, although

lower values would be probably enough. We have checked this rule in several
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practical scenarios and we found that it was a good choice in all of them.

Conclusions:

We propose a novel methodology to compute the value of typical perfor-

mance parameters in systems with retrials. Our approximation methodology

substantially improves the accuracy of previous approximations [2] with a

very small computation cost increase. Moreover, when the computation of

the exact model might not be feasible, our approach makes it possible to gra-

dually increase the complexity of the approximate model until the relative

accuracy between two successive approximations falls below a given precision

objective.
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Figure Captions:

Fig. 1 Approximate Markov model.

Fig. 2 Relative error for the performance parameters.
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Figure 1
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Figure 2
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