Efficient and accurate solution of multiserver retrial systems with tser impatience
through the value extrapolation technique

Jose Manuel Gimenez-Guzman, M Jose Domenech-Benlloch,
Vicent Pla, Vicente Casares-Giner and Jorge Martinez-Bauge
Dept. Comunicaciones, Universidad Politecnica de Valeraj UPV
Camino de Vera s/n, 46022, Valencia, Spain. Phone: +34 963367
Email: jogiguz@upvnet.upv.es, mdoben@doctor.upv.e§ypla,vcasares,jmartinez @dcom.upv.es

Keywords: Queueing theory, Markov processes, retrial2 [3]. In particular Marsan et al. [4] propose a well-known

systems, value extrapolation, performance evaluation. approximate technique for its analysis. In [5] a genertbira
of the approximate method in [4] was proposed, showing a
Abstract substantial improvement in the accuracy at the expense of a

The retrial phenomenon plays an important role in many ty-marginal increase of the computational cost. Those approxi
pes of communication networks, and therefore, it should nomations are based on the reduction of a infinite state space to
be ignored in their analysis. Unfortunately, these systdms a finite one by aggregating states. Other solutions maritain t
not present an exact analytic solution, so it is mandatory tanfinite state space but homogeneize it beyond a given level
resort to approximate techniques in order to compute theiin order to solve the system. These later models are known
performance parameters. To the best of our knowledge, algs generalized truncated models [3], and usually present th
hough there is a wide literature related to retrial systeatis, advantage of providing a much better accuracy than the finite
the approximate techniques appeared up to now are basedfirethodologies. In this category we find the models propo-
computing the steady states probabilities and, later, comp sed by Falin [6], by Neuts and Rao [7] and by Artalejo and
ting the desired performance parameters. In this paper we u$0zo [3]. All these approaches rely on the numerical satutio
another approach to solve the retrial system based on a di¢f the steady-state Kolmogorov equations of the Continuous
ferent metric: the relative state values which appear in thdime Markov Chain (CTMC) that describes the system under
Howard equations. A numerical evaluation is carried out toconsideration.
evaluate this new technique and we compare its performance Very recently, however, an alternative approach for evalua
with previous methods. The obtained results show that théing infinite state space Markov processes has been introdu-
proposed solution greatly outperforms the previous approaced by Leino et al. [8-10]. The new method, named value ex-
ches appeared in the literature not only in terms of accuractrapolation, does not rely on solving the global balanceaequ
but also in terms of computational cost. tions. This method considers the system in its MDP (Markov
Decision Process) setting and solves the expected valoe fro
the Howard equations written for a truncated state spase. In
1. INTRODUCTION tead of a simple truncation, the relative values of statss ju
A common assumption when evaluating the performanceutside the truncated state space are estimated using a poly
of communication systems is that users that do not obtain anomial extrapolation based on the states inside, obtaiaing
immediate service leave the system without retrying. Howe<losed system. Therefore we can compute any performance
ver, due to the increasing number of customers and networgarameter as far as we are capable to express it as the expec-
complexity, the customer behavior in general, and thealetri ted value of a random variable that is function of the system
phenomenon in particular, may have a nonnegligible impacstate.
on the system performance [1]. The modeling of repeated at- So far the value extrapolation technique has been applied
tempts has been a subject of numerous investigations, f&cauo multiclass single server queues showing very promising
these systems have a non homogeneous and infinite staiesults [8—10]. It must be noted that a key aspect on the-appli
space. However, itis known that the classical theory [2kis d cation of value extrapolation lies on the election of theaxt
veloped for random walks on the semi-st{ip,...,C} xZ,  polating function for the relative state values. Indeed10j
with infinitesimal transitions subject to conditions of spa  the authors shown that by selecting an appropriate polyno-
homogeneity. mial function the method yields exact results for the moment
When the space-homogeneity condition does not hold, e.@f the queue length in a multiclass Discriminatory Processo
in the case of retrial queues, the problem of calculating th&haring (DPS) system. Unfortunately, the appropriatengss
equilibrium distribution has not been solved beyond approthe functional form of the extrapolation depends on the sys-
ximate methods when the number of servers in higher thatem and also on the revenue function, i.e., the performance
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Figure 1. Retrial model under study.

parameter we are interested in. Hence there is no universal (C,00 = (C,1) —=(C,2) —=(C,3)

good choice for the extrapolating function. In this paper we W 2 3P

address the application of the value extrapolation tealeniq Figyre 2. Transition diagram.

to an important class of queuing systems, e.g. retrial cgjeue

which are essentially different of the type of queues to Whic

this method has been applied. A potential drawback of valug. SYSTEM MODEL

extrapolation compared to conventional state space tiamca ~ The system under study is a generic retrial system inclu-

methods is that, since the stationary state probabilitesat  ding user impatience, i.e., users leave the system withioert

obtained, if one want to compute several performance pargrobability after a non successful retrial. As shown in Hig.

meters the method has to be applied once per each of themn infinite number of users arriving following a Poisson pro-

We apply well-known linear algebra algorithms to computecess with raté contend for access to a system witlservers,

several performance parameters simultaneously and througequesting an exponentially distributed service time tie

a numerical a series of numerical examples we show that, at Without loss of generality, we consider that each user oc-

least for the type of system that we are studying, the re&ativ cupies one resource unit. When a new request finds all servers

impact in terms of computational cost is marginal. occupied it joins the retrial orbit with probability 1. Aftan

o ) ) exponentially distributed time of raig this session retries,

The application of the value extrapolation technique has,eing a retrial successful if it finds a free server. Otheewis

only addressed problems in WhICh relative state vaIl_Jes arfhe user leaves the system with probabiRtyr returns to the

expected to follow a polynomial tendency [8, 9]. In this pa- retrial orbit with probability(1— P,), starting the retrial pro-

per we develop the value extrapolation technique to solve gequre again. Note that we consider an infinite capacity for
multiserver retrial system, addressing also the drawbdck qne retrial orbit.

computing only a single performance parameter every time The model considered can be represented as a bidimensio-

the technique is used. nal CTMC,S(t). Beingk the number of sessions being served

In a first part of the paper, we develop the analytical par@ndmthe number of users in the retrial orbit the state space

of the method, defining the associated Howard equations df d€fined by

the model and the revenue functions. In a second part, we o fe_ . .

compare our method with other previously proposed rﬁethods si={s=(km:ksCmeZ,}

in terms of accuracy and computational cost. Results show Figure 2 shows the transition diagram of such system,
that the proposed method clearly outperforms the rest of thghowing two important properties in the dimension corres-
studied techniques in terms of computational cost and thigonding to the number of users in the retrial orbit. On the one
improvement is even much higher in terms of accuracy.  hand, its infinite cardinality and, on the other hand, itscspa

The rest of the paper is structured as follows. Section 2 desr]eterogenelty produced by the fact that retrial rate depend

cribes the system under study, while Section 3 introduces th°" the number of customers on the retrial orbit.

solving method used. In Section 4 the numerical analysis is

carried out, evaluating the value extrapolation technigjue 3. SOLVING TECHNIQUE

comparing it with other previous solving methods proposed3.1. Theoretical framework

in the literature. Final remarks and a summary of results are As it has been aforementioned, the problem under interest
provided in Section 5. has not a closed form solution wh€n> 2 [3], so approxima-



tion techniques are mandatory. To the best of our knowledgeyill have a solvable linear system of equations with the same
all the approximate methods appeared in literature computeumber of equations as unknowns.

the steady state probabilities using the balance equaitions  The Howard equations that correspond to the system under
order to compute the desired performance parameterglke. s study are:

ving the linear system of equations: Fork < C:
TI(S) qug = ;T[(Sl)qsg Vs r(k,m) —r+A[v(k+21,m) —v(k,m)] + (3)
+kpv(k—1,m) —v(k,m)] +
along with the normalization conditioRs1i(s) = 1, where +mp[v(k+1,m—1) —v(k,m)] =0
gs¢ represents the transition rate from state s'.
Notwithstanding, the method we use [8, 9] is not based on Fork =C:
the probability of being in a certain state, but on a new roetri
called relative state values. Relative state values applean r(C,m)—r+AvC m+1)—v(C,m)]+ 4)
we consider the system in the setting of an MDP. Formally, an +CHv(C —1,m) —v(C,m)] +

MDP can be defined as atup]g, 2, ?,® }, wheres is a set
of states,2 is a set of actiongp is a state transition function

andg is a revenue function. The state of the system can be g e can observe the number of states is infinite because

controlled by choosing actiorsfrom 4, influencing in this 1, can take any value ifi., , thus we need to truncate the state

way the state transitions. The transition functions x5 X gpace tas. In our case, the truncated state space is defined
4 — R specifies the transition rate to other states when g,

certain action is taken at a given state. The first charatiteri
of the value extrapolation technique is the necessity of the S:={s=(km):k<C;m<Q}
definition of a revenue function that must be a function of the

system state, i.ex(s). Following the definition of the revenue 3.2. Value extrapolation: polynomial fitting
function for every state, we will also have a mean revenwe rat ™~ _’ . . - y .
The traditional truncation consists of doiggs =0 Vs ¢

of the entire process), which will be the performance metric - : )
S but the value extrapolation method performs a more effi-

we want to compute. . . : . :
gient truncation. Basically, value extrapolation conssdiae

Once defined the MDP framework as well as the revenu ) ; .
function we are in a position to define the relative state Va_relatlve state values outsigethat appear in the Howard equa-

lues. It is obvious that after performing an action in statee '[AIOILS as an extraporl]anon 9fl sorl;)r!e(;elatlvg St"ﬁe valgeslen;a
system will collect a revenue for that actiar{g)), but, as the $. As we truncate the retrial orbit dimension beyond a value

number of transitions increases, the mean revenue ca]lecteQ’ the value -qxtrapolatio.n technique uses the s_tate value of
converges ta. The relative state value(s)) tells how much some states iy to approximatev(C, Q-+ 1), which is expec-

greater the expected cumulative revenue over an infinite timteOI to improve the accuracy significantly, as it is bettentha

horizon is when the system starts from the initial stata ignoring these relative state values. Note that if the redat
comparison withr values outsides were correctly extrapolated, the results ob-

tained by solving the truncated model would be exact. Also
® note that including value extrapolation neither incredse t
v(s) =E [/to (r(s(t)) - r)dt‘S(O) = S] (1) computational cost nor increase the number of Howard equa-
tions, remaining ifs| = (C+1) x (Q+1).
The equations that relate revenues, relative state vafwes a  Summarizing, the objective of value extrapolation is to find
transition probabilities are the Howard equations defined b a functionf (s) that fits with some pointgs, v(s)) for se s so
that it approximates alsgs, v(s)) for s¢ s. It is important to
r(s)—r+ Z Oss (V(S) —V(s)) =0 Vs (2) choose a fitting functiontfha(t 27)1akes ?he Howard equations re-
s main a closed system of linear equations. The most common
The Howard equations represent tpelicy evaluation fitting functions that acomplish that fact are the polyndmia
phase of the well-knowrpolicy iteration algorithm, the We can use alls,v(s))-pairs of the state space into the
most widespread dynamic programming technique, proposefitting procedure (global fitting) or, what is most commonly
in [11]. There will be as much Howard equations as numbewused, only a subset{) of them (local fitting). The choice of
of states|s|. The number of unknowns will be thg| rela- st will highly depend on the state we want to extrapolate its
tive state values plus the expected revenuee, |s|+1 unk-  relative state value. Note also that functib(s) and setst
nowns. However, as only the differences in the relativeeslu need to be chosen so that parameters have unambiguous va-
appear in the Howard equations, we canwé} = 0, so we lues, i.e. in the case of choosing a polynomial as the fitting

+mpyR[v(C,m—-1)—-v(C,m)] =0



R Table 1. Revenue function definition.
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Figure 3. Truncated model and states that appear in Howard

equations outside the truncated model. ving the system without obtaining service due to impatience

function, the number of different points i has to be equal ~ AS an example, and for the blocking probability, we define

or greater than the number of coefficients in the polynomial. the revenue function to be one in those states in which an
As shown in Fig. 3, for the truncated problem of interest weattempt is blocked, i.e., whettC, m) = 1,Vm, and zero in the

will have a Howard equation in which appear€,Q+1),  restof statesi(k,m) =0,k # C, ym.

that is a state value of a state that does not belony fhe-

refore, we must approximate the vae€,Q+ 1) by using  3.4. Effect of the value extrapolation into the

some relative state values of states belonging.tgor this Howard equations

purpose we have used(a— 1)-th degree polynomial that In our problem, and as mentioned above, we will only have

interpolates ther points in {(m,Vm)|vm = V(C,m),Q—n <  toreplace/(C,Q-+ 1) by its approximate value in the Howard

m < Q. After some algebra, and using the Lagrange basis tequation that corresponds to the stgte, Q). As an example,

reduce the complexity of the procedure, we obtain a simpléf we use linear extrapolation that equation will be:

closed-form expression for the extrapolated value

n—-1
m_ 5 _pk( " B r(C,Q) —r +V(C,Q)[~A —Cu— QRw] +
VeQEDT= 2 (1w FA(C,Q+ 1) + CivC— 1,Q) + QRIVC, Q— 1) =

_ =1(C,Q) —r+V(C,Q)[A—Cu—QRu] +

3.3. Revenue function +CuMC—1,Q) + [QRW —AJV(C,Q—1) =0
As performance parameters are not computed from the

steady state probabilities as usual, it is important to arpl
more carefully how are they computed. By definitio(s) is As v(C,Q+ 1) no longer appears into the Howard equa-
the expected immediate revenue obtained when the systemtisns, the linear system of equations we have consists of
in states. Therefore, we must define the revenue as the perfC + 1) x (Q+ 1) equations with the same number of unk-
formance parameter we want to compute. The effect of thahowns. This system can be expressed in matrix form for sim-
action is that the computedwill be the performance para- plicity reasons. Therefore the system can be seetTas b,
meter we are looking for. Additionally, the inputés) inthe  wherex is a vector with thgC + 1) x (Q+ 1) unknowns [
Howard equations must be properly set. Table 1 summarizesnd the relative state valuegs)) andb are the negative rela-
the differentr(s) to be set in order to obtain several perfor- tive state values for the different states. Maffixepresents
mance parameters. Additionally to the well-known blockingthe matrix of coefficients. Note that the size of maffixloes
probability (%) and the mean number of users in the retrialnot depend on the order of the polynomial used to perform the
orbit (Net), we must define the non-service probabiliBd. extrapolation. This characteristic has the advantagehieat
This later probability describes the behaviour of retrigd-s ~ will not be any difference into the computation cost when
tems more accurately, as defines the probability of a user leaising higher order extrapolation.



Unfortunately, in order to solve systexii = b, we can not Although from Table 2 there is not a clear choice in the
make use of methodologies that make use of the block tridiaesrder of the best polynomial, the general trend shows that in
gonal structure [12,13] to effectively solve such systeBts. creasing the order generally increases the performante, bu
it is mandatory to use a general procedure to solve the linedhis increasement is lower as we use higher orders. Although
system of equations, such as Gauss-Seidel, Gauss-Jordantlee computation cost is almost the same independently of the
LU factorization methods. order of the extrapolation polynomial used, in this case we

The main drawback of the value extrapolation technique iglo not recommend to use higher order polynomials, due to
that this technique is only able to compute one performancéhe fact that using ViEenforces us to use a model wifh> x
parameter each time we solve the system. Notwithstandingith the choice ofs; explained in Section 3.2. For that reason
we can overcome this drawback in the following way. In awe can conclude that, for the problem and scenario of interes
general manner, the solution of the systgin= b can be and for the relative accuracy we want to achieve, VES8 repre-
obtained using the inverse matrix ®fby doingx = bT 1. sents a good tradeoff between accuracy and minimum value
Note also that choosing a different performance parameter tof Q needed. Therefore, hereafter we will use the polynomial
solve will only affect to the values ib. Therefore, compu- of order 8 (VE8) and we will simply denote it as VE.
ting a second performance parameter will only increase the
computation expenses by the cost of the prothIct?, asthe 4.2, Comparison with other techniques
rest of the process (specially the computation of the i®/ers | this section we compare the performance of the value
matrix T7) is solved only once. Similarly, we can compute exirapolation method with other methods based on the tradi-
several performance parameters with a marginal increase {bnal approach of solving the steady state probabilitzsg
the computation cost using LU factorization, as the first paripe pajance equations for later computing the performance
of the procedure (the factorization, which supposes thet mog)arameters of interest. Although other approaches exist, w
computation consumption part) is done only once forthe haye chosen the method proposed in [5], refered hereafter as

matrix. FM method, and the one proposed by Neuts and Rao in [7],
refered as NR method. Note that we have not compared the
4, RESULTS results with the method proposed by Artalejo and Pozo [3]

In order to evaluate and compare the proposed method was this last method does not include the impatience phenome-
have studied its performance in several scenarios. Lggting  NON, SO it is not directly applicable. A similar reasoningica
\/(CH), we have studied different system loads by modifyingbe done for the method proposed by Falin [6].

A and keepingp = 50 resource units anprl =180s. The In Table 3 we show the minimum values Qfneeded to
retrial phenomenon has been configured wjth=100sand obtain a relative error lower than 1® for different perfor-

R = 0.2. Although only a configuration of the retrial orbit has mance parameters and for the aforementioned methods. Re-
been chosen, there will be fa|r|y different Working poirﬂsl sults show that the value eXtrapOlatlon method Clearly«mﬂtp

the system load is widely modified. forms classical methods as it needs a much lower val@ of

For obtaining the results, we have used the relative error of° achieve a certain accuracy in all the scenarios undey stud
different performance parameters, defined for a generic pend for all the parameters studied. Similarly, in Figs. 4€6 w
formance parameta¥ by ey = |WaPProx_ exact jyexact | plot the relative error foR,, Pos andNret respectively when
order to obtain an accurate enough estimat&#ofhich can P = 0.7 and for the different methods deployed. Results show
be used a®**@! we ran all methods with increasing and suf- that, for a same value @, VE greatly improves the perfor-
ficiently high values of) so that the value o had stabilized Mance of NR and FM (being FM slightly worse than NR).
up to the 14th decimal digit. As expected all methods converJ he difference in the relative errors is around 4 to 5 ordérs o
ged to the same value in the performance parameters und&@gnitude, which supposes a very clear improvement.
Study,l-l-’ 6 {H), Pns, Nret}. .

4.3. Computational cost

4.1. Value extrapolation evaluation Initially, one of the main drawbacks of the value extrapo-

Table 2 shows the minimum value @fneeded to obtain a lation method is that it is only able to compute a performance
relative error lower than 16 for different performance pa- Parameter each time the system is solved. However, in Sec-
rameters and loads (columns) and for different orders of thdon 3.4 we have glimpsed that solving several performance
extrapolation polynomials (rows). Note that ¥HBenotes the ~Parameters at the same time is not expected to severely in-
use of an extrapolation polynomial of orderThe number in ~ créase the computation time. In Fig. 7 we show the compu-
bold indicates the lowest truncation level of all the polyno tation timé needed to obtain a different number of parame-
mials studied. Finally, the last row of Table 2 shows the €xac  1resyits have been obtained using Matlab running on an lietetim
value of the studied performance parameter for that sagnariv 3GHz.




Table 2. Minimum value ofQ to obtain relative errors) lower than 108,

ep, < 1078 €p, < 1078 ENey < 1078

p=05 p=07 p=09| p=05 p=0.7 p=09 p=0.5 p=07 p=09
VE1 20 32 61 25 41 64 22 37 57
VE2 14 31 53 21 35 58 17 32 54
VE3 15 18 48 19 31 53 16 26 50
VE4 12 25 47 17 30 48 14 26 47
VES5 12 24 44 12 24 44 9 18 43
VEG6 10 20 41 14 26 44 11 22 39
VE7 7 21 39 11 24 42 8 21 40
VES8 8 17 39 11 23 36 8 19 39
Value 389-10% 00045 01353 6.05-10% 1.34-10% 0.01096| 5.74-10°°> 0.09806 44789

Table 3. Minimum Q value to obtain relative errors)(lower than 10°8.

ep, < 1078 Epy < 1078 ENy < 1078
p=05 p=07 p=09|p=05 p=07 p=09|p=05 p=07 p=09
FM 23 39 68 29 46 70 25 42 53
NR 20 31 61 25 41 64 22 38 65
VE8 8 17 39 11 23 36 8 19 39
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Figure 4. Relative error irR, for different methods. Figure 5. Relative error irP,s for different methods.

ters (p). Observing Fig. 7 it follows that the computation cost solye a model for the different methods studied and for dif-
is only marginally increased when we compute another perterent values of). Note that the computation cost chosen for
formance parameter. the value extrapolation method has been obtained when sol-
Although it is shown that VE method clearly outperforms ving the three aforementioned perfomance parameters. Note
NR and FM methods, it is interesting to study their associaalso that, although it has been obtained using VES8, choosing
ted computational cost. In Fig. 8 we plot the time needed ta diferent order for the extrapolation polynomial would not
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0.9

lues of Q. However, the scalability of the method described
in [12] is better, so the slope of cost of NR is lower than the
] obtained in LU factorization (VE method). As VE method
needs a much lower value @fto achieve a certain accuracy
and the computation cost of solving the system for the same
] value ofQ is similar, we conclude that using VE method is
highly recomendable for solving retrial systems.
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1 5. CONCLUSIONS

i The retrial phenomenon has a nonnegligible impactinto the
communication networks. However, multiserver retrial-sys
tems have not an exact solution when the number of servers

o ‘ ‘ ‘ ‘ is higher than two, as their state space present space getero

10 1 e F % % neity along an infinite dimension. For that reason, it is man-
Figure 7. Computation cost when solving performance datory to develop approximate techniques in order to solve
parameters simultaneously. these systems. To the best of our knowdledge, all the met-

hods studied in the literature to solve these systems asslbas

on their steady state probabilities. In this paper we prepos
change the computation cost, as the linear system of equalternative technique based on a different metric: theivela
tions to solve remains of the same size. Results should bstate values and the Howard equations that relate them, ins-
interpreted carefully, as the implementation of each netthotead of the balance equations. With this method, truncation
can vary. For solving the systems obtained in the FM and NRf the state space can be done in a more efficient way, as the
methods we have made use of the efficient algorithm descristate values outside the truncated state space are extieghol
bed in [12] that can take advantage of the tridiagonal strucfrom some known state values. In order to preserve the linea-
ture that presents the system under study. Unfortunatedy, t rity of the resulting system of equations we have only used
linear system of equations obtained in the VE method hagolynomials as extrapolation functions.
no longer such a block tridiagonal structure, so we must use In afirst part, we have studied the use of different orders for
a more general method. In this case we have used LU fadhe extrapolation polynomials, concluding that highereord
torization. Therefore, the results shown could vary by gisin polynomials use to give better solutions. On the other hand,
different methodologies. Figure 8 shows that the cost of solthey need a higher truncation level so we must choose a tra-
ving FM is much higher than NR and VE, as it involves an deoff between both facts. Later, we have compared the new
iterative procedure that makes necessary to solve thensystemethod with two well-known approaches appeared in the li-
more than once. Comparing NR with VE we show that theirterature [5, 7] in terms of accuracy and computational cost.
computational cost is similar, being lower for VE for low va- Results show that the proposed technique highly improwes th



previous approaches in terms of computational cost and, spe[9] J. Leino and J. Virtamo, “An approximative method

cially, in terms of accuracy, so its use is highly recommehde for calculating performance measures of markov pro-
cesses,” inProceeding of the 1st international con-
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