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Abstract
The retrial phenomenon plays an important role in many ty-
pes of communication networks, and therefore, it should not
be ignored in their analysis. Unfortunately, these systemsdo
not present an exact analytic solution, so it is mandatory to
resort to approximate techniques in order to compute their
performance parameters. To the best of our knowledge, alt-
hough there is a wide literature related to retrial systems,all
the approximate techniques appeared up to now are based in
computing the steady states probabilities and, later, compu-
ting the desired performance parameters. In this paper we use
another approach to solve the retrial system based on a dif-
ferent metric: the relative state values which appear in the
Howard equations. A numerical evaluation is carried out to
evaluate this new technique and we compare its performance
with previous methods. The obtained results show that the
proposed solution greatly outperforms the previous approa-
ches appeared in the literature not only in terms of accuracy
but also in terms of computational cost.

1. INTRODUCTION
A common assumption when evaluating the performance

of communication systems is that users that do not obtain an
immediate service leave the system without retrying. Howe-
ver, due to the increasing number of customers and network
complexity, the customer behavior in general, and the retrial
phenomenon in particular, may have a nonnegligible impact
on the system performance [1]. The modeling of repeated at-
tempts has been a subject of numerous investigations, because
these systems have a non homogeneous and infinite state
space. However, it is known that the classical theory [2] is de-
veloped for random walks on the semi-strip{0, . . . ,C}×Z+

with infinitesimal transitions subject to conditions of space-
homogeneity.

When the space-homogeneity condition does not hold, e.g.
in the case of retrial queues, the problem of calculating the
equilibrium distribution has not been solved beyond appro-
ximate methods when the number of servers in higher than

2 [3]. In particular Marsan et al. [4] propose a well-known
approximate technique for its analysis. In [5] a generalization
of the approximate method in [4] was proposed, showing a
substantial improvement in the accuracy at the expense of a
marginal increase of the computational cost. Those approxi-
mations are based on the reduction of a infinite state space to
a finite one by aggregating states. Other solutions mantain the
infinite state space but homogeneize it beyond a given level
in order to solve the system. These later models are known
as generalized truncated models [3], and usually present the
advantage of providing a much better accuracy than the finite
methodologies. In this category we find the models propo-
sed by Falin [6], by Neuts and Rao [7] and by Artalejo and
Pozo [3]. All these approaches rely on the numerical solution
of the steady-state Kolmogorov equations of the Continuous
Time Markov Chain (CTMC) that describes the system under
consideration.

Very recently, however, an alternative approach for evalua-
ting infinite state space Markov processes has been introdu-
ced by Leino et al. [8–10]. The new method, named value ex-
trapolation, does not rely on solving the global balance equa-
tions. This method considers the system in its MDP (Markov
Decision Process) setting and solves the expected value from
the Howard equations written for a truncated state space. Ins-
tead of a simple truncation, the relative values of states just
outside the truncated state space are estimated using a poly-
nomial extrapolation based on the states inside, obtaininga
closed system. Therefore we can compute any performance
parameter as far as we are capable to express it as the expec-
ted value of a random variable that is function of the system
state.

So far the value extrapolation technique has been applied
to multiclass single server queues showing very promising
results [8–10]. It must be noted that a key aspect on the appli-
cation of value extrapolation lies on the election of the extra-
polating function for the relative state values. Indeed, in[10]
the authors shown that by selecting an appropriate polyno-
mial function the method yields exact results for the moments
of the queue length in a multiclass Discriminatory Processor-
Sharing (DPS) system. Unfortunately, the appropriatenessof
the functional form of the extrapolation depends on the sys-
tem and also on the revenue function, i.e., the performance



1

2

3

...

C

m

m users

m r

k users

P
i

1-Pi

l

Retrial

orbit

Figure 1. Retrial model under study.

parameter we are interested in. Hence there is no universal
good choice for the extrapolating function. In this paper we
address the application of the value extrapolation technique
to an important class of queuing systems, e.g. retrial queues,
which are essentially different of the type of queues to which
this method has been applied. A potential drawback of value
extrapolation compared to conventional state space truncation
methods is that, since the stationary state probabilities are not
obtained, if one want to compute several performance para-
meters the method has to be applied once per each of them.
We apply well-known linear algebra algorithms to compute
several performance parameters simultaneously and through
a numerical a series of numerical examples we show that, at
least for the type of system that we are studying, the relative
impact in terms of computational cost is marginal.

The application of the value extrapolation technique has
only addressed problems in which relative state values are
expected to follow a polynomial tendency [8, 9]. In this pa-
per we develop the value extrapolation technique to solve a
multiserver retrial system, addressing also the drawback of
computing only a single performance parameter every time
the technique is used.

In a first part of the paper, we develop the analytical part
of the method, defining the associated Howard equations of
the model and the revenue functions. In a second part, we
compare our method with other previously proposed methods
in terms of accuracy and computational cost. Results show
that the proposed method clearly outperforms the rest of the
studied techniques in terms of computational cost and this
improvement is even much higher in terms of accuracy.

The rest of the paper is structured as follows. Section 2 des-
cribes the system under study, while Section 3 introduces the
solving method used. In Section 4 the numerical analysis is
carried out, evaluating the value extrapolation techniqueand
comparing it with other previous solving methods proposed
in the literature. Final remarks and a summary of results are
provided in Section 5.
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Figure 2. Transition diagram.

2. SYSTEM MODEL
The system under study is a generic retrial system inclu-

ding user impatience, i.e., users leave the system with certain
probability after a non successful retrial. As shown in Fig.1,
an infinite number of users arriving following a Poisson pro-
cess with rateλ contend for access to a system withC servers,
requesting an exponentially distributed service time withrate
µ. Without loss of generality, we consider that each user oc-
cupies one resource unit. When a new request finds all servers
occupied it joins the retrial orbit with probability 1. After an
exponentially distributed time of rateµr this session retries,
being a retrial successful if it finds a free server. Otherwise,
the user leaves the system with probabilityPi or returns to the
retrial orbit with probability(1−Pi), starting the retrial pro-
cedure again. Note that we consider an infinite capacity for
the retrial orbit.

The model considered can be represented as a bidimensio-
nal CTMC,S(t). Beingk the number of sessions being served
andm the number of users in the retrial orbit the state space
is defined by

S := {s= (k,m) : k≤C;m∈ Z+}

Figure 2 shows the transition diagram of such system,
showing two important properties in the dimension corres-
ponding to the number of users in the retrial orbit. On the one
hand, its infinite cardinality and, on the other hand, its space-
heterogeneity produced by the fact that retrial rate depends
on the number of customers on the retrial orbit.

3. SOLVING TECHNIQUE
3.1. Theoretical framework

As it has been aforementioned, the problem under interest
has not a closed form solution whenC > 2 [3], so approxima-



tion techniques are mandatory. To the best of our knowledge,
all the approximate methods appeared in literature compute
the steady state probabilities using the balance equationsin
order to compute the desired performance parameters, i.e. sol-
ving the linear system of equations:

π(s)∑
s′

qss′ = ∑
s′

π(s′)qss′ ∀s

along with the normalization condition∑sπ(s) = 1, where
qss′ represents the transition rate from states to s′.

Notwithstanding, the method we use [8, 9] is not based on
the probability of being in a certain state, but on a new metric
called relative state values. Relative state values appearwhen
we consider the system in the setting of an MDP. Formally, an
MDP can be defined as a tuple{S ,A ,P ,R }, whereS is a set
of states,A is a set of actions,P is a state transition function
andR is a revenue function. The state of the system can be
controlled by choosing actionsa from A , influencing in this
way the state transitions. The transition functionP : S × S ×
A → R+ specifies the transition rate to other states when a
certain action is taken at a given state. The first characteristic
of the value extrapolation technique is the necessity of the
definition of a revenue function that must be a function of the
system state, i.e.,r(s). Following the definition of the revenue
function for every state, we will also have a mean revenue rate
of the entire process (r), which will be the performance metric
we want to compute.

Once defined the MDP framework as well as the revenue
function we are in a position to define the relative state va-
lues. It is obvious that after performing an action in states the
system will collect a revenue for that action (r(s)), but, as the
number of transitions increases, the mean revenue collected
converges tor. The relative state value (v(s)) tells how much
greater the expected cumulative revenue over an infinite time
horizon is when the system starts from the initial states in
comparison withr.

v(s) = E

[Z ∞

t=0
(r(S(t))− r)dt

∣

∣

∣
S(0) = s

]

(1)

The equations that relate revenues, relative state values and
transition probabilities are the Howard equations defined by:

r(s)− r +∑
s′

qss′(v(s
′)−v(s)) = 0 ∀s (2)

The Howard equations represent thepolicy evaluation
phase of the well-knownpolicy iteration algorithm, the
most widespread dynamic programming technique, proposed
in [11]. There will be as much Howard equations as number
of states,|S |. The number of unknowns will be the|S | rela-
tive state values plus the expected revenuer, i.e, |S |+1 unk-
nowns. However, as only the differences in the relative values
appear in the Howard equations, we can setv(0) = 0, so we

will have a solvable linear system of equations with the same
number of equations as unknowns.

The Howard equations that correspond to the system under
study are:

For k < C:

r(k,m)− r +λ[v(k+1,m)−v(k,m)]+ (3)

+kµ[v(k−1,m)−v(k,m)]+

+mµr [v(k+1,m−1)−v(k,m)] = 0

For k = C:

r(C,m)− r +λ[v(C,m+1)−v(C,m)]+ (4)

+Cµ[v(C−1,m)−v(C,m)]+

+mµrPi [v(C,m−1)−v(C,m)] = 0

As we can observe the number of states is infinite because
mcan take any value inZ+, thus we need to truncate the state
space toŜ . In our case, the truncated state space is defined
by:

Ŝ := {s= (k,m) : k≤C;m≤ Q}

3.2. Value extrapolation: polynomial fitting
The traditional truncation consists of doingqss′ = 0 ∀s′ /∈
Ŝ but the value extrapolation method performs a more effi-
cient truncation. Basically, value extrapolation considers the
relative state values outsideŜ that appear in the Howard equa-
tions as an extrapolation of some relative state values inside
Ŝ . As we truncate the retrial orbit dimension beyond a value
Q, the value extrapolation technique uses the state value of
some states in̂S to approximatev(C,Q+1), which is expec-
ted to improve the accuracy significantly, as it is better than
ignoring these relative state values. Note that if the relative
values outsidêS were correctly extrapolated, the results ob-
tained by solving the truncated model would be exact. Also
note that including value extrapolation neither increase the
computational cost nor increase the number of Howard equa-
tions, remaining in|Ŝ | = (C+1)× (Q+1).

Summarizing, the objective of value extrapolation is to find
a function f (s) that fits with some points(s,v(s)) for s∈ Ŝ so
that it approximates also(s,v(s)) for s /∈ Ŝ . It is important to
choose a fitting function that makes the Howard equations re-
main a closed system of linear equations. The most common
fitting functions that acomplish that fact are the polynomials.

We can use all(s,v(s))-pairs of the state space into the
fitting procedure (global fitting) or, what is most commonly
used, only a subset (S f ) of them (local fitting). The choice of
S f will highly depend on the state we want to extrapolate its
relative state value. Note also that functionf (s) and setS f

need to be chosen so that parameters have unambiguous va-
lues, i.e. in the case of choosing a polynomial as the fitting
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Figure 3. Truncated model and states that appear in Howard
equations outside the truncated model.

function, the number of different points inS f has to be equal
or greater than the number of coefficients in the polynomial.

As shown in Fig. 3, for the truncated problem of interest we
will have a Howard equation in which appearsv(C,Q+ 1),
that is a state value of a state that does not belong toŜ . The-
refore, we must approximate the valuev(C,Q+ 1) by using
some relative state values of states belonging toŜ . For this
purpose we have used a(n− 1)-th degree polynomial that
interpolates then points in {(m,vm)|vm = v(C,m),Q− n <
m≤ Q. After some algebra, and using the Lagrange basis to
reduce the complexity of the procedure, we obtain a simple
closed-form expression for the extrapolated value

v(C,Q+1)(n) =
n−1

∑
k=0

(−1)k
(

n
k+1

)

v(C,Q−k)

3.3. Revenue function
As performance parameters are not computed from the

steady state probabilities as usual, it is important to explain
more carefully how are they computed. By definition,r(s) is
the expected immediate revenue obtained when the system is
in states. Therefore, we must define the revenue as the per-
formance parameter we want to compute. The effect of that
action is that the computedr will be the performance para-
meter we are looking for. Additionally, the inputsr(s) in the
Howard equations must be properly set. Table 1 summarizes
the differentr(s) to be set in order to obtain several perfor-
mance parameters. Additionally to the well-known blocking
probability (Pb) and the mean number of users in the retrial
orbit (Nret), we must define the non-service probability (Pns).
This later probability describes the behaviour of retrial sys-
tems more accurately, as defines the probability of a user lea-

Table 1. Revenue function definition.

Performance parameter Acronym Value

Blocking probability Pb r(k,m) = 1

for k = C, ∀m

r(k,m) = 0

otherwise

Non-service probability Pns r(k,m) = mµr Pi
λ

for k = C, ∀m

r(k,m) = 0

otherwise

Mean number of Nret r(k,m) = m

users retrying ∀k, ∀m

ving the system without obtaining service due to impatience.

As an example, and for the blocking probability, we define
the revenue function to be one in those states in which an
attempt is blocked, i.e., whenr(C,m) = 1,∀m, and zero in the
rest of states,r(k,m) = 0,k 6= C, ∀m.

3.4. Effect of the value extrapolation into the
Howard equations

In our problem, and as mentioned above, we will only have
to replacev(C,Q+1) by its approximate value in the Howard
equation that corresponds to the statev(C,Q). As an example,
if we use linear extrapolation that equation will be:

r(C,Q)− r +v(C,Q)[−λ−Cµ−QPiµr ]+

+λv(C,Q+1)+Cµv(C−1,Q)+QPiµrv(C,Q−1) =

= r(C,Q)− r +v(C,Q)[λ−Cµ−QPiµr ]+

+Cµv(C−1,Q)+ [QPiµr −λ]v(C,Q−1) = 0

As v(C,Q+ 1) no longer appears into the Howard equa-
tions, the linear system of equations we have consists of
(C+ 1)× (Q+ 1) equations with the same number of unk-
nowns. This system can be expressed in matrix form for sim-
plicity reasons. Therefore the system can be seen asxT = b,
wherex is a vector with the(C+ 1)× (Q+ 1) unknowns (r
and the relative state valuesv(s)) andb are the negative rela-
tive state values for the different states. MatrixT represents
the matrix of coefficients. Note that the size of matrixT does
not depend on the order of the polynomial used to perform the
extrapolation. This characteristic has the advantage thatthere
will not be any difference into the computation cost when
using higher order extrapolation.



Unfortunately, in order to solve systemxT = b, we can not
make use of methodologies that make use of the block tridia-
gonal structure [12,13] to effectively solve such systems.So
it is mandatory to use a general procedure to solve the linear
system of equations, such as Gauss-Seidel, Gauss-Jordan or
LU factorization methods.

The main drawback of the value extrapolation technique is
that this technique is only able to compute one performance
parameter each time we solve the system. Notwithstanding
we can overcome this drawback in the following way. In a
general manner, the solution of the systemxT = b can be
obtained using the inverse matrix ofT by doingx = bT−1.
Note also that choosing a different performance parameter to
solve will only affect to the values inb. Therefore, compu-
ting a second performance parameter will only increase the
computation expenses by the cost of the productbT−1, as the
rest of the process (specially the computation of the inverse
matrix T−1) is solved only once. Similarly, we can compute
several performance parameters with a marginal increase in
the computation cost using LU factorization, as the first part
of the procedure (the factorization, which supposes the most
computation consumption part) is done only once for theT
matrix.

4. RESULTS
In order to evaluate and compare the proposed method we

have studied its performance in several scenarios. Lettingρ =
λ/(Cµ), we have studied different system loads by modifying
λ and keepingC = 50 resource units andµ−1 = 180 s. The
retrial phenomenon has been configured withµ−1

r = 100sand
Pi = 0.2. Although only a configuration of the retrial orbit has
been chosen, there will be fairly different working points,as
the system load is widely modified.

For obtaining the results, we have used the relative error of
different performance parameters, defined for a generic per-
formance parameterΨ by εΨ = |Ψapprox−Ψexact|/Ψexact. In
order to obtain an accurate enough estimate ofΨ which can
be used asΨexact, we ran all methods with increasing and suf-
ficiently high values ofQ so that the value ofΨ had stabilized
up to the 14th decimal digit. As expected all methods conver-
ged to the same value in the performance parameters under
study,Ψ ∈ {Pb,Pns,Nret}.

4.1. Value extrapolation evaluation
Table 2 shows the minimum value ofQ needed to obtain a

relative error lower than 10−8 for different performance pa-
rameters and loads (columns) and for different orders of the
extrapolation polynomials (rows). Note that VEx denotes the
use of an extrapolation polynomial of orderx. The number in
bold indicates the lowest truncation level of all the polyno-
mials studied. Finally, the last row of Table 2 shows the exact
value of the studied performance parameter for that scenario.

Although from Table 2 there is not a clear choice in the
order of the best polynomial, the general trend shows that in-
creasing the order generally increases the performance, but
this increasement is lower as we use higher orders. Although
the computation cost is almost the same independently of the
order of the extrapolation polynomial used, in this case we
do not recommend to use higher order polynomials, due to
the fact that using VEx enforces us to use a model withQ≥ x
with the choice ofS f explained in Section 3.2. For that reason
we can conclude that, for the problem and scenario of interest
and for the relative accuracy we want to achieve, VE8 repre-
sents a good tradeoff between accuracy and minimum value
of Q needed. Therefore, hereafter we will use the polynomial
of order 8 (VE8) and we will simply denote it as VE.

4.2. Comparison with other techniques
In this section we compare the performance of the value

extrapolation method with other methods based on the tradi-
tional approach of solving the steady state probabilities using
the balance equations for later computing the performance
parameters of interest. Although other approaches exist, we
have chosen the method proposed in [5], refered hereafter as
FM method, and the one proposed by Neuts and Rao in [7],
refered as NR method. Note that we have not compared the
results with the method proposed by Artalejo and Pozo [3]
as this last method does not include the impatience phenome-
non, so it is not directly applicable. A similar reasoning can
be done for the method proposed by Falin [6].

In Table 3 we show the minimum values ofQ needed to
obtain a relative error lower than 10−8 for different perfor-
mance parameters and for the aforementioned methods. Re-
sults show that the value extrapolation method clearly outper-
forms classical methods as it needs a much lower value ofQ
to achieve a certain accuracy in all the scenarios under study
and for all the parameters studied. Similarly, in Figs. 4-6 we
plot the relative error forPb, Pns andNret respectively when
ρ = 0.7 and for the different methods deployed. Results show
that, for a same value ofQ, VE greatly improves the perfor-
mance of NR and FM (being FM slightly worse than NR).
The difference in the relative errors is around 4 to 5 orders of
magnitude, which supposes a very clear improvement.

4.3. Computational cost
Initially, one of the main drawbacks of the value extrapo-

lation method is that it is only able to compute a performance
parameter each time the system is solved. However, in Sec-
tion 3.4 we have glimpsed that solving several performance
parameters at the same time is not expected to severely in-
crease the computation time. In Fig. 7 we show the compu-
tation time1 needed to obtain a different number of parame-

1Results have been obtained using Matlab running on an Intel Pentium
IV 3GHz.



Table 2. Minimum value ofQ to obtain relative errors (ε) lower than 10−8.

εPb < 10−8 εPns < 10−8 εNret < 10−8

ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.5 ρ = 0.7 ρ = 0.9

VE1 20 32 61 25 41 64 22 37 57

VE2 14 31 53 21 35 58 17 32 54

VE3 15 18 48 19 31 53 16 26 50

VE4 12 25 47 17 30 48 14 26 47

VE5 12 24 44 12 24 44 9 18 43

VE6 10 20 41 14 26 44 11 22 39

VE7 7 21 39 11 24 42 8 21 40

VE8 8 17 39 11 23 36 8 19 39

Value 3.89·10−6 0.0045 0.1353 6.05·10−8 1.34·10−4 0.01096 5.74·10−5 0.09806 4.4789

Table 3. Minimum Q value to obtain relative errors (ε) lower than 10−8.

εPb < 10−8 εPns < 10−8 εNret < 10−8

ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.5 ρ = 0.7 ρ = 0.9 ρ = 0.5 ρ = 0.7 ρ = 0.9

FM 23 39 68 29 46 70 25 42 53

NR 20 31 61 25 41 64 22 38 65

VE8 8 17 39 11 23 36 8 19 39
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Figure 4. Relative error inPb for different methods.

ters (p). Observing Fig. 7 it follows that the computation cost
is only marginally increased when we compute another per-
formance parameter.

Although it is shown that VE method clearly outperforms
NR and FM methods, it is interesting to study their associa-
ted computational cost. In Fig. 8 we plot the time needed to
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Figure 5. Relative error inPns for different methods.

solve a model for the different methods studied and for dif-
ferent values ofQ. Note that the computation cost chosen for
the value extrapolation method has been obtained when sol-
ving the three aforementioned perfomance parameters. Note
also that, although it has been obtained using VE8, choosing
a diferent order for the extrapolation polynomial would not
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Figure 6. Relative error inNret for different methods.
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Figure 7. Computation cost when solvingp performance
parameters simultaneously.

change the computation cost, as the linear system of equa-
tions to solve remains of the same size. Results should be
interpreted carefully, as the implementation of each method
can vary. For solving the systems obtained in the FM and NR
methods we have made use of the efficient algorithm descri-
bed in [12] that can take advantage of the tridiagonal struc-
ture that presents the system under study. Unfortunately, the
linear system of equations obtained in the VE method has
no longer such a block tridiagonal structure, so we must use
a more general method. In this case we have used LU fac-
torization. Therefore, the results shown could vary by using
different methodologies. Figure 8 shows that the cost of sol-
ving FM is much higher than NR and VE, as it involves an
iterative procedure that makes necessary to solve the system
more than once. Comparing NR with VE we show that their
computational cost is similar, being lower for VE for low va-
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Figure 8. Computation cost for different methodologies.

lues ofQ. However, the scalability of the method described
in [12] is better, so the slope of cost of NR is lower than the
obtained in LU factorization (VE method). As VE method
needs a much lower value ofQ to achieve a certain accuracy
and the computation cost of solving the system for the same
value ofQ is similar, we conclude that using VE method is
highly recomendable for solving retrial systems.

5. CONCLUSIONS
The retrial phenomenon has a nonnegligible impact into the

communication networks. However, multiserver retrial sys-
tems have not an exact solution when the number of servers
is higher than two, as their state space present space heteroge-
neity along an infinite dimension. For that reason, it is man-
datory to develop approximate techniques in order to solve
these systems. To the best of our knowdledge, all the met-
hods studied in the literature to solve these systems are based
on their steady state probabilities. In this paper we propose an
alternative technique based on a different metric: the relative
state values and the Howard equations that relate them, ins-
tead of the balance equations. With this method, truncation
of the state space can be done in a more efficient way, as the
state values outside the truncated state space are extrapolated
from some known state values. In order to preserve the linea-
rity of the resulting system of equations we have only used
polynomials as extrapolation functions.

In a first part, we have studied the use of different orders for
the extrapolation polynomials, concluding that higher order
polynomials use to give better solutions. On the other hand,
they need a higher truncation level so we must choose a tra-
deoff between both facts. Later, we have compared the new
method with two well-known approaches appeared in the li-
terature [5, 7] in terms of accuracy and computational cost.
Results show that the proposed technique highly improves the



previous approaches in terms of computational cost and, spe-
cially, in terms of accuracy, so its use is highly recommended.
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