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Abstract

Admission control is one of the key traffic management mechanisms that must be deployed in order to meet the

strict requirements on dependability imposed to the services provided by modern wireless networks. We study the

problem of optimizing admission control policies in mobile multimedia cellular networks when predictive information

regarding the movement of mobile terminals is available.

For the optimization process we deploy a novel Reinforcement Learning approach based on the concept of

afterstates. The results obtained define theoretical limits for the gain that can be expected when using handover

prediction, which could not be established by deploying heuristic approaches.

Numerical results show that the performance gain is a function of the anticipation time with which the admission

controller knows the occurrence of handovers and an optimal anticipation time exists. We also compare an optimal

policy obtained deploying our approach with a previously proposed heuristic prediction scheme, showing that there

is still room for technological innovation.

I. INTRODUCTION

The widespread success of positioning systems like the global positioning system (GPS) has spurred the research

on positioning-based services and mobile tracking techniques. Most handheld GPS receivers are now accurate to

within 20 meters or so, but new improvements in GPS technology are expected to increase the accuracy to a 1

meter margin [1]. The European global navigation satellite system Galileo is being developed to be compatible with

the GPS system, which will allow an integrated Galileo/GPS receiver to provide the location service simultaneously

from both Galileo and GPS satellites with much higher accuracy. It is expected that location services will be greatly

enhanced, particularly in urban areas.

As mobile terminals (MTs) integrate positioning systems to provide location services, mobile networks operators

can exploit the new functionality to predict the occurrence of handovers and improve in this way the performance

of the network. Two additional factors are creating increasing interest in handover prediction. One is the availability

of databases that include layout information of roads and cities around the world. The other is the emergence of

sophisticated algorithms that make use of layout and positioning information to estimate the movement of MTs

with high accuracy.
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One of the main challenges in the resource management of wireless networks is the mobility of terminals. Once

a new session has been setup it is very difficult to guarantee that resources will be available in the cells visited

during the session lifetime unless proper mechanisms are in place. Session Admission Control (SAC) is one of the

key traffic management mechanism in mobile multimedia cellular networks that can help to provide certain degree

of quality of service (QoS) guarantees and to meet the strict requirements on dependability imposed to the services

provided by modern wireless networks. Conceptually, the SAC system makes decisions on when to accept or reject

the setup of new sessions or sessions handed over from a neighboring cell. To reserve resources for future requests,

the SAC system can reject low priority requests even at times when resources are available.

This paper explores the SAC from a novel optimization approach that exploits the availability of handover

prediction information. The results obtained define theoretical limits for the gain that can be expected when handover

prediction is used, which could not be established by deploying heuristic approaches. One of the main limitations of

applying conventional optimization approaches to the design of SAC policies in multimedia scenarios is the curse of

dimensionality of the problem. Solving methods based on dynamic programming coupled with linear programming

are not efficient in these cases.

In this paper we explore a novel Reinforcement Learning (RL) approach based on afterstates, which was suggested

in [2]. RL is a simulation-based optimization technique in which an agent learns an optimal policy by interacting with

an environment, which rewards the agent for each executed action. Compared to conventional RL, the afterstates

approach is independent on the number of services involved, achieves better solutions and does it with higher

precision [3].

Conventional RL has been successfully applied to optimize the admission control and routing problem in

fixed networks [4], the dynamic channel assignment in wireless networks [5], the multi-rate transmission control

problem in WCDMA wireless networks [6], and the bandwidth degradation in wireless networks with rate-adaptive

multimedia services [7].

The rest of the paper is organized as follows. We first describe the main types of prediction systems and review

previously proposed SAC schemes that make use of predictive information. Next, we introduce the theory of Markov

Decision Processes and apply this framework to a simple scenario. We then present the basic concepts of RL and

apply RL to determine optimal policies when predictive information is available. Finally, we compare our approach

to a heuristic one.

II. PREDICTION SYSTEMS

The design of movement prediction schemes and their application to estimate the occurrence of future handovers

has been extensively studied in the literature. There are three main types of prediction systems: history-based,

location-based and hybrid.

In history-based systems, each base station (BS) collects information about each MT like: previous and next cell

visited, sojourn time in the cell, etc. This information can be treated in a personalized way or in an aggregated way.

Given that the handover behavior of an MT is statistically similar to that of the MTs arriving to a reference cell
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from the same neighboring cell, then collecting the aggregated history of similar movement patterns can improve

the accuracy of the prediction.

Examples of history-based prediction systems are [8] and [9]. In [8] a prediction scheme is proposed to determine

the active mobile probabilities, i.e. the probabilities that a particular MT will be active at future time instants in

each of the cells belonging to the set of cells in the vicinity of its current location and along its direction of travel

(shadow cluster). The authors of [9] propose that BSs record the following quadruplet for each MT: the time when

the MT departed from the cell, the previously visited and next visited cells and the sojourn time of the MT in the

cell. The first element of the quadruplet is recorded because mobility behavior changes with the time of the day.

With this historical information the prediction system described in [9] can estimate, for each MT with an ongoing

session, both the probability that the next visited cell is a given one and the probability that a handover will be

executed in the near future.

Some problems have been associated with history-based schemes, the most important one being its limited

ability to track short-term pattern changes. Positioning-based systems do not suffer from this limitation. They

may be characterized as mobile-based, network-based and hybrid. Scalability issues and the success of positioning

systems make mobile-based techniques the most commonly deployed. Although pure positioning-based schemes

have been proposed in the literature [10], hybrid prediction systems like the one proposed in [11] can substantially

improve the prediction accuracy. The system in [11] is a sophisticated positioning-based scheme assisted by road

topology information. A database stores information related to road segments like: transition probabilities between

neighboring segments (computed from historical information), statistical data of the time taken to transit each

segment and statistical data of handovers along each segment. With this information the authors claim that they can

manage the fact that actual cell boundaries are fuzzy and irregularly shaped, a feature not addressed by previous

proposals.

III. SAC WITH PREDICTIVE INFORMATION

It is usually accepted that it is more disturbing for a subscriber in a cellular network to have an ongoing

session dropped than the blocking of a new session setup. To minimize the session dropping or forced termination

probability, operators deploy handover prioritization schemes like reserving a number of channels in each cell,

named guard channels, only for arriving handovers. Given that as more guard channels are reserved the carried

traffic diminishes, it is crucial to dimension its number appropriately. In this sense, schemes that deploy a dynamic

number of guard channels, that depend on the momentary conditions of the network, are preferred to static ones.

Different schemes proposed in the literature adjust the number of guard channels as a function of the predicted

occurrence of handovers. See for example [9], [11] and references therein.

In the scheme proposed in [9], each BS informs its neighbors about the number of BUs (bandwidth units or

channels) to be reserved for future handovers. For example, if we denote by BS0 a reference BS, then BS0 sends

periodically to its neighbors the length of the prediction window Test to be used. For each ongoing session m

a neighboring BSi determines the probability that the session will be handed over to BS0 within Test time units
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ph(m, i, 0). Then BSi computes
∑
m bmph(m, i, 0) and sends it to BS0, where bm is the number of BUs occupied

by session m. Finally, BS0 aggregates all reservations sent by its neighboring BSs, that we denote by Btarget(0),

and tries to reserve this amount of BUs. The scheme is able to limit the forced termination probability by adapting

Test.

One of the novelties of the SAC scheme proposed in [11] is that it takes into consideration not only incoming

handovers to a cell but also the outgoing ones. The authors justify it by arguing that considering only the incoming

ones would lead to reserve more resources than required, given that during the time elapsed since the incoming

handover is predicted and resources are reserved until it effectively occurs, outgoing handovers might have provided

additional free resources, making the reservation unnecessary. Their SAC scheme is based on determining the time

instants at which incoming and outgoing handovers will occur within a limited time-window into the future of

length Tthres. At BS0, the number of BUs that need to be reserved during the next Tthres time units, Btarget(0),

are determined by the following algorithm that we describe in a simplified way. Initially set a local variable x = 0.

Mark the time instants at which incoming and outgoing handovers are predicted to occur in the time-window of

length Tthres. Proceeding toward the future and until the time-window finishes, increment x each time an incoming

handover is encountered by the number of BUs required to carry the arriving session and decrement x each time an

outgoing handover is encountered by the number of BUs left free by the leaving session. Let xmax be the maximum

value of x during the process, i.e. the maximum bandwidth requirement during the prediction window. Then set

Btarget(0) = xmax. As in [9], Tthres is adjusted to limit the forced termination probability.

The admission control at BS0 can be performed in different ways, the simplest one is to accept a new request

if after acceptance at least Btarget(0) BUs remain free. Handover requests are always accepted if enough free

resources are available.

IV. MARKOV DECISION PROCESSES

As shown in the preceding section, most of previous studies propose a prediction system and a companion

admission control scheme that makes use of the information provided by the former in a heuristic way. Besides,

they assume that an admission control policy based on guard channels is the best possible policy. We propose a novel

optimization approach based on the formalism of Markov Decision Processes (MDPs) and deploy Reinforcement

Learning as the solution method. We determine the optimal (ideally) or quasi-optimal (in practice) admission policy

when the admission controller is provided with predictive information.

MDPs can be applied to the study of sequential decision problems when the stochastic behavior of the system

can be described as a Markov process. In discrete-time MDPs, when arriving to a new state a decision is made

(or an action is taken), which is rewarded with some immediate revenue or penalized with some immediate cost.

Those time instants at which decisions are taken are called decision epochs. It is clear that actions influence

the transition probabilities of the process and therefore its future evolution. We consider stationary deterministic

Markovian policies, where the action is influenced only by the current state x, i.e. when policy π is followed then

action a = π(x) is chosen in state x. In continuous-time MDPs, costs can be more conveniently expressed in terms
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of cost rates.

As an example, consider a simple fixed network scenario in which two services contend for the resources of a

single link. We make the common assumptions of Poisson arrival processes and exponentially distributed service

times. New sessions of service i arrive at rate λi, consume bi BUs and its duration rate is µi. Suppose that at

blocking states for service i the system incurs in a cost rate of λiwi and we want to design an admission policy

that minimizes the cost rate in the long-term.

For this type of continuous-time systems and long-term objective it is convenient to formulate the optimization

problem as the minimization of the average cost rate [12]. The average cost rate, γπ , is defined as the cost per

time unit accrued by the system in the stationary regime when following policy π. In systems like ours, γπ does

not vary with the initial state [12]. We consider the problem of finding the policy π∗ that minimizes γπ , which

we name the optimal policy. For the problems we consider, optimal policies always exist. It can be easily shown

that the cost structure has been chosen so that the average cost rate represents a weighted sum of loss rates,

γπ = ω1P1λ1 + ω2P2λ2, where Pi is the blocking probability of service i requests.

For continuous-time MDPs, the Howard equations relate the cost rates and relative values (defined below) of the

system when policy π is followed

γx(a)−γπ+
∑
y 6=x

qxy(a)(vy(π)− vx(π))= 0 (1)

where γx(a) is the cost rate at state x when action a = π(x) is taken, γπ is the average cost rate, qxy(a) is the

transition rate from state x to state y when action a = π(x) is taken and vx(π) is the relative value of state x.

Clearly, all these terms are influenced by policy π. Intuitively, the term vx(π) is the difference between the total

cost incurred when the system starts at state x and the total cost incurred if the cost rate at all states were γπ .

In our example, we consider a link with C = 5 BUs, b = {1, 2}, λ = {0.3, 0.15} and µ = {0.2, 0.1}. The

system state vector is defined as x = (x1, x2), where xi is the number of sessions of service i in progress. When

the Complete Sharing (CS) policy is deployed, then the average cost rates at the system states are: w1λ1 +w2λ2 for

states {(5, 0), (3, 1), (1, 2)}, w2λ2 for states {(4, 0), (2, 1), (0, 2)} and zero for the rest of states. From the Howard

equations, γπ and the relative values vx(π) for all states can be determined for this policy. In doing so, observe in

(1) that it is not the absolute values of vx(π) what are important but their differences. Therefore one can define,

for example, v0(π) = 0 and solve the system of linear equations.

Dynamic Programming (DP) algorithms exploit the fact that the cost functions satisfy the Howard equations.

The two most widely known DP algorithms are policy iteration and value iteration. Both are iterative algorithms

that improve a starting policy until the optimum policy is found. For brevity we only describe the policy iteration

algorithm. Once γπ and the set vx(π) have been determined for a given policy, the policy can be improved by

finding at each state x the action a that minimizes {γx(a)−γπ+
∑

y 6=x qxy(a)(vy(π)− vx(π))}, which is basically

equation (1). It can be shown that the new policy is never worse than the previous policy, i.e. its average cost

rate is lower or equal than that of the previous policy. The iterative process of policy evaluation and improvement

proceeds until γπ can no longer be improved.
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Fig. 1. Optimal policy for service 1.
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Fig. 2. Comparison of the two RL approaches.

Figure 1 shows the optimal policies in three different scenarios that differ in the cost of rejecting a session. In

the first two scenarios, requests of service 2 are always accepted while requests of service 1 are accepted only in

the states inside the shaded surface. The dotted line shows the acceptance region for service 1 when deploying the

CS policy. In the third scenario rejecting a service 1 request is more costly that rejecting a service 2 one. It is not

surprising that now the optimal policy is to reject always service 2 requests, given that they occupy more resources

and are not that valuable. Therefore, states where x2 > 0 are not reachable. On the other hand, service 1 requests

are always accepted while enough free resources are available.

V. REINFORCEMENT LEARNING

To determine the optimal policy in the previous section, the algorithm requires various iterations and the

value of the parameters that describe the system model, like transition rates and average costs, are required. DP

algorithms require prohibitive amounts of computation for large state sets. Different methods have been proposed

for approximating MDP solutions with less computational effort than required by conventional DP, one of which

is Reinforcement Learning. Most RL algorithms adapt standard methods of DP so they can be used in simulation

models. Besides, RL algorithms are model free and do not require the value of the system parameters. This might

be an advantage in mobile networks where random mobility and fuzzy cell boundaries make it difficult to determine

them.

The efficiency of RL algorithms is achieved by combining the following two features [2]. First, they avoid the

exhaustive iterations of DP by restricting computation to states on multiple sample trajectories typically obtained by

simulation. This allows to concentrate on states which have high probabilities of occurring in a real scenario. And

second, at each state, instead of generating and evaluating all of its possible immediate successors, it concentrates

on those that look more promising. Figure 2(a) shows how a conventional RL algorithm works. Observe that if state
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x is visited at the m-th decision epoch then learning takes place after the occurrence of the next decision epoch.

Intuitively, in systems as the one being considered, afterstates RL is based on the idea that what is relevant in

the RL approach is the state reached immediately after the action is taken. More specifically, all states at decision

epochs in which the immediate actions drive the system to the same afterstate would accumulate the same future

cost. In our simple fixed network example, accepting a service 1 arrival in state (1, 1) and accepting a service 2

arrival in state (2, 0) would take the system to the same afterstate (2, 1). Observe in Fig. 2(b) that if state x is

visited at the m-th decision epoch then the learning occurs after the occurrence of next afterstate.

VI. CASE STUDY

In this section we apply the afterstates RL methodology to the design of optimum admission control policies

when prediction information is available.

A. System Model

We consider a single cell system and its neighborhood, where the cell has a total of C BUs and the neighborhood

Cp BUs, being the physical meaning of a BU dependent on the specific technological implementation of the radio

interface. A total of N different services are offered by the system. For each service new and handover session

arrivals are distinguished so that there are 2N arrival types.

For the sake of mathematical tractability we make the common assumptions of Poisson arrival processes and

exponentially distributed random variables: session duration (µsi ), cell residence time (µri ), resource holding time

(µi = µsi + µri ) and residence time in the neighborhood (µpi ), with rates for service i sessions in parentheses. We

assume a circular-shaped cell of radius r and a holed-disk-shaped neighborhood with inner (outer) radius 1.0r

(1.5r). The ratio of arrival rates of new sessions to the cell neighborhood and to the cell is made equal to the ratio

of their surfaces. The ratio of handover arrival rates to the cell neighborhood from the outside of the system and

from the cell is made equal to the ratio of their perimeters. Without loss of generality, we assume that only one

session is active per MT.

B. Prediction System

Given that the focus of our study was not the design of the prediction system, we used a model of it instead.

An active MT in the cell neighborhood is labeled by a classifier for incoming handovers as “probably producing a

handover” (H) or the opposite (NH), according to some of its characteristics (position, trajectory, velocity, historic

profile...) and/or some other information (road map, hour of the day...). The labeling of the sessions occur T time

units before the destination of the MT is definitive. A similar approach is used in [11], where the prediction system

determines the time instants at which incoming handovers will take place in a time window of fixed size.

Once the actual destiny of an MT becomes definitive, two outcomes are possible: either a handover into the cell

occurs or not (for instance because the session ends or the MT moves to another cell). The label of the MT is
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removed either when the MT leaves the neighborhood or when its ongoing call finishes, whichever happens first.

The SAC system is aware of the number of MTs labeled as H at any time.

The model of the classifier is shown in Fig. 3. It takes into account the inaccuracy of predictions as classification

errors, which can be of two types: false-positives and non-detections. Conceptually, the model is depicted by a square

with a surface equal to one (1 × 1), which represents the population of active MTs to be classified. The shaded

area (SH ) represents the fraction of MTs that will ultimately move into the cell, while the white area represents the

rest of active MTs. The classifier sets a threshold (represented by a vertical dashed line) to discriminate between

those MTs that will likely produce a handover and those that will not. The fraction of MTs falling on the left side

of the threshold are labeled as H and those on the right side as NH. There exists an uncertainty zone, of width U ,

which accounts for classification errors: the white area on the left of the threshold and the shaded area on the right

of the threshold. The parameter x represents the relative position of the classifier threshold within the uncertainty

zone. Although for simplicity we use a linear model for the uncertainty zone it would be rather straightforward to

consider a different model.

C. Numerical Evaluation

The scenario that we consider is characterized by the following parameters: C = 50 BUs, Cp = 100 BUs, N = 4,

b = {1, 2, 4, 6}, µi = µsi + µri = 1, µri /µ
s
i = 1, µpi = 2µri , SH = 0.4 and x = U/2. Given that in multiservice

wireless networks the bandwidth required by different sessions are quite different, the rate charged per minute is

also quite different, and this in turn makes the arrival patterns quite different. The arrival rate of new sessions to

the cell for service 1 is set to λn1 = 14. Arrival rates of the other services are set to 20% of the arrival rate of

the service with the next lower index. In the scenarios of study the normalized load per BU is 0.62 and the new

session blocking probabilities and forced termination probabilities are Pni ≈ 10−2 and P fti ≈ 10−3, respectively.

With regard to the RL algorithm, as no actions are taken at session departures, then only the arrival events are

relevant to the optimization process. We select one of the 2N arrival types as the highest priority one, being its

requests always admitted while free resources are available, and therefore no decisions are taken for them. The cost

incurred by accepting any arrival type is zero and by rejecting a new request of service i is ωni and a handover

request is ωhi , where wn = {1, 2, 4, 8} and wh = {20, 40, 80, 160}. Note that ωni < ωhi since the loss of a handover
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Fig. 4. Performance gain when using handover prediction in a four services scenario.

request is less desirable than the loss of a new session setup request. The average cost rate is defined as a weighted

sum of loss rates for the 2N arrival types.

The system state is defined by (x0, x
w
in), where x0 is the number of BUs occupied in the cell under study and

xωin denotes the weighted number of BUs required for the forecasted handover sessions [3]. Note that the weighted

number of BUs required for the forecasted handover sessions provides the system with information about their

importance (weight). An additional advantage is that with this state representation we obtain a reduced cardinality

when compared to a state representation that considers the number of ongoing sessions of each service. Finally, it

was shown in [13] that the performance of the policy obtained with this representation is as good as the performance

of the optimum policy.

We evaluate the performance gain by the ratio γπwp/γ
π
p , where γπp (γπwp) is the average cost rate of the optimal

policy in a system with (without) prediction. Figure 4 shows the variation of the gain obtained for different values

of T and U . For U = {0, 0.2, 0.4}, the false-positive probabilities are {0, 0.06, 0.12} while the non-detection ones

are {0, 0.04, 0.08}.

As observed, there exists an optimum value for T . As T goes beyond its optimum value the gain decreases

because the temporal information becomes less significant for the SAC decision process. When T is lower than

its optimum value the gain also decreases because the system has not enough time to react. As an extreme value,

when T = 0 the gain is null because there is not prediction at all. Due to the simulation-based nature of RL,

each point in the figures represents the average of 10 different simulation runs initialized with different seeds. For

a confidence level of 95%, the confidence intervals for each point are so narrow that have not been plotted. As

shown in Fig. 4, the precision of the prediction subsystem has an impact on the overall performance of the system.

Notwithstanding, there already exist sophisticated positioning-based schemes assisted by road topology information,

like the one proposed in [11], that can be used to improve the prediction accuracy.

Finally it is worth noting that the main challenge in the design of efficient bandwidth reservation techniques for
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mobile cellular networks is to balance two conflicting requirements: reserving enough resources to achieve a low

forced termination probability and keeping the resource utilization high by not blocking too many new setup requests.

It can be shown that the utilization obtained by the policies learned when deploying prediction is practically identical

to the one obtained when not deploying prediction, what justifies the efficiency of our optimization approach.

It was shown in [3] that providing the optimization procedure with the additional information of the outgoing

handovers was not relevant when deploying the afterstates RL approach. This is due to the fact that the impact of

the outgoing handovers is already learned by the RL algorithm and therefore this information is not required to be

provided explicitly. The robustness of the afterstates RL approach was evaluated in [13], where it was shown that

good policies can be obtained even in non-Markovian scenarios.

To determine good policies the learning process requires a generous exploration of the state space, which in turn

reduces the convergence rate [3]. The exploration is a common RL technique used to avoid being trapped at local

minima. Given that the objective of our study is to determine bounds for the performance gain that can be obtained

when using predictive information, it seems logical to deploy a thorough exploration in order to obtain better

solutions. Note that the determination of a good policy using a thorough exploration takes only 1 minute in an Intel

Core 2 Quad Q6600. Therefore, deploying RL in real operating networks is still possible using historical information,

estimating the system parameters periodically and feeding them to the simulation program or a combination of both

techniques.

D. Comparative Evaluation

The performance of the SAC policy obtained by the RL optimization approach is compared to the performance

of one of the predictive SAC schemes proposed in [9]. Although the schemes proposed in [9] are evaluated in

a scenario with two services, the forced termination probability objective is defined for the aggregated of both

services. As making a fair comparison in a multiservice scenario is unfeasible, we make it in a single service

scenario.

Among the schemes proposed in [9] we chose scheme AC1 instead of AC2 or AC3 because the evaluation

scenario deployed so far is better suited for it. Additionally, the performance of the three schemes was evaluated

in [11] and the authors concluded that AC1 performs better than the others.

Figure 5 compares the performance of the AC1 scheme with the performance of different policies obtained by

the RL approach with C = 10 BUs, λn1 = 3.5, ωn1 = 1 and with the value of the rest of the parameters as defined

previously. The value of ωh1 is conveniently changed in order to obtain different values in the curves of Fig. 5. It

is clear that the policies obtained by the RL approach perform better than the AC1 scheme, showing that there is

still room for technological innovation.

VII. CONCLUSION

In this paper we evaluated the performance gain that can be expected in a multiservice mobile cellular network

scenario when the SAC optimization process is provided with predictive information related to incoming handovers.
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The prediction system deployed determines the future time instants at which handovers will occur. A classifier labels

the active mobile terminals in the neighborhood which will probably execute a handover. The labeling occurs T

time units before the handover takes place. The admission controller is aware of the number of labeled mobile

terminals at any time.

The optimization problem is solved using a novel Reinforcement Learning algorithm based on the concept of

afterstates. With the system state representation used, the computational complexity of the afterstates approach is

independent of the number of services being offered by the network.

Finally, we compared our SAC scheme based on optimization with a heuristic one proposed in [9]. The results

show that the performance of the policies obtained by our approach is clearly higher.
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