
Approximate Analysis of Wireless Systems Based
on Time-Scale Decomposition

Luis Tello-Oquendo, Vicent Pla and Jorge Martinez-Bauset
Dept. of Communications, Universitat Politècnica de València (UPV)
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Abstract—Markov chains are a widely used modeling tool
for wireless communication networks. The system size and the
existence of different user types often make the analysis of the
Markov chain computationally intractable. When the events of
each user type occur at sufficiently separated time scales, the
so-called quasi-stationary approximation (QSA) has proven to
be accurate and highly efficient. Recently, a generalization of
the quasi-stationary approximation (GQSA) has been introduced.
The new approximation aims to improve the accuracy at the
price of higher computational cost. In this paper, we carry out a
comparative study of the accuracy and computational cost of
both approximation methods QSA and GQSA. In particular,
we explore the evolution of accuracy as the separation between
time scales varies, and the trade-off between accuracy and
computational cost. Our results indicate that while the new
GQSA improves the accuracy in some instances, it does not occur
in all of them; and more importantly, it is difficult to predict in
which cases accuracy can be enhanced by the new method.

Index Terms—Wireless systems, cognitive radio systems, inte-
grated services systems, traffic analysis, quasi-stationary approx-
imation, time-scale decomposition.

I. INTRODUCTION

Continuous-time Markov chains (CTMC) are commonly
used for modeling communication systems in order to study
their performance. However, when the size of the systems is
large, the computational cost to calculate their performance
is greatly increased. Therefore, it is very necessary develop
various approximations techniques to reduce the computational
cost. One of these computationally efficient approximations,
based in time-scale decomposition and often used is the quasi-
stationary approximation (QSA) [1]–[3].

In [4] the authors introduce a new method, also based in
time-scale decomposition, called Generalized Quasi-Stationary
Approximation (GQSA), that provides a way to trade off
computational complexity and accuracy. They apply it to an
integrated services system (ISS) that serve short-lived non-
real-time and long-lived real-time traffic.

Using the newly introduced method, we assess its behavior
in a Cognitive Radio System (CRS), which at the model level
present qualitative important differences with respect to the
resources available for each type of user and the service rates
in each state of the model as is described in Section II. The
aim is to explore GQSA in both CRS and ISS.

The Cognitive Radio concept proposes to boost spectrum
utilization by allowing cognitive users (secondary users, SU)
to access the licensed wireless channel in an opportunistic
manner so that interference to licensed users (primary users,
PU) is kept to a minimum [5]. Since in CRS there are
different types of users, the cardinality of state space increases

rapidly with the number of channels, implying the growth
of the computational complexity related with the solution of
the CTMC associated with the system. For this reason an
approximation is tipically required.

On the other hand, in an ISS, future generation broadband
networks are expected to support a large variety of applica-
tions, typically grouped into two broad categories: real-time
(RT) (e.g. voice and video) and non-real-time (NRT) (e.g. web-
browsing, email and file-transfer) [6]. When the number of
channels is large the computational complexity of solving the
CTMC associated with the system becomes prohibitive. There-
fore, computationally efficient approximations are required [4].

We approach the problem from the traffic perspective and
develop two analytical models, one for CRS and another one
for ISS, to evaluate the performance of these systems. We
consider that the dynamics of the user types (in CRS) or traffic
types (in ISS) operates at sufficiently separated time-scales,
allowing to use approximation methods based on time-scale
decomposition to simplify the computations.

The contribution of this paper is threefold. First, we evaluate
the GQSA by applying it to a system (CRS) different from
the one studied in [4] (ISS). Second, in both systems (CRS
and ISS) we assess the behavior of the approximation when
the separation of time-scales vary from the quasi-stationary
regime to the fluid regime. Third, we analyze the trade-off
between accuracy and computational cost of the approximation
methods based on time-scale decomposition.

The rest of the paper is structured as follows. In Section II
we describe the Markov models and detail the characteristics
of the systems. Section III presents QSA and GQSA approx-
imations based on time-scale decomposition to simplify the
computations. Section IV detail the numeric evaluation and
show the results of performance metrics of the systems to val-
idate the accuracy and computational cost of approximations.
Finally, the conclusions are presented in Section V.

II. DESCRIPTION OF MODELS AND EXACT ANALYSIS

In this section, we detail the characteristics of the systems
and describe the CTMC models associated with them.

1) Cognitive Radio System : As in [7], we model the PU
and SU traffic at the session (connection) level and ignore in-
teractions at the packet level (scheduling, buffer management,
etc.). We assume an ideal MAC layer for SUs, which allows a
perfect sharing of the allocated channels among the active SUs
(all active SUs get the same bandwidth portion), introduce zero
delay and whose control mechanisms consume zero resources.
In addition, we also assume that an active SU can sense
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Figure 1. State-transition diagram, Cognitive Radio System.

the arrival of a PU in the same channel instantaneously and
reliably. In this sense, the performance parameters obtained
can be considered as an upper bound.

The Cognitive Radio System has C1 primary channels
(PCs) that can be shared by PUs and SUs, and C2 secondary
channels (SCs) only for SUs. Let C = C1 + C2 be the total
number of channels in the system. Note that the SCs can
be obtained from e.g. unlicensed bands, as proposed in [8].
This assumption is applicable to the coexistence deployment
scenario for CRNs [9]. Alternatively, as it might be of com-
mercial interest for the primary and secondary networks to
cooperate, the secondary channels may be obtained based on
an agreement with the primary network [9].

A SU in the PCs might be forced to vacate its channel if a
PU claims it to initiate a new session. As SUs support spec-
trum handover, a vacated SU can continue with its ongoing
communication if a free channel is available. Otherwise, it is
forced to terminate.

For the sake of mathematical tractability, Poisson arrivals
and exponentially distributed service times are assumed. The
arrival rate for PU (SU) sessions is λ1 (λ2), their service rate
is µ1 (µ2), and requests consume 1 (1) channel when accepted.

We denote by (i, j) the system state, when there are i
ongoing PU sessions and j SU sessions. The set of feasible
states is S := {(i, j) : 0 ≤ i ≤ C1, 0 ≤ i + j ≤ C} and
the cardinality of S is |S| = (C1

2 + C2 + 1) · (C1 + 1). The
state-transition diagram of the system is depicted in Fig. 1.

Given the set of feasible states and their transitions in a
CTMC, we can construct the global balance equations and the
normalization equation. From these we calculate the steady-
state probabilities denoted as π(i, j).

The system performance parameters are determined as fol-
lows,

P1 =

C2∑
k=0

π(C1, k) , P2 =

C∑
k=C2

π(C − k, k), (1)

Pft =
λ1(P2 − π(C1, C2))

λ2(1− P2)
, (2)

Th2 =

C∑
j=1

α∑
i=0

jµ2 · π(i, j), (3)

where P1 is the PUs blocking probability, which clearly
coincides with the one obtained in an Erlang-B loss model
with C1 servers; P2 is the SUs blocking probability, i.e. the
fraction of SU sessions rejected upon arrival as they find
the system full; Pft is the forced termination probability of
the SUs, i.e. the rate of SU sessions forced to terminate
divided by the rate of accepted SU sessions; Th2 is the SUs
throughput, i.e the rate of SU sessions successfully completed
and α = min(C1, C − j).

2) Integrated Services System: We use the same model
defined in [4] for an Integrated Services System that serve
real-time (RT) and non-real-time (NRT) traffic. We consider
a link whose limited resources (C Mbps in total) are shared
amongst RT and NRT requests. The RT traffic is given strict
priority over the NRT traffic. We initially assume that all RT
calls are of the same class each requiring one channel of rate c
b/s during its entire service duration to meet its required QoS.
Denote Nrt the maximum number of channels for RT calls.
When an RT call arrives, it occupies 1 channel if available; oth-
erwise, it is blocked. We set Nrt , such that Nrtc is sufficiently
smaller than C to avoid starvation of the NRT traffic. Let
nrt(t) be the number of RT calls in the system at time t, t ≥ 0,
so {nrt(t), t ≥ 0} is the RT process. NRT flows are served
evenly by the leftover capacity from the RT traffic according
to the processor sharing (PS) discipline. Let nnrt(t) be the
number of NRT flows in the system at time t, t ≥ 0. Then,
{(nrt(t), nnrt(t)), t ≥ 0} is the joint RT and NRT process.
The capacity available for all the NRT traffic at time t is given
by Cnrt(t) = C−nrt(t)·c. The bit-rate of each admitted NRT
flow at time t is cnrt(t) = Cnrt(t)/nnrt(t), which is updated
with RT or NRT admitted arrivals or departures. To satisfy
the QoS of admitted NRT flows, the maximum number of
concurrent NRT flows is limited to Nnrt . Accordingly, an
NRT flow arriving at time t is blocked if nnrt(t) = Nnrt.

We assume Poisson arrivals for RT and NRT requests with
rates λrt and λnrt respectively. The service time of each
admitted RT request is exponentially distributed, its service
rate is µrt. On the other hand, as data sessions generate
NRT traffic, their sojourn time will depend on the available
resources. The size of the flows generated by the data sessions
are exponentially distributed with mean L (bits).

We denote by (i, j) the system state, when there are i
ongoing RT calls and j NRT flows. Let S be the set of feasible
states as S := {(i, j) : 0 ≤ i ≤ Nrt, 0 ≤ i+ j ≤ Nrt +Nnrt}
and the cardinality of S is |S| = (Nrt + 1)(Nnrt + 1). The
state-transition diagram of the system is depicted in Fig. 2.

Given the set of feasible states and their transitions in a
CTMC, we can construct the global balance equations and the
normalization equation. From these we calculate the steady-
state probabilities denoted as π(i, j). We must consider that
the service rate of NRT flows varies according to the nrt RT
calls in the system as follow:

µ
(i)
nrt =

C − i · c
L

. (4)

The system performance parameters can be developed as
follows:

Pnrt =

Nrt∑
k=0

π(k,Nnrt), (5)
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Figure 2. State-transition diagram, Integrated Services System.

E [Xnrt] =

Nnrt∑
j=1

Nrt∑
i=0

j · π(i, j), (6)

E [Dnrt] =
E [Xnrt]

λnrt(1− Pbnrt)
, (7)

where Pnrt is the NRT flow blocking probability, E [Xnrt] is
the mean number of NRT flows in the system and E [Dnrt]
is the NRT flow average transfer delay.

III. APPROXIMATIONS

In terms of the modeling approach, while Markovian models
have been developed for the exact analysis of CRS or ISS, they
can be numerically cumbersome [3].

This study can be problematic as the higher dimensionality
may render the exact analysis computationally intractable.
However, when the dynamics of different dimensions (as type
of users –PU or SU– in CRS or types or traffic –RT or NRT– in
ISS) of the system in analysis operates at sufficiently separated
time-scales, one can resort to highly efficient approximations
based on time-scale decomposition, which can greatly simplify
the computations [7]. In this section, we describe a quasi-
stationary approximation and a generalized quasi-stationary
approximation to estimate performance parameters in both
CRS and ISS.

A. Quasi-stationary Approximation
The simplest approximation, producing easily computable

results is the so called quasi-stationary (or, quasi-static) ap-
proximation [10].

For instance, in CRS, the approximation can be applied
by decoupling the two types of users to analyze their perfor-
mances. We represent each type of CR user in one dimension
of our model. In Fig. 1 we can see PUs process in the
y axis and SUs process in the x axis. Since PUs utilize
channel resources regardless of the existence of the SUs, the

performance analysis for PUs can be evaluated independently
in an exact manner. Then the performance of SU can be
approximated.

The approximation procedure consists of two stages. The
first stage yields the distribution of steady-state probabilities
for the PU, i.e. {π1(i) : i = 0, ..., C1}, where π1(i) is the
probability of finding i ongoing sessions in an M/M/C1/C1

system with only PUs.
The second stage is to calculate the j SU session distri-

bution of steady-state probabilities by conditioning on the
state distribution for the PU: π̂2 (j|i). Also, π̂2 (j|i) is the
stationary probability of finding j ongoing sessions in an
M/M/C − i/C − i system with only SUs.

Both π1 (i) and π̂2 (j|i) can be determined independently
using simple recursions, since their corresponding CTMC are
one-dimensional birth-and-death processes.

Finally, the state probability distribution of CRS can be
approximated as:

π(i, j) ≈ π̂(i, j) = π1(i) · π̂2(j|i). (8)

Sufficient accuracy can be obtained by using the QS approx-
imation. At the QS regime, the PUs blocking probability is
P qs1 = π1 (C1); the SUs blocking probability is P qs2 , the SUs
throughput is Thqs2 and the SUs forced termination probability
is P qsft and can be determined employing distribution (8) as
follows [7]:

P qs2 =

C∑
k=c2

π̂(C − k, k), (9)

P qsft =
λ1(P2 − π̂(C1, C2))

λ2(1− P2)
, (10)

Thqs2 =

C∑
j=1

α∑
i=0

jµ2 · π̂(i, j). (11)

In the same way for ISS system, we can approximate the
distribution of steady-state probabilities of the system using (8)
in two stages: First stage, calculate π1(i) as the probability
of finding i ongoing RT calls in an M/M/Nrt/Nrt system
with only RT traffic. The second stage is to calculate π̂2 (j|i)
as the stationary probability of finding j NRT flows in an
M/M/1/N − PS system with only NRT traffic, i.e., using
(4) for each i, the steady-state probabilities are given by:

π̂2 (j|i) = πn = a2
nπ0, (12)

where

a2 ≡ a(i)
2 =

λnrt

µ
(i)
nrt

; π0 =
1− a2

1− a2
Nnrt+1

.

At the QS regime, in ISS, the NRT flows blocking prob-
ability is P qsnrt, NRT flow average transfer delay is given by
Eqs [Dnrt] and can be determined using distribution (8) as
follows:

P qsnrt =

Nrt∑
k=0

π̂(k,Nnrt), (13)



Eqs [Xnrt] =

Nnrt∑
j=1

Nrt∑
i=0

j · π̂(i, j), (14)

Eqs [Dnrt] =
Eqs [Xnrt]

λnrt(1− Pbqsnrt)
. (15)

B. Generalized Quasi-stationary Approximation

To make this paper self-contained, in this section we de-
scribe the GQSA proposed in [4]. For the sake of conciseness,
we describe it only for the CRS.

As in QSA, the performance of SU can be approximated
using GQSA but considering a set of i neighboring states of
the PU process (y axis in Fig. 1) rather than only the state
i. In this way, the joint PU and SU process is more likely
to reach statistical equilibrium since the time duration that the
PU events continuously remains in a set of neighboring i states
is generally longer than the time duration that it continuously
remains in one i state.

In GQSA a new parameter called radius denoted by R, R ∈
{0, 1, 2, · · · ,

⌈
C1

2

⌉
} is introduced, to indicate the size of the

set of i neighboring states that we are considering in the model
to analyze. The number of rows (state i and adjacent states to
i) in the state-transition diagram, Fig. 1, with a defined radius
to compute the approximation is 2R + 1. We define Ω(i) as
the set of states composed of the row of i state and its 2R
closest rows of states as follow:

Ω(i)=


{(i′, j) ∈ S : 0 ≤ i′ ≤ 2R}, 0 ≤ i < R,

{(i′, j) ∈ S : i−R ≤ i′ ≤ i+R}, R ≤ i ≤ C1 −R,
{(i′, j) ∈ S : C1 − 2R ≤ i′ ≤ C1}, C1 −R < i ≤ C1.

As the set of states of PU process can comprise a single PU
state, QSA is considered a special case of GQSA when R=0.

In Fig. 1, we show the elements, probabilities and stationary
distributions involved in GQSA for a CRS:

• π1(i) is the probability of finding i ongoing sessions in
an M/M/C1/C1 system with only PUs.

• π̂2(j|i) is the stationary probability of finding j ongoing
sessions in an M/M/C− i/C− i system with only SUs.

• π̂(i, j) = π1(i) · π̂2(j|i) is the approximated steady-state
probability of the CRS using QSA.

• πΩ(i)(i, j) is the stationary distribution of the new set of
states defined by R for analyze the system.

Finally, the approximated (i, j) steady-state probability us-
ing GQSA is defined as follow:

π(i, j) ≈ π(i, j) = π1(i) ·
πΩ(i)(i, j)∑
j πΩ(i)(i, j)

. (16)

The approximate values of performance parameters for CRS
are calculated using (1), (2) and (3) with the steady-state
probabilities defined in (16). Also in ISS, the performance
parameters are calculated using (5), (6) and (7) with the
steady-state probabilities defined in (16).

IV. NUMERICAL EVALUATION AND RESULTS

In this section, we study the behavior of GQSA when the
separation of time-scales vary from QS regime to fluid regime.
We provide and discuss numerical results of the accuracy of
the approximation in the calculation of performance parame-
ters of CRS and ISS.

As a baseline for our study, we implemented the exact
solution of the CTMC system (see Fig. 1 for CRS, and Fig. 2
for ISS) to calculate the exact values of their performance
parameters. Then we implemented the GQSA, i.e. we apply
the distribution defined in (16) to calculate the performance
parameters of each system. We focus on evaluating the relative
error (er) of each parameter. For instance, the relative error
of the blocking probability for SUs in a CRS, er(P2), is
computed as

er(P2) =
|PE2 − PG2 |

PE2
(17)

where PE2 is the exact value of SUs blocking probability
and PG2 is the approximate value of SUs blocking probability
calculated using (16).

To evaluate the goodness of GQSA, in terms of computa-
tional complexity, execution time and accuracy, we studied the
systems with different sizes (number of channels) and different
load conditions.

To set the load conditions, we proceed as follows: setting
the service rates to 1, we adjusted arrivals rates to obtain two
load conditions, low (L) and high (H), which correspond to
blocking probabilities 1 · 10−3 and 5 · 10−2, respectively.

In total we consider four load configurations for each
system:

LL low load condition for PUs (RT traffic), and low load
condition for SUs (NRT traffic).

LH low load condition for PUs (RT traffic), and high
load condition for SUs (NRT traffic).

HL high load condition for PUs (RT traffic), and Low
load condition for SUs (NRT traffic).

HH high load condition for PUs (RT traffic), and high
load condition for SUs (NRT traffic).

With the arrival rates adjusted to the specified load (LL, LH,
HL or HH), we use an accelerating factor f , 10−5 ≤ f ≤ 105,
to accelerate or decelerate the arrival and departure events (of
the PUs, in the case of CRS or of the RT traffic, in the case of
ISS) while keeping the offered traffic constant. For instance in
a CRS, in order to analyze the approximation methods from
the QS regime to the fluid regime, for each value of f , the PU
arrival and service rates are obtained as λ1(f) = f · λ1 and
µ1(f) = f · µ1.

In CRS we analyze blocking probability, forced ter-
mination probability and throughput, considering the fol-
lowing values for the number of primary channels:
C1 = {30, 40, 50, 60, 70, 80, 90} and for each of them the
following values for the number of secondary channels are
considering: C2 = {C1, (C1/2), (C1/5), (C1/10)}.

In ISS we analyze blocking probability and average transfer
delay for NRT traffic; keeping c and L constant with values
for total link capacity of C = {1.92, 3.84, 7.68} Mbps.

We varied the accelerating factor f to analyze the behavior
of the approximations as a function of the separation of time-
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scales. The results are shown in Figs. 3–6; from them we can
make the following observations:

1) The values of the performance parameter obtained by
the GQSA attain the exact value when R is increased to
C1/2 in CRS or Nrt/2 for ISS.

2) As expected, when the accelerating factor f decreases
the curves tend to the QS regime for all performance
parameters.

3) In ISS, for all values of accelerating factor f and for
all performance parameters, when R increases from 0 to
Nrt/2 the approximations approach gradually the exact
value. Figure 3 shows this behavior for Pnrt with load
condition LH.
In contrast, as can be observed in Fig. 4, in CRS
for all values of f , the curves corresponding to R =
1, . . . , C1/2 are not between the curve for QSA (R = 0)
and the curve for the exact values. In other words,
the QSA (R = 0) overestimate the exact value of
P2 whereas the GQSA (R > 0) underestimate it.
However, this behavior is not maintained for all different
configurations (see Fig. 5 with R = 1).

4) Figure 5 and 6 show that to achieve a high accuracy
in some system configurations, the radius needs only to
be increased slightly (R = 1 in Fig. 5, and R = 3 in
Fig. 6).
Note that increasing the radius not always ensures a
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Figure 6. ISS, NRT Flow Average Transfer Delay, HH load condition; λrt =
17.132, µrt = 1, Nrt = 22; λnrt = 0.227, Nnrt = 30; C = 1.92Mbps,
c = 64kbps, L = 4Mb.

gradual and monotonous convergence to the exact value.
As can be seen in Fig 6, up to R = 3 increasing the
radius improved the accuracy of the GQSA. However,
increasing further the radius from 4 to 6 the accuracy of
the GQSA deteriorates. Finally, as the radius increases
beyond 6, the accuracy of the GQSA gradually improves
again. Clearly, the trade-off between the accuracy and
computational cost will discourage the use of a radius
larger than R = 3.

5) The behavior of GQSA is not monotonous in terms
of accuracy in both ISS and CRS. GQSA accuracy
starts being good in QS regime; as the accelerating
factor moves away from the QS regime (see Fig. 4 for
10−1 ≤ f ≤ 100, and Fig. 3 for 10−4 ≤ f ≤ 10−2),
we observe that the curves of GQSA using small radius
begin to distance the curve of the exact values, i.e.
GQSA ceases to be accurate. Surprisingly, for certain
values of R, as f keeps on growing and we approach
the fluid regime (f > 104), the accuracy of the GQSA
improves and the values obtained with it (for any value
of R > 0) almost overlap the exact ones. This behavior
is clearly observed for the blocking probability in CRS
with any system size and load condition (see Fig. 4).
Also we note this behavior in ISS, for the NRT flow
average transfer delay with R = 3 and the specifications
detailed in Fig. 6.

The behavior in observations 4 and 5, might be due to the
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way in which the subset of states Ω(i) is chosen. Note the
asymmetry with respect to row i, when 0 ≤ i < R and C1 −
R < i ≤ C1. This aspect requires further investigation.

In order to measure the trade-off between accuracy and
computational cost, in Figs. 7 and 8 we represent the relative
error er against the execution time for different values of the
radius R. Note that R = 0 corresponds to the QSA case. In
this curves, we have set the value of f so that in QS regime,
the er is normalized to 1% and 10% for each performance
parameter. Figures 7 and 8 show only the results for those
values of R in which the execution time that do not exceed
the time necessary to obtain the exact solution.

On the behavior of GQSA we note the following:
In ISS, the relative error decreases when the radius of GQSA

increases. Although they are not represented here due to the
space limitations, we have observed the same behavior in all
performance parameters, for all load conditions and system
sizes.

A rather different behavior is observed, for instance, in CRS
with LL and HL load conditions. Analyzing blocking and
forced termination probabilities with LL load condition and
large system sizes, is better to use QSA than to use GQSA
with some values for the radius.

In Fig. 7 for the curve with initial er = 1%, we observe that
from R = 0 to R = 1, er decreases in 30% while the execution
time increases by 94%. When the initial approximation is
poorer (er = 10% with R=0), accuracy improves more slowly
as we increase R.

Fig. 8 shows that er increases abruptly from R = 0 to R = 1
and then decline gradually. The same behavior is observed no
matter what the initial er is (1% or 10%).

V. CONCLUSIONS

In this paper we have studied two approximation methods
based on time-scale decomposition for the analysis of cog-
nitive radio systems and integrated services systems which,
at the model level, present qualitative important differences.
We have modeled them as continuous time Markov chains.
We assessed the behavior of the approximations when the
separation of time-scales vary from the QS regime to the fluid
regime. We have measured the trade-off between accuracy
and computational cost. During the study, we illustrate how
GQSA display a behavior in terms of accuracy, not previously
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encountered in the analysis of other systems. The numerical
results demonstrate, contrary to what one may expect, that
the relative error of the performance parameters using GQSA
does not always decrease when R is increased, i.e. increasing
the radius not always improves the accuracy, in some cases
it deteriorates; therefore, the computational cost necessary
to gain in accuracy can be very high in comparison to use
QSA in order to evaluate the performance of the systems.
Knowing when the relative error decreases, and when it does
not, depends in a complex way on several factors. Some of
them (type of system, load conditions, system sizes) were
discussed in the paper while other require further investigation,
due to it is difficult to predict in which cases accuracy can be
enhanced by the new method. An unexpected finding is that
in some specific cases, GQSA is a good approximation not
only for QS regime but also in the fluid regime, where the
difference in the separation of time-scales is negligible.
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