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Abstract The aim of our study is to obtain theoretical limits Keywords Channel reservation Cellular network-
for the gain that can be expected when using handover pr&redictive information Reinforcement learning
diction and to determine the sensitivity of the system perfo

mance against different parameters. We apply an average-

reward reinforcement learning (RL) approach based on af; |niroduction

terstates to the design of optimal admission control padici

in mobile multimedia cellular networks where predictive in proyiding seamless mobility to users in heterogeneous mo-
formation related to the occurrence of future handovers igjjje wireless networks is a key factor to guarantee certain

available.

degree of Quality of Service (QoS). As mobile terminals

We consider a type of predictor that labels active mo{MTs) roam across the network, unavoidably, the communi-
bile terminals in the cell neighborhood a fixed amount ofcations need to be handed over from one base station to an-
time before handovers are predicted to occur, which we cabhther. Given that the current market trend is to integrase-po

the anticipation time. The admission controller expldits t

tioning systems in the MTs to provide location services, the

information to reserve resources efficiently. We show thatnobile network operators can exploit this new functiomyalit
there exists an optimum value for the anticipation time ato predict the occurrence of handovers and improve the per-
which the highest performance gain is obtained. Althougtiormance of the network. An integrated GPS-GLONASS-
the optimum anticipation time depends on system paramésalileo receiver will provide location services simultane
ters, we find that its value changes very little when the syseusly from multiple satellites, substantially improvinget
tem parameters vary within a reasonable range. We also firetcuracy, particularly in urban areas [1]. Two additioaatHf
that, in terms of system performance, deploying predictioriors are creating increasing interest in handover prexticti

is always advantageous when compared to a system withoG@ne is the availability of databases that include layoudrinf
prediction, even when the system parameters are estimatethtion of roads and cities around the world. The other is the

with poor precision.
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emergence of sophisticated algorithms that make use of lay-
out and positioning information to estimate the movement
of MTs with high accuracy [2].

MTs incorporate an increasing number of wireless tech-
nologies, including IEEE 802.11, GSM, UMTS, WIMAX....,
so handover prediction is being studied for a wide num-
ber of wireless technologies [3-6]. The working scenario in
this paper represents a mobile wireless network that gener-
ically covers any of the abovementioned technologies. We
will consider a cell to be the area served by a base station or
an access point, depending on the technology deployed.

To minimize the forced termination probability, conven-
tional approaches deploy handover prioritization schemes
[7] such as reserving a number of channels in each cell,
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named guard channels, only for arriving handovers. Givetas been previously used in the context of Q-learning [20]
that the carried traffic diminishes as more guard channels ato achieve a compact representation of the value function,
reserved, it is crucial to dimension its number appropiyate see for example [21]. More recently, it has also been used in
In this sense, schemes that deploy a dynamic number ofiodel-based RL [22], in relational RL [23] and in learning
guard channels, which depend on the momentary conditiorgeneral games [24].

of the network, are preferred to static ones. Many schemes
proposed in the literature adjust the number of guard chan-

gzls ?:raefg:ﬁtl?en [(;f gh_elg]r e;r:gtergfgfec:éreinf:e?;i?]arﬁg;/te rl?)'el active MTsT time units before the handover is predicted
P ' i 0 occur. We establish that an optimal exists at which

_these stgdl_es propose a prediction system and a compatrp]-e maximum system performance is achieved. Note that
ion admission control (AC) scheme that makes use of the

i i : _ ke: off exi h T ith which
information provided by the former in a heuristic way. Be-a trade-off exists between the anticipation time with whic

. . . : the controller reserves the resources and the system perfor
sides, these studies assume that an admission policy base

. . . mance. If the resources are reserved too early, more block-
on guard channels is the best possible policy. In systemis tha . . . ;
o . . .~ Ing will be experienced by new arrivals. On the other hand, if

do not have predictive information available, both heigist o
S : the resources are reserved too late, more forced termmsatio
and optimization approaches have been proposed to improve

o . : \fwll be experienced by handover requests. Note also that, as
the performance of admission policies at the session leve : : o .
N . T . the considered service disciplines are not preemptivenwhe
Optimization approaches not using predictive informatio

have been studied in [11-16] "the controller decides to reserve resources, there might no
' be enough free resources available in the system. One of
We apply a novel optimization approach to the design otne contributions of the paper is the study of the sensjtivit
AC policies that exploits the availability of handover pied  f the optimalanticipation time Tagainst different system
tion information [17]. In particular, in this paper our sfud  parameters. We show that its optimal value is almost insen-
focuses on the robustness of the obtained policies to systegive to system parameters like arrival and mobility rates
parameter uncertainties. Our work is different from pregio \ynen their values vary within a reasonable range. This in-
proposals in two distinctive aspects. One is that we study gariability is of crucial interest to network operatorsthae
multiservice scenario instead of a single service one. Thgandover prediction, because once the optiruis known

other is that we apply a novel optimization approach, baseg, optimal policy can be computed in a short time using a
on the formalism of Markov Decision Processes (MDPS)conventional personal computer.

to search for the optimal policy instead of common heuris-

tic approaches. As the large cardinality of the state space o

the MDP that models our system makes it unfeasible to find ©One way to deploy RL in real operating networks is to
numerical solutions, we use Reinforcement Learning (RL)estimate system parameters like arrival rates, sessian dur
as the solution method. Additionally, and more importantlytions and channel holding times periodically and then exe-
we provide the admission controller with much more specute the optimization process to obtain the optimal policy.
cific information of the future occurrence of handovers, byAS estimations can incorporate errors, another contohuti
considering the surface of a small neighborhood surroundf the paper is the study of the robustness of the performance
ing the perimeter of the cell under study and by cIassify-Of optimal policies when the system parameter values pro-
ing MTs with ongoing sessions in that surface according t¢yided to the optimization process are not exact. We show
whether they are expected to produce a handover or not. T8at deploying prediction is always advantageous in terms
policies we obtain show a significant performance improvef System performance (with respect to the performance of
ment and establish theoretical limits for the gain that can b2 System not deploying it), even when poor estimators for
expected when handover prediction is used, which could ndf€ System parameters are used.

be established by deploying heuristic approaches.

RL [18,19] is a simulation-based optimizationtechnique  The rest of the paper is structured as follows. The next
in which an agent learns an optimal policy by interactingsection defines the models of the system and of the predic-
with an environment that rewards the agent for each exdion agent. Section 3 presents the mathematical framework
cuted action. In afterstates RL (ARL), which was suggestedf the optimization procedure. The evaluation of the sensi-
in [18], decisions are taken based on the resulting state afivity of the optimum anticipation time with different sysh
ter the action is performed rather than on the current stat@arameters is presented in Section 4. In Section 5 we study
Compared to conventional RL (CRL), ARL achieves bet-the robustness of the performance of optimal policies when
ter solutions and does it with higher precision. Additidpal the system parameter values provided to the optimization
ARL is better suited than CLR for multiservice scenarios agprocess are not exact. Finally, a summary of the paper and
it produces a state space with lower cardinality [17]. ARLsome concluding remarks are given in Section 6.

We consider a type of prediction system that is able to la-
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2 Model Description and Prediction System ) 1 ,

We consider a single cell system and its neighborhood, where
the cell has a total o resource units and the neighborhood
Cp resource units, being the physical meaning of a unit of
resource dependent on the specific technological implemen-
tation of the radio interface. A total af different service
classes are supported by the system and we refer to them as
services. Itis usually accepted that it is more disturb'mg f Fig. 1 Basic parameters of the classifier.
a subscriber in a cellular network to have an ongoing session

dropped than the blocking of a new session setup. Then, for

each service, new and handover session arrivals are distiH\-’ﬁ' Two outcomesf are pos&bliz either ahhandoyer mtodthe
quished, so that there aNe services and I8 arrival types, Cell 0ceurs or not (for instance because the session ends or

This distinction allows the admission controller to prawvid the MT moves to another cell). We envisage the CIH system
differentiated treatment to different arrival types. to be located at the base station or access point and to eeceiv

For the sake of mathematical tractability, we make thGDOSItlonlng updates from the_ MTs, possibly at a higher rate
as MTs approach the cell neighborhood.

common assumptions of Poisson arrival processes and expo- . .
A wide range of techniques have been proposed to per-

nentially distributed random variables for the cell resicie - . .

. . . form handover predictions. They can be classified into five
time and session duration. However, we also study scenar- . ; : . . )
o . : S ... categories according to the information used for predict{3]:
ios in which the cell residence time is modeled by differ-

ent distributions. The exponential assumption is considler ) RSS (Received Signal Strength) [32,33, 6]; ii) movement

o . . . extrapolation [34, 35]; iii) history data [8, 36, 37]; iv) rid-
a good approximation for the inter-arrival time of new and. . ;
) . ity pattern [38]; and v) distance between MTs and BSs [39].
handover requests, particularly when the performance in:

) ) . e ® Mhese schemes are based on the estimation of one or several
dices of interest are blocking probabilities [25]. The \aati . o C .
: . of the next parameters: position, RSS, direction and vloci
rate for new (handover) sessions of servite the cell un- . . e
- he 71 he > Itis also remarkable that to improve the predictions aaoyira
der study isA"® (A"°) and a request of serviGgeconsumes

. ome studies also use city or road maps [2,40], or consider
b; resource unitdy € N, when accepted. For a packet basedS ) 1y or ps | ] _
- . multifaceted user behavior using also the group, timeayf-d
air interfacey; represents the effective number of resource

%ind duration characteristics of mobile users [5]. Asitcanb
required by the session [26,27]. As shown later, the admis- - ' .

: . . ) observed, most prediction methods are based on the estima-
sion control problem is formulated as a linear function of

) . ) . tion of parameters that are relatively easy to measure. The
the number of active sessions of each service. In this func- P y y

: ) : . most important and widely used parameter is the position of
tion, each accepted session of each service class coaﬁlbuMTs which typically obtained using a GPS receiver [2]
with a constant amount, possibly different for differentse ' pically 9 )

. ) o ) In the next two subsections we study two important as-
vice categories. A new session is accepted if the value of the S .

. . . . ects of the CIH. First, its model, which allows us to deter-
linear function (that describes the amount of some kind o

) . . . mine the probabilities of false positives and non-det&stjo
resource consumed in the system at some time instant, like P P el

. - ?nd second, the labeling instant. Note that the admission
channels, power, etc.) is lower than a constant limit (tha .
controller reserves resources for future arrivals basatien

describes the total amount of the resource). See for exam- : .
number and importance of the predicted handovers. How-
ple [28,29] for CDMA systems, [30] for OFDM systems L -
.. . . ever, the predictions made by the CIH are only visible to the
and [31] for WLANS. For servicg the session duration and
. ; . controller once the MTs have been labeled.
cell residence rates af€ and i respectively. The resource
holding time for a service session in a cell is also expo-
nentially distributed with rates = p°+ yf, and the mean 5 1 Model of the CIH
number of handovers per sessioNi& = pf /S when the
number Of resource Units in the netWOl'k iS |nf|n|te W|thOUtThe |abe|ing process performed by the Classifier produces
loss of generality, we consider that only one session isecti classification errors of two types: false-positives and-non
per MT. detections. The model of the classifier, shown in Fig. 1, has
Given that the focus of our study was not the design obeen designed to take into account these classification er-
the prediction system, we used a model of it instead. A clasrors. The model can be depicted by a square with a surface
sifier labels an active MT in the vicinity of a cell pgobably  equal to one (k 1), which represents the population of ac-
producing a handove(H) or the opposite (NH). We denote tive MTs to be classified. The shaded area represents the
this system as classifier for incoming handovers (CIH). Af-fraction of MTs &) that will ultimately move into the cell,
ter some time the actual destiny of the MT becomes definiwhile the white area represents the rest of active MTs. No-
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Sessions Labeled sessions a cell and byf; (s) and f*(s) their respective Laplace trans-
not labeled Handover forms. Itis clear thaf; (s) = i_o f/(5)(2/6)*(4/6). When
, the cell residence tim& (s) is exponentially distributed with
cell under study .
ratep" thenf; (s) = u"/(u" +s) and we obtain that; (s) =
(4u"/6)/((4u"/6)+s). Thereforefy(t) is also exponentially
distributed with rate(4u"/6). In our model, the so-called
neighborhood is only a narrow area surrounding the perime-
I:;‘:t‘:]‘;vrecret]‘]’ ter of the cell under study instead of a six-cell ring, but by
7 analogy the residence time of an MT in the neighborhood is
assumed to be exponentially distributed. However, we also
study scenarios in which the cell neighborhood residence
Fig. 2 Temporal evolution of sessions labeled by the CIH. time is modeled by different distributions. Note that this

model might account for the fact that actual cell boundaries

tice that part of the MTs that will move into the cell can fin- &€ fuzzy and irregularly shaped.

ish their active sessions before doing so. The classifiersset ~ We also assume that the CIH will always label an MT
threshold (represented by a vertical dashed line) to diseri  (Session) at the required anticipation time. However, note
nate between those MTs that will likely produce a handovefhat the prediction accuracy might decrease when the time
and those that will not. The fraction of MTs falling on the elapsed since the MT arrives into the neighborhood and the
left side of the thresholdY;) are labeled as H and those on labeling instant s too short. This might happen for shast re
the right side as NH. There exists an uncertainty zone, dflence times. Although, as expected, the performance gain
width U, which accounts for classification errors: the whitedecreases with the accuracy of predictions, the gain is sub-
area on the left of the threshol&f() and the shaded area Stantially above 1 even for high values df (uncertainty

on the right of the threshol8§,,). The parametex repre- ~ zone of the predictor). This means that the performance of a
sents the relative position of the classifier threshold with System with prediction is substantially better than théquer

the uncertainty zone. mance of a system without prediction, even when deploying
The model of the CIH can be alternatively characterizedOW precision predictors [17].
by two parameters: the probability of producing a han- Given that our interest is to find theoretical limits for the

dover if labeled as H, and the probabiliyof producing a  gain that can be expected when using handover prediction,
handover if labeled as NH. Note that-1p andg model the ~ we use a type of CIH that provides the admission controller
false-positive and non-detection probabilities respegtj ~ with more specific information about the future occurrence
and in generad| £ 1 — p. It can be shown that of handovers. More precisely, at any time instant, the admis

sion controller is able to know the number and importance
2

1-p= :i _ X of the handovers that will take place in future time window

S URS—U+2x)’ of fixed size. A similar approach is used in [2], where the
system predicts the incoming and outgoing handovers that

”%H (U —x)2 will take place in a time window of fixed size. To achieve

a= 1-§) - U(2-25+U—2x)) this, the labeling anticipation time of an active MT in the

cell neighborhood i$ = min{T,t"}, whereT is a constant

andt' is the predicted residence time in the neighborhood.
2.2 CIH labeling instant In practical scenarios we expect that< E[t'], and there-

fore for most MTsf = T. For that reason we refer  as
The time elapsed since an active MT is labeled until its desthe anticipation time.
tiny becomes definitive will be referred to as the labekbing As it will be shown in Section 4, there exists an opti-
ticipation time We assume that residence time of MTs in themum value forT that maximizes the system performance,
cell neighborhood follow an exponential distribution. Gon which in addition is almost insensitive to small perturbat
sider a seven cell cluster with one cell at the center. It canf common system parameters, like load, mobility, etc. We
be easily shown that if the residence time in a cell is expoalso study the impact that deviations from the ideal coristan
nentially distributed, then the residence time in the rifig o elapsed time since labeling to handover execution have on
cells surrounding the central cell is also exponentiallt di the system performance. That is, even if we configure the
tributed. Assuming hexagonal shaped cells, we denote bgnticipation to be a constant tine the time elapsed since
fg(t) the probability density function of the time an MT re- the CIH labels an MT until its destiny becomes definitive
sides in the ring of cells surrounding a given cell, hys)  will be a random variable. See Fig. 2, whéigand T, are
the probability density function of the time an MT resides inthe optimum value foil and the actual anticipation time,



Robustness of optimal channel reservation using handaeeigbion in multiservice wireless networks 5

and the shaded surface represents an interval for the likegpecial kind of MDPs appropriate for modeling continuous-

values ofT,. More details are provided in Section 4. time systems in which the time between decision epochs is
Finally, and to summarize, the basic operation of the pronot constant.

posed system is: i) for each active session in the cell neigh- We consider deterministic stationary Markovian policies,

borhood, the CIH is in charge of estimating if the sessiont: S— A, which define the next action of the agent based

(MT) will generate a handover requests or not, and the timenly on the current state i.e. an agent adopting this policy

instant of its occurrence; ii) at some time instant (the labe performs actiorvi(x) in statex. For the problems we con-

ing instant) the CIH communicates to the admission consider, optimal stationary Markovian policies always exist

troller the future occurrence of a handover. The labelingin ~ When the system starts at statand follows policyr,

stant is the minimum of the residence time in the neighborthe average expected cost rate, denoteg’tjy), is defined

hood and the anticipation time€; iii) the admission con- as

troller, learning from its past experience, takes the ogtim 1

actions with respect to the number of resources to reseré (X) = lim ~E[K"(x.t)]

and when the reservation takes place. . . .
whereK”(x,t) is the total cost accumulated in the interval

[0,t] when the system starts in stateClearly, if the envi-
2.3 Relations between system parameters ronment is stochastic thé/’(x,t) is a random variable.
In a system like ours, it is not difficult to see that for
Instead of defining the arrival rate of new sessions to the cekvery deterministic stationary policy the embedded Markov
neighborhood (ng) and the handover rate to the cell neighthain has a unichain transition probability matrix, andé¢he
borhood from the outside of the system (so) as independefare the average expected cost rate does not vary with the
parameters of the model, it is more realistic to relate theninitial state [42]. We call it theost rateof the policy, de-
to other system parameters. To do so, we assume a circularote it byy™ and consider the problem of finding the policy
shaped cell of radius and a holed-disk-shaped neighbor- 7T* that minimizesy™, which we name the optimal policy.
hood with inner (outer) radius.Qr (1.5r). Note that these At decision epochs an action is selected from the set of
values should be understood as idealized average values, @ssible actions := {0 = reject 1 = admit}. Given that no
cause, as mentioned before, cell boundaries are fuzzy argtions are taken at session departures, the time instants a
irregularly shaped. which these occur are not considered decision epochs. Fur-
Then, the ratio of arrival rates of new sessions to the cellhermore one of theR arrival types is selected as the high-
neighborhood (ng) and to the cell (nc) is made equal to thest priority one, being its requests always admitted while
ratio of their surfaces)"? = 1.25\"°. The ratio of handover free resources are available. Therefore, only one action is
rates to the cell neighborhood from the outside of the systerpossible at those decision epochs corresponding to arival
(so) and from the cell (hc) is made equal to the ratio of theiof the highest priority stream.
perimetersAs° = 1.5\, The cost function is defined as follows. At any decision
The classifier operates on sessions arriving from the ougpoch, the cost incurred by accepting any type of arrival is
side to the neighborhood as well as on new sessions initgero and by rejecting a new (handover) request of seivice
ated in the neighborhood. Therefore, in Fig. 2 we have thais @ (w"). A further accrual of cost between two decision
Ao = TN o (AS°+ AM). Note that in our numerical experi- epochs occurs when the system has to reject requests of the
ments the arrival rates are chosen to achieve realisti@bper highest priority. It can be shown that for the defined cost
ing values folP"(~ 1072) andPi“(z 10-3), whereP"isthe  function, the cost rate represents a weighted sum of the loss

blocking probability of new requests avﬁﬁt is the forced rates
termination probability, both of servide N
y' = Zl(&%npin)\in + PN
i=
3 Optimization by Reinforcement L earning whereP" is the blocking probability of handover requests.

, , . In generalw < & since the loss of a handover request is
The information provided by the CIH and the state of the Ce”Iess desirable than the loss of a new session setup request.
(number of occupied resources) are used to find the optimal

admission policy. We formulate the optimization problem as

an infinite-horizon finite-stat&emi-Markov Decision Pro- 3.1 The Afterstates Approach

cess(SMDP) under the average cost criterion. We focus on

the average cost criterion instead of using a discounted apntuitively, ARL is based on the idea that what is relevant
proach as it is more appropriate for this type of continuousin a decision process like ours is the state reached immedi-
time systems with long-term objectives [41]. SMDPs are ately after the action is taken. More specifically, all state
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at decision epochs in which the immediate actions drive the
system to the same afterstate, would accumulate the same: Initialize (x),Vx € S, arbitrarily (usually zeros).
future cost if the same future actions are taken. 2: Initialize y arbitrarily (usually zeros)

As we learn over the state reached immediately after the > Initialize N(x) =0, Wr =0 and 7r =0

. . . . . . : Repeat forever:
action is taken, the a_rrlval type is not needed in the. Iegnm We denote by a the action taken in the current state y, by
process. Therefore, in the ARL approach the cardinality of ¥ seject 0V aceepr) the afterstate when the reject (accept) action is
the state space is independent of the number of services in- taken and by ;. the immediate cost when the request is re-
volved. This characteristic is specially important in gyss Jected.
with a high number of services where ARL tackles more ef- 5: Take action a:
ficiently than CRL the curse of dimensionality. Besides, as * Exploration: random action

. . ; Greedy: action selected from
any RL optimization method, ARL offers the important ad- i (Oreject 1Y eject)) < MY accepr) then

vantage of being a model-free method, i.e. transition proba o = reject
bilities and average costs are not needed in advance. else
To solve the optimization problem we deploy a modified a = accept

version of the SMART algorithm [43] that follows an ARL 8 a=1/(1+N()) / _ ,
approach using a temporal difference method (TD(O)). For being o the learning rate, x’ the previous afterstate and N(x')

. the number of times the afterstate x’ has been updated:
the pseudo code of the proposed algorithm, please refer to,. h()  (1— @)h(x') + a[we(.y) + w(y.a) + h(y) — 77]

Fig. 3. Note that at thei" decision epoch an exploratory N() « N(¥) +1
action is taken with probabilitypy,, which is decayed to being w,(x’,y) the accrued cost when the system evolves from
zZero by using the fo||owing ru|@m = po/(]_ + Um)' where X' to y, w(y,a) the immediate cost of taking action a in state y and
Um = mZ/((p+ m), po= 0.3 andgp = 103 [44]. The explo- 7 the time elapsed between decision epochs m and m + 1.
ration of the state space is a common RL technique used”: a1 sreedy: )

: Wr < Wr +we(x',y) +w(y,a)

to avoid being trapped at local minima. Finally, due to the . Tr e Tp+1
simulation-based nature of RL, each pointin the figures pre- 3. Y Wy /Ty
sented along the paper represents the average of 10 differem: ¥y

simulation runs initialized with different seeds.

Fig. 3 SMART algorithm with afterstates.

3.2 Representation of the state of the system

units occupied by sessions of serviciabeled as H. The
In [17] we explored different representations of the stdte orationale behind the weighted prediction is to provide info
the cell and the neighborhood and found that the weighteghation to the optimization process about thgortanceof
representation defined in (1) was particularly conven@&sit, the forecasted handovers. Recall that the predictiverimdéer
it provides a good compromise between cardinality and pretion described by} refers only to those ongoing sessions
cision of the results. Clearly, the larger the state spde, t that will probably be handed over in less tHEtime units.
larger the exploration required and the higher the complex- Note that the admission controller does not know the
ity of the learning procedure. When deploying the weightedy, ot time instant at which individual handovers will oc-

representation, the state space is defined as: cur, nor has an explicit knowledge of the exact duration of
(1) the time window over which those handovers will occur.
The admission controller is not informed by the CIH about

where we denote by the total number of resource units the value of anticipation tim& since, owing to its reduced
occupied in the cell and by the weighted number of re- complexity, it would not know how to use that information.
source units occupied by sessions labeled as H in the neighistéad, the admission controller learns by experience and
borhood (i.e. the total weighted number of resources unitddapts its response to the temporal immediacy of the infor-
required by the forecasted handover sessions). We defifgation received from the CIH, which is expressed as the
k = af} /', beingH (L) the highest (lowest) priority ser- weighted number of handovers that will occur in the near
vice. For example, for one of the systems we study the nunfuture.

ber of services i = 2, having the handover arrivals of the In [17] we compared the performance of our predictive
second service the highest priority, i.e. its requests hre aadmission control scheme to the performance of the scheme
ways admitted while free resources are available. The w&iglproposed in [8]. In addition, for comparative purposes, we
associated to the blocking of new and handover requests aatso determined the performance of an optimal fractional
w) =1, w) =2, w] =20 andwl) = 40. Thenk = wl /= guard channel policy (that does not exploit predictive info

2 andx(y = x29+ Kxp9, Wherexi”g is the number of resource mation). There, we showed that our scheme clearly outper-

S: = {x= (x1,%X) : X7 <C;Xgy < KCp}
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formed the other two. As discussed above, many schemasenarios with higher number of services. Following com-
proposed in the literature adjust the number of guard charmmon practice, the units of the rate parameters are not speci-
nels as a function of the predicted occurrence of handoverfied. As an example, if the rates are expressed in events per
Then itis implicitly assumed that an admission policy basedninute, then the units of time parameters like the anticipa-
on guard channels is the best possible policy. In our comtion time T are expressed in minutes. Also, it is common
parative study we also showed that, in general, this is ngbractice to assume that all rates of the Markov model are
true. expresses in the same units.

3.3 Reference scenarios 4 Senditivity of the optimum anticipation time against
system parameters
For the numerical evaluations in this paper we use two dif-
ferent reference scenarios, one with= 2 and the other |n this section we study the sensitivity of the optimum value
with N = 4. In both scenario€ = 50 andC, = 100 re-  of T, at which the maximum performance gain is obtained,
source units. Note that the value@f is chosen big enough and the sensitivity of the maximum performance gain against
to guarantee that a session is never blocked when handeifferent system parameters like: number of resource units
over to the neighborhood. For the classifier weSet 0.4,  of the cell C), system load A7), distribution of the resi-
x=U/2 andU = 0.2. With these values, the probability of dence time and mobility of terminals. We measure the per-
false—positiye i_s 1- p=6.25-102 and the probability of formance gain by the ratig,/ vy, whereyl (y,) is the
non-detection ig| = 4.166- 102, cost rate of the optimal policy in a system with (without)
For the scenario withl = 2,b; =1 andb, = 2. We also  prediction. Note that an optimal policy in a system without
setup =1, up =3, Nih =1 andu{/uip =0.5,i=1,2,where prediction is obtained when the optimization process is pro
P is the residence rate in the cell neighborhood for a serviceided with no information about the future occurrence of
i session. The arrival rates of new sessions to the cell ar&andovers.
AC = f1A1, AJ¢ = A7, andAr = 3 A" = 20. We callf; The study is motivated by the fact that when deploying
the penetration factor of serviéeand clearlys]\ , fi = 1. the CIH the operator must configure it with the optimum an-
We setf; = 0.8 andf, = 0.2. The relative weights associated ticipation time to maximize system performance. As it will
to the blocking of new and handover requests were definelde shown, the optimum value af depends on the system
in the previous subsection. parameters but we find that its value changes very little when
For the scenario wittN = 4, b = {1,2,4,6}, N" =1,  the system parameters vary within a reasonable range. This
=1 andui’/uip = 0.5. The different weights associated invariability is of crucial interest to network operatotsat
to the blocking of new sessions and handoversdate=  use handover prediction systems, because the optifium
{1,2,4,8} andcq“ = {20,40,80,160}, and, thereforex,y =  can be precomputed for a given set of network conditions.
X0+ 2x° + 4xg° + 8%,°. Given that in multiservice wire- Once the optimunT is known, an optimal policy can be
less networks the bandwidth required by different sessionsomputed quite quickly, even using a large exploration, as
is quite different, the rate charged per minute is also quitenly the optimal policy at the optimum value ®f which
different, and this in turn makes the arrival patterns quitenaximizes the system performance gain, needs to be ob-
different. To achieve this arrival rate differentiatione\set tained. For example, when an Intel Pentium IV HT 3GHz
ANC = fidr, beingfi = ¢i/ 3 ¢j, ¢i = x'"landyx =0.2,i.e. personal computer and a large exploration characterized by
for a given service, its arrival rate of new sessions is set tgp = 10'® is used, a good policy is computed in less than 2
20% of the arrival rate of the service with the next lower in-minutes.
dex. The value oAt has been chosento achieve thatthe load Therefore, deploying RL in real operating networks is
per resource unit offered by the new sessipris the same  possible either using historical information or estimgtine
as the one offered in the previous scenario wikere 2: system parameters (like arrival and residence rates)dierio
cally and feeding them to the simulation program. With this
1A A N second type of operation, as it is not expected that new sys-
p== —b=— —b;. . . . .
Ci; i C 5 u tem parameter estimates differ substantially from theiprev
ous ones, the time required to compute a new optimal policy
For the sake of clarity and unless otherwise specified, thifom a close one is much shorter than computing it from an
numerical examples will be evaluated for the simpler scearbitrary initialization.
nario withN = 2 services. However, we also include numer-  We follow an experimental approach based on defining
ical examples for the scenario wibh= 4 services to show two test scenarios with realistic operating conditions and
that the main contributions of the paper are also valid focomparing the cost rate of optimal policies obtained in sys-
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T e that reason, in the rest of the paper we assume an exact an-
oS ticipation time.

—o- CV=03 || To determine the performance gain (cost) of the poli-
cies obtained by our optimization approach in all the re-
sults presented, we first solve the MDP using RL and ob-
tain the optimal policy for each system configuration. Then,
the performance gain of the policy is determined using a
discrete-event simulation model. That is, for each scenari
of study, we first determine the optimal policy and then, we
measure by simulation the blocking probabilities of new and
handover requests perceived by the different serviceadass
g 1 when the obtained policy is enforced.

0.95 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 12 14 16 1.8 2

T 4.1 Sensitivity against the number of resource units of the

Fig. 4 Impact of the accuracy of the predicted anticipation timetan cell
performance gain.

Maintaining the load per resource unit constant, Fig. 5 show
the performance gaigy,/yy as a function ofT for three

tems with different characteristics. The reference sdesar different values of the number of resource units of the cell,
were defined in Section 3.3. C = {30,40,50}, whenN = 2. As observed, the optimum

When describing the CIH in Section 2.2 it was discussedialue of T decreases slightly as the number of resources
that even if we configure the anticipation toBe¢ime units, increases. This might be due to the fact that in a system
the time elapsed since the CIH labels an MT until the hanwith more resource units, resources are released at higher
dover actually occurs will be different fromand we model rate and, consequently, the admission controller is able to
it as a random variable. We are interested in evaluating theeserve resources with less anticipation time. Also naé th
impact that the deviation of the real anticipation time fromthe maximum gain increases as the number of resource units
an ideal constant one has on the system performance. Fof the cell increases. This is explained by the trade-off be-
that, we assume an ideal scenario where the CIH achievesween the anticipation time with which the admission con-
100% accuracy when labeling an MT and determine optimatroller reserves the resources and the system performance,
policies for different values of . Then, we evaluate the per- which was described in Section 1. The shorter the time re-
formance gain of these policies in a real scenario where thguired to enforce reservations, the shorter the time ethpse
time elapsed since the CIH labels an MT until the handovesince the resources are reserved until they are needed and,
actually occurs is modeled by a normal distribution of mearthen, the better the system performance. This trade-aff als
T and standard deviatioh-CV, beingCV the coefficientof explains why providing the admission controller with the
variatiort. Note that for a normal distributioN (u,az) the  information of future handover arrivals too early (large
fraction of samples in the intervgl — o, 4 + 0] is approx-  leads to poor performance. Although the optimum value of
imately Q68. T changes slightly witlC, this parameter is only expected

As observed in Fig. 4, an optimum value for the anticipa-to vary in the design phase of the network.
tion time T exists at which the performance gain attains its
maximum. Note also that even when the actual anticipation
time is not constant, the optimum value Bfremains ap- 4.2 Sensitivity against the system load

proximately the same. However, as it could be expected, the )
maximum gain diminishes as ti& (error in the labeling Maintaining the rest of the parameters constant, Fig. 6 show

instant) increases. For the numerical results in this secti te performance gaigy,/vy as a function off for a sys-
we are deploying the reference scenario Witk 2 services €M With N = 2 services for three different system loads
in which we consider a certain degree of classification erAT = {18,20,22}. The different loads have been selected
rors by configuring) = 0.2. As observed in Fig. 4, even for to produce realistic blocking pr_obab|I|t|es in real opejgt

a relative error up to 20%Y = 0.2) in the labeling instant, "€WOrks. As observed, the optimum valudab almost in-
the performance of the obtained policy is not significantlySensitive to system load and the maximyjp/ y; decreases

worse than the one obtained for an exact CI¥ (= 0). For ~ 8S load increases. Note that for the study, the load region of
interest has been chosen high enough to obtain an advan-

1 The coefficient of variation of random variable X is the rasfats ~ tage by deploying prediction, but at the same time comply-
standard deviation to its meadyy = ox /E[X]. ing with the QoS (blocking) objectives (see Subsection.2.3)
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Fig. 5 Sensitivity of the optimunT and the maximum performance
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gain against the system load in a system Wtha- 4 services.
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Fig. 6 Sensitivity of the optimumT and the maximum performance g g Sensitivity of the optimunT and the maximum performance

gain against the system load in a system With- 2 services. gain against the CV of the distributions of the residencefimthe cell
and in the neighborhood.

Figure 7 shows the performance gain as a functioh of
for a system wittN = 4 services. Here, witit = 146332  of the performance gaig(,/yj with T for three different
we get the same load per resource unit as the one obtaingglues of the CV of the distribution of the residence time,
in a system witiN = 2 services andrt = 20. Note thatthe CV = {0.5,1.0,1.5}, whenN = 2.
Optimum value ofT is almost insensitive to the system load Figure 8 shows the impact on performance of the CV
as well. of the residence time in the cell and in the neighborhood.
Note that the mean residence times, i,gufland 1/ ", are
kept constant and equal to the values deployed in the rest
4.3 Sensitivity against the distribution of the residericeet  of experiments. Clearly, the optimum value fdrremains
in the cell and the neighborhood approximately constant. We have also studied the scenarios
in which the residence time distribution in the cell or in the
In addition to the exponential distribution, for which wevea neighborhood, but not both, is different from an exponéntia
aCV =1, we also consider the hyperexponential and Erlanglistribution, reaching the same conclusion. Note that when
distributions for the residence time. The CV of the Erlangthe resource holding time is not exponentially distributed
distribution can be adjusted in the range:QV < 1, while  the policies obtained might not be optimal, as the underlay-
the CV of the hyperexponential distribution can be set tdng model is not an MDP and the corresponding theoretical
CV > 1. Using these distributions, we evaluate the variatiorframework cannot be applied.
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Fig. 9 Sensitivity of the optimunT and the maximum performance
gain against the mobility of terminals. Fig. 10 Robustness of optimal policies when the arrival thies es-
timated with poor precision wheN = 2 services.

4.4 Sensitivity against the mobility of terminals

when compared to another without prediction, when the es-
In this section we study the evolution of the performancdimation of the aggregated arrival rake is done with poor
gain yy,/ vy as a function ofT for different values of the precision. We compare the performance of optimal policies
mobility whenN = 2. We express the mobility of terminals obtained in a system with prediction and other without pre-
as i = vy, wherep* is the channel holding time rate of diction. The performance of an optimal policy is determined
service in the reference scenariojs a multiplicative factor by computing its cost ratg™. For each system we show two
and we keep constant the mean session duratipel. 1Al-  different curves. One is obtained by determining the optima
though the arrival rate of sessions from outside of the gyste policies for exact estimations afr. The other is obtained by
(A9 depends on the mobility of MTs, we ke@f° constant  determining the optimal policy fokt = 20 and using this
and equal to the value defined for the reference scenario, i.policy for other values oft € [20.0,22.0], i.e. we are con-
with v = 1. Results are depicted in Fig. 9. Again, the opti-sidering the worst case where the valueAgfis being un-
mum value ofT remains almost invariant with the mobility derestimated. The interval fdr has been chosen to achieve
of MTs. Note that for the values af used in Fig. 9, the cell realistic operating values f&" andPi“. As an example, we
residence ratg/ changes by=20% or more, with respectto provide values for(P}, Pl“, Py, PZ“), achieved by optimal
its nominal value. policies atAt = 20.0 andAt = 22.0 : (0.00530, 0.02007,

0.00016, 0.00043), (0.00801, 0.02841, 0.00058, 0.00142).

As observed in Fig. 10, in the system with prediction,

5 Robustness of the obtained policies even underestimatingr by 10%, the performace of the ob-

tained policy is considerably better than the performarice o
As described in the previous section, one way to deploy RIOPtimal policies obtained by an exact estimatiomefin a
in operating networks is to estimate the system parametefystem without prediction. An interesting additional fingli
periodically and then run a simulation program to obtain ds that the optimal policies obtained by the ARL approach
good policy. In this section we explore the robustness of th@re quite robust, i.e. the performance obtained with exact
obtained policies when the estimation of the system paran@nd inexact parameters differ very little.
eters is done with low precision. As in previous sections, we  Figure 11 compares the performance of optimal policies
deploy the reference scenario with= 2 services when ob- obtained in a system with prediction and another without
taining numerical results. We assume that the operator hagediction wherN = 4 services. Clearly, the robustness is as
already determined the optimum anticipation tifie£0.1)  good as the one obtained in the scenario \hitk 2 services.
for the system under study. We also assume that the param-

eters that characterize the classifij & 0.4,x=U /2 and Figure 12 shows the result of a second study related to
U = 0.2) are known and that the classifier estimates the arthe estimation of the mobility of terminals. As in Subsec-
ticipation time exactly. tion 4.4, it is expressed by, = v, wherep” is the chan-

In a first study we want to determine if it is still possible nel holding time rate of serviden the reference scenario,
to obtain a performance gain in a system with predictionjs a multiplicative factor and we keep constant the mean ses-
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2.8 ; ; ; 6 Conclusions

—— Without prediction (accurate )\T)

2.6 —— Without prediction (erroneous )\T)
—w— With prediction (accurate )\T)
_o— With prediction (erroneous )\T)

In this paper we have studied the robustness of an admission
controller that exploits the availability of predictivefar-
mation. A system that we denoted as Classifier for Incoming
Handovers is able to estimate the future trajectory of an MT
and, therefore, to estimate the time instant at which an MT
with an ongoing session is expected to produce a handover.
The Classifier for Incoming Handovers labels active MTs
in the neighborhood time units before handovers actually
take place. The admission controller makes use of the infor-
mation provided by the classifier to optimize its admission
decisions. We showed that there exists an optimum value
for the anticipation timd at which the highest performance
148 15 15.2 )\15.4 15.6 15.8 16 gain iS Obtained.

i The problem of determining optimal admission policies
that make use of the predictive information has been for-
mulated as a semi-Markov decision process, using a novel
reinforcement learning algorithm based on the concept of
‘ afterstates as solving methodology.

Fig. 11 Robustness of optimal policies when the arrival thies es-
timated with poor precision wheN = 4 services.

15 T

—=— Wi ‘h d" i PP .

it ecicton ﬁZfri,”n':;Z;‘fﬁ) We evaluated the sensitivity of the optimum value of the
v With prediction (accurate 1) anticipation timeTl against different system parameters. We
_o— With prediction (erroneous u‘)

concluded that the optimum value ‘dfdepends on system
parameters but we find that its value changes very little when
the system parameters vary within a reasonable range. This
feature can be exploited by the network operator to deter-
mine optimal policies with less computational cost.

Finally, we studied the robustness of optimal policies
to errors in the estimation of system parameters like drriva
and cell residence time (mobility) rates. We showed that in
a system deploying prediction, the performance of optimal
policies obtained when the system parameters are estimated

: with low accuracy are considerably better than the perfor-

B oms  09 o 1 tos 11115 12 mance of optimal policies obtained with exact estimations
in a system without prediction, even when estimation errors
with error. are high. This robustness is important for network opesator
as it guarantees that deploying prediction is always a@dvant
geous in terms of system performance, even when the sys-
tem parameters are estimated with poor precision.

Fig. 12 Robustness of optimal policies when the mobility is estedat

sion duration Yu?. For each system we show two different
curves. One is obtained by determining the optimal policies
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