
IEICE TRANS. COMMUN., VOL.E88–B, NO.2 FEBRUARY 2005
1

LETTER

Algorithmic Computation of Optimal Capacity in

Multiservice Mobile Wireless Networks∗

Vicent PLA†a), Member, Jorge MARTÍNEZ†, Nonmember,
and Vicente CASARES-GINER†, Member

SUMMARY In this paper we propose a new algorithm for
computing the optimal configuration of the Multiple Fractional
Guard Channel (MFGC) admission policy in multiservice mobile
wireless networks. The optimal configuration maximizes the of-
fered traffic that the system can handle while meeting certain
QoS requirements. The proposed algorithm is shown to be more
efficient than previous algorithms appeared in the literature.
key words: Mobile wireless network, Multiservice, Admission
control, Capacity, Algorithmics

1. Introduction

The Multiple Fractional Guard Channel (MFGC) strat-
egy [1, 2] is an efficient admission policy for multiservice
mobile wireless networks. We seek to find the optimal
configuration of the MFGC admission policy, i.e. the
one that maximizes the offered traffic that the system
can handle while meeting the QoS requirements. To the
best of our knowledge only one algorithm for this pur-
pose has been proposed [2] in the literature. Ours offers
substantial computational advantages. Besides, we ob-
serve that a further enhancement of the algorithm is
possible by eliminating the iterative procedure of com-
puting the handoff call arrival rates.

2. Model Description

The system has a total of C resource units. The phys-
ical meaning of a unit of resources will depend on the
specific technological implementation of the radio inter-
face. The system offers N different classes of services.
For each type of service new and handoff call arrivals
are distinguished so that there are N types of services
and 2N types of arrivals. Arrivals are numbered in such
manner that for service i new call arrivals are referred
to as arrival type i, whereas handoff arrivals are referred
to as arrival type N + i. For the sake of mathematical
tractability we make the common assumptions of Pois-
son arrival processes and exponentially distributed ran-
dom variables for cell residence time and call duration.

Manuscript received August 30, 2004.
†The authors are with the Department of Communica-

tions, Universidad Politécnica de Valencia (UPV), ETSIT
Camı́ de Vera s/n, 46022 Valencia, Spain.

a) E-mail: vpla@dcom.upv.es
∗This work has been supported by the Spanish Ministry

of Science and Technology under projects TIC2001-0956-
C04-04 and TIC2003-08272.

The arrival rate for new (handoff) calls of service i is λn
i

(λh
i). A request of service i consumes bi resource units,

bi ∈ N. The call duration of service i is exponentially
distributed with rate µc

i . The cell residence time of a
service i customer is exponentially distributed with rate
µr

i . Hence, the resource holding time in a cell for service
i is exponentially distributed with rate µi = µc

i + µr
i .

If we denote by p = (P1, . . . , P2N) the blocking proba-
bilities for each of the 2N arrival streams, the new call
blocking probabilities is Pn

i = Pi, the handoff failure
probability is Ph

i = PN+i and the forced termination
probability [3] P ft

i = Ph
i /(µc

i/µr
i + Ph

i).
If the system is in statistical equilibrium the hand-

off arrival rates are related to the new call arrival rates
and the blocking probabilities (Pi) through the expres-
sion λh

i = λn
i (1 − Pn

i)/(µc
i/µr

i + Ph
i) [3]. The blocking

probabilities do in turn depend on the handoff arrival
rates yielding a system of non-linear equations which
can be solved using a fixed point iteration method as
described in [3]. The system state is described by an
N -tuple x = (x1, . . . , xN), where xi represents the
number of type i calls in the system, regardless they
were initiated as new or handoff calls. Let b(x) rep-
resent the amount of occupied resources at state x,
b(x) =

∑N
i=1 xibi.

The MFGC policy operates in a manner that the
number of resource unit that stream i can dispose of is,
on average, ti. In order to decide on the acceptance of a
request of type i, upon arrival the amount of resources
that will be occupied if it is accepted is compared with
the corresponding threshold ti: if b(x) + bi ≤ btic, ac-
cept; if b(x) + bi = btic + 1, accept with probability
ti − btic; if b(x) + bi > btic+ 1, reject.

3. Optimal Capacity: Algorithm

The algorithm computes the system capacity, i.e. the
maximum offered traffic that the network can handle
while meeting certain QoS requirements. These QoS
requirements are given in terms of upper-bounds for
the new call blocking probabilities (Bn

i) and the forced
termination probabilities (Bft

i). Let λT =
∑

1≤i≤N λn
i

be the aggregated call arrival rate and let fi (0 ≤ fi <
1,

∑
1≤i≤N fi = 1) represent the fraction of λT that

correspond to service i, i.e. λn
i = fiλ

T . The capacity

2
IEICE TRANS. COMMUN., VOL.E88–B, NO.2 FEBRUARY 2005

optimization problem can be formally stated as follows

Given: C, bi, fi, µc
i , µr

i , Bn
i , Bft

i ; i = 1, . . . , N
Maximize: λT by finding the appropriate MFGC

parameters ti; i = 1, . . . , 2N
Subject to: Pn

i ≤ Bn
i , P ft

i ≤ Bft
i ; i = 1, . . . , N

We propose an algorithm to work out this ca-
pacity optimization problem. Our algorithm has a
main part (Algorithm capacity) from which the pro-
cedure solveMFGC is called. The procedure solveMFGC
does, in turn, call another procedure (MFGC) that
calculates the blocking probabilities. Let us intro-
duce the 2N-tuple pmax = (Bn

1 , . . . , Bn
N , Bh

1 , . . . , Bh
N)

as the upper-bounds vector for the blocking proba-
bilities, where the value of Bh

i is given by Bh
i =

(µc
i/µr

i)B
ft
i /(1−Bft

i).
Algorithm:
(λT

max,topt)=capacity(pmax,f ,µc,µr, b, C)

ε1 :=< precision >; L := 0; U :=< high value >
(possible, t) := solve MFGC(pmax, Uf ,µc,µr, b, C)
atLeastOnce:=FALSE;
while possible do

L := U ; tL := t ; atLeastOnce:=TRUE ; U := 2U
(possible, t) := solve MFGC(pmax, Uf ,µc,µr, b, C)

end while /* it makes sure that U > λT
max */

repeat
λ := (L + U)/2
(possible, t) := solve MFGC(pmax, λf ,µc,µr, b, C)
if possible then L := λ; tL := t; atLeast-
Once:=TRUE;
else U := λ

until (U − L)/L ≤ ε1 AND atLeastOnce
λT

max := L; t := tL

Procedure:
(possible,t)=solveMFGC(pmax,λn,µc,µr, b, C)

ε2 :=< precision >; δ :=< small value >
t := (δ, δ, . . . , δ)
p := MFGC(t,λn,µc,µr, b, C)
repeat

canConverge:=TRUE; i := 1;
repeat

if p(i) > pmax(i) then
t′ := t; t′(i) := C
p′ := MFGC(t′,λn,µc,µr, b, C)
if p′(i) > pmax(i) then

canConvege:=FALSE;
else

L := t(i);U := C
repeat

t(i) := (L + U)/2
p := MFGC(t,λn,µc,µr, b, C)
if p(i) > pmax(i) then L := t(i)
else U := t(i)

until (1− ε2)pmax(i) ≤ p(i) ≤ pmax(i)
end if

end if

i := i + 1
until (i > 2N) OR (NOT(canConverge))
if canConverge then

if p(i) ≤ pmax(i) ∀i then
possible:=TRUE; exit:=TRUE;

else exit:=FALSE;
else possible:=FALSE; exit:=TRUE;

until exit
The procedure MFGC, which is invoked in the inner-

most loop of our algorithm, is used to obtain the block-
ing probabilities (p := MFGC(t,λn,µc,µr, b, C)). For
this computation an iterative procedure is normally re-
quired in order to obtain the value of the handoff re-
quest rates. At each iteration a multidimensional birth-
and-death process is solved which constitutes the most
computationally expensive part of the algorithm. The
following observation can be used to speed up the al-
gorithm since it permits to eliminate the above men-
tioned iterative procedure. Each run of solveMFGC tries
to find t so that p = pmax (within tolerance limit).
Thus, in order to compute λh

i we use the expression
λh

i = λn
i (1 − Bn

i)/(µc
i/µr

i + Bh
i) in which λh

i is explic-
itly defined.

4. Numerical Evaluation

In this section we evaluate the numerical complexity of
our algorithm. To this end we used the algorithm pro-
posed by Heredia et al. in [1, 2] as a reference. Hence-
forth we refer to this algorithm as HCO after its au-
thors’ initials.

The HCO algorithm requires the optimal priori-
tization order as input, i.e. a list of call types sorted
by their relative priorities [2]. If t is the policy setting
for which the maximum capacity is achieved, the op-
timal prioritization order is the permutation σ∗ ∈ Σ,
Σ := {(σi, . . . , σ2N) : σi ∈ N, 1 ≤ σi ≤ 2N}, such
that t(σ∗1) ≤ t(σ∗2) ≤ . . . ≤ t(σ∗2N) = C. Selecting the
optimal prioritization order is a complicated task as it
depends on both QoS constraints and system character-
istics as pointed out in [2]. In general there are a total of
(2N)! different prioritization orders. In [2] the authors
give some guidelines to construct a partially sorted list
of prioritization orders according to their likelihood of
being the optimal ones. Then a trial and error process
is followed using successive elements of the list until the
optimal prioritization order is found. For each element
the HCO algorithm is run and if after a large number
of iterations it did not converged, another prioritization
order is tried.

Our algorithm does not require any a priori knowl-
edge. Indeed, after obtaining the policy setting t for
which the maximum capacity is achieved, the optimal
prioritization order is automatically determined as a
by-product of our algorithm. This constitutes by it-
self a significant advantage of our algorithm over the
HCO algorithm. Moreover, in what follows we show

LETTER
3

Table 1 Comparison of the HCO algorithm (with known pri-
oritization order) and our algorithm (figures in Mflops)

our algorithm
C HCO — speed-up

5 5.70 1.17 0.39
10 60.20 13.80 4.53
20 438.00 145.00 46.60

through numerical examples that our algorithm is still
more efficient than the HCO algorithm when the latter
is provided with the optimal prioritization order.

For the numerical examples we considered a system
with two services (N = 2) and the values of the parame-
ters are b = (1, 2), f = (0.8, 0.2), µc = (1/180, 1/300),
µr = (1/900, 1/1000), Bn = (0.02, 0.02), Bft =
(0.002, 0.002); all tolerances have been set to ε1,2 =
10−2.

A comparison of the number of floating point op-
erations (flops) required by the HCO algorithm and our
algorithm is shown in Table 1. We tried other configu-
ration, which are not shown here due to the space con-
straints, and similar results were obtained. The speed-
up technique divides the flop count by a factor of about
three.

It is worth noting that, as expected, the disagree-
ment among the values obtained for the optimal capac-
ity computed using the different methods was within
tolerance in all tested cases. The same can be said for
the policy setting t.

5. Conclusions

We proposed a new algorithm for computing the opti-
mal configuration of the of Multiple Fractional Guard
Channel (MFGC) admission policy in multiservice mo-
bile wireless networks. The optimal configuration max-
imizes the offered traffic that the system can handle
while meeting certain QoS requirements. Compared to
a recently published algorithm (HCO) ours offers the
advantage of not needing a call prioritization order as
input. We observed that a further enhancement of the
algorithm is possible by eliminating the iterative proce-
dure for computing the handoff call arrival rates. Nu-
merical examples show that our algorithm is faster than
the HCO algorithm even if the latter is provided with
the optimal prioritization order.

References

[1] H. Heredia-Ureta, F.A. Cruz-Pérez, and L. Ortigoza-
Guerrero, “Multiple fractional channel reservation for op-
timum system capcity in multi-service cellular networks,”
Electron. Lett., vol.39, no.1, pp.133–134, Jan. 2003.

[2] H. Heredia-Ureta, F.A. Cruz-Pérez, and L. Ortigoza-
Guerrero, “Capacity optimization in multiservice mobile
wireless networks with multiple fractional channel reserva-
tion,” IEEE Trans. Veh. Technol., vol.52, no.6, pp.1519 –
1539, Nov. 2003.

[3] Y.B. Lin, S. Mohan, and A. Noerpel, “Queueing priority
channel assignment strategies for PCS hand-off and initial
access,” IEEE Trans. Veh. Technol., vol.43, no.3, pp.704–
712, Aug. 1994.

