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Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials
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Sonic crystals consisting of three-dimensional arrays of units which exhibit localized resonances have
been discovered recently. Here, it is shown that their two-dimensional counterparts behave in a similar
manner. Particularly, it is observed that the transmittance spectra show very asymmetric peaks which are
explained as a Fano-like interference phenomenon. A finite difference time domain method is employed
to perform a comprehensive study of the resonance line shape as a function of the mass density of the
structural units. Also, a simple analytical model is introduced to give an intuitive account of the origin
of the interference phenomenon.
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A new area of research has been opened in the field
of sonic crystals since the recent work of Liu et al. [1]
who, based on the idea of localized resonant structures,
demonstrated the existence of spectral gaps at extremely
low frequencies (2 orders of magnitude smaller than the
Bragg frequency associated to the lattice constant). At
these frequencies the transmission amplitude shows very
asymmetric peaks whose origin has not been discussed yet
to the best of our knowledge.

Strongly asymmetric peaks were first theoretically de-
scribed by Fano [2] when he studied the inelastic autoion-
izing resonances in atoms. The asymmetry (Fano profile)
was explained as the result of the interference between the
discrete resonance with the smooth continuum background
in which the former is embedded. The Fano profiles deriv-
ing from this phenomenon have been observed commonly
in other atomic studies [3], but it is not exclusive of atomic
physics. In semiconductor physics, these asymmetric line
shapes have been reported in doped materials, such as the
absorption [4] and Raman scattering [5] spectra of impuri-
ties. More recently, in intrinsic bulk GaAs and in undopped
superlattices [6,7] and in quantum dots [8] a similar behav-
ior has been found.

The analogy between scattering properties of electrons
and phonons suggests that this type of feature can appear
in vibrational systems [9].

This Letter analyzes the transmission of elastic waves
across a crystal slab made of a two-dimensional (2D) ar-
ray of structural units which exhibit localized resonances.
It will be shown that the resonant features in the trans-
mission spectra can be described by the well-known Fano
profile. Moreover, the parameters that define that profile
have been investigated as a function of the mass density
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employed in the core of the units. The resulting behavior
shows a close analogy with the behavior of autoioniz-
ing resonances in He-like ions as a function of the nu-
clear charge Z [3]. Also, it will be shown that a very
simple one-dimensional (1D) model with analytical solu-
tion reproduces the transmission features and supports our
assumption that the origin of the resonance profiles is a
Fano-like interference.

The structural units used to build the sonic crystal con-
sist of infinitely long cylinders made of an inner high mass
core (10 mm diameter) and a coating (2 mm thick) of an
elastically soft material. The units are arranged on a square
lattice (15 mm of lattice parameter) and are embedded in
epoxy, which acts as a hard matrix material. As coating
material we have used rubber polymer [1]. These geomet-
rical and structural parameters have been chosen because
they provide the maximum complete gap at the lowest fre-
quencies [10]. Different materials have been employed in
the core of the cylinders, whose elastic data are given in
Table I.

For a normal incidence of the wave front, the elastic
band structure of the periodic 2D systems made with cylin-
drical units can be decoupled in two kinds of modes [11]:
modes corresponding to pure transverse motion uz�x, y�,
where z defines the cylinder axis, and in-plane modes
u�x, y� � uxx̂ 1 uyŷ, which are associated to motions in
the plane perpendicular to the cylinder axis.

As a typical example Fig. 1 shows the dispersion rela-
tion for the in-plane modes of Au cylinders in two cases:
Figure 1(a) represents the structure of coated cylinders
described above while Fig. 1(b) corresponds to a simple
binary system made of uncoated cylinders in epoxy. It is
important to notice the huge difference in the frequency
© 2002 The American Physical Society 225502-1
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TABLE I. Physical parameters of the materials employed in
the core of the coated cylinders.

Material r �Kg m23� cl �m s21� ct �m s21�

Au 19 500 3360 1239
Pb 11 600 2490 1133

Steel 7800 5050 3080
Ti 4540 6070 3125
Al 2730 6800 3240

Epoxy 1180 2535 1157

scale used in each figure. The band structures have been
calculated by a variational method [12]. Details of the cal-
culations can be found elsewhere [10].

The system made of coated cylinders [see Fig. 1(a)] has
a gap at extremely low frequencies; its bottom is 2 orders
of magnitude lower than the one of the corresponding bi-
nary systems (with no coating). This result mimics the one
found by Liu et al. [1] for a cubic lattice of spheres. Also,
it is worth noticing frequency regions of no dispersion in
the band structure (flat bands), which corresponds to local-
ized modes, and modes (such as the ones at the G point)
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FIG. 1. (a) In-plane elastic modes, u � uxx̂ 1 uyŷ, of a
square lattice of Au cylinder coated with rubber polymer
in a epoxy background. (b) In-plane modes for a similar
structure made with uncoated cylinders. The parameters used
in the calculation for the coating are rpoly � 1300 Kg m23,
cl,poly � 23 m s21 , ct,poly � 6 m s21. The ones of the back-
ground are repox � 1180 Kg m23, cl,epox � 2535 m s21,
ct,epox � 1157 m s21. The inset shows the 2D Brillouin Zone
and its special points.
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that also have zero group velocity, which also present a
localized pattern. The very flat band at 0.25 kHz, which
cannot be excited by an incident wave in the epoxy back-
ground, corresponds to localized modes in the polymer due
to its low speeds. As discussed below, an elastic wave trav-
eling across finite structures with localized modes interacts
with them, but also part of the wave can use a nonreso-
nant way to travel across the structure. As a consequence,
an interference phenomenon between both traveling waves
occurs, which results in characteristic features (resonant
peaks with a very asymmetric profile) in the transmission
spectra. This phenomenon was first described by Fano in
atomic systems [2].

Let us consider the transmission problem through a slab
of our composite. It is assumed that the layers of coated
cylinders are bounded by semi-infinite media (the epoxy)
on both sides. A traveling wave packet is supposed to
arrive from one side and crosses the slab. The second-order
time-differential equation is written in the following set of
canonical, first-order equations:

≠v�≠t � = ? s�r�x, y� , (1)

≠u�≠t � v , (2)

where v is the wave velocity and s the stress tensor. These
equations are solved by the finite-difference time-domain
(FDTD) method using central differences [13–15].

Figure 2 plots the transmission spectra across different
slabs of Au cylinders in a square configuration (see inset).
The spectra for the structures including 3 (continuous
line) and 6 ML (dashed line) of coated cylinders show
resonance features absent in the structure of uncoated
cylinders. These features can be assigned to localized
modes in the elastic band structure of the corresponding
infinite system. Thus, the transmission deep observed
at 0.33 kHz corresponds to the flat band at 0.40 kHz in
Fig. 1(a). On the other hand, the very asymmetric peak
in the transmission centered at 1.57 kHz can be assigned
to the zero group velocity modes at 1.43 kHz in the same
band structure. These differences in frequency positions
are mainly due to the fact that the phononic band structure
is not fully defined in a finite structure. The finite slab’s
thickness also explains why the gap predicted by the
band structure calculation is not completely formed in the
transmission spectra.

In this work we concentrate on the analysis of the first
resonance peak. This peak is associated with a vibrational
motion of the inner core [10], such as in the systems made
of coated spheres [1]. Figure 3 shows their resonance
profiles for the different materials under study. On the
other hand, the second resonance peak slightly depends on
the inner core material, and it is mainly associated with the
rubber coating.

A more physical insight of the origin of the profiles
shown in Fig. 3 can be obtained using a simple 1D model.
In this model we consider an infinitely long chain of
masses m joined by springs of constant k simulating
the continuum of frequencies for the transmission of
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FIG. 2. The continuous (dashed) line represents the FDTD
transmission amplitude across a slab of 3(6) rows of coated
cylinders (dext � 14 mm) arranged on a square lattice (a �
15 mm). The cylinder inner core is gold (dcore � 10 mm). The
coating and the background are the same as in Fig. 1(a). The
dotted line defines the transmission for a similar structure made
of uncoated cylinders.

vibrational waves in the epoxy medium. At a certain
point of the chain we introduce a different mass m1 which
is coupled to a hanging mass M by a spring of constant
K. The resonant frequency v0 �

p
K�M represents the

vibrational mode of the cylinder’s core in the slab.
The transmission amplitude for a vibrational wave cross-

ing the 1D structure described above is given by [16]

T �v� � 4k4jG00�v�j2 3 ImgL 3 ImgR , (3)

where the left and right Green functions of the semi-infinite
chain are

gL � gR � g �
�v2m 2 2k� 1 i

p
v2m�4k 2 v2m�

2k2

(4)

and the diagonal element of the Green function of the total
system is

G00�v�

�
v2M 2 K

�v2M 2 K� �v2m1 2 2k2g 2 2k� 2 Kv2M
.

(5)
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FIG. 3. Behavior of the first resonant peak observed in the
transmission of in-plane elastic waves across a 3 ML slab of
coated cylinders for different core materials. The symbols repre-
sent the transmission calculated by the FDTD method. The con-
tinuous lines define the fits made with the 1D model in Eqs. (6)
and (7).

If one inserts Eqs. (4) and (5) into Eq. (3), the total trans-
mission T�v� at very low frequencies (v2m ø 4k) is

T�v� �
�v2 2 v

2
0 �2

�v2 2 v
2
0 �2 1 v2�

p
b �v2 2 v

2
0 � 2 a�2

,

(6)

where b � �m1 2 m�2�4km, and a � K�
p

4km.
For frequencies close to the resonance (v � v0) it is

easy to cast the above formula in an expression where the
Fano profile [2] is clearly identified:

T�v� � t0�v�
�qs 1 ´�2

1 1 ´2 , (7)

where t0�v� � 1��1 1 v2b� gives the transmission of
the background where the resonant mode is embedded,
´ � �v2 2 v2

s ��Gs�vs and Gs being the frequency posi-
tion and the width of the resonance), and the parameter qs

is proportional to the ratio of transmission amplitudes for
the resonant and nonresonant channels. The sign of qs de-
pends on the phase shift between the two channels. These
parameters are related to the parameters used in the 1D
model by: v2

s � v
2
0 2 Ds, Gs � v0a��1 1 v

2
0b�, and

qs � 2Ds�Gs, where Ds � v
2
0
p

b a2��1 1 v
2
0b�. They
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FIG. 4. Behavior of parameters vs (a), Gs (b), and qs (c) [see
Eq. (7)] used to fit the lowest resonant peak in the transmission
across a 3 ML slab of coated cylinders.

can be used as a parameter set to fit the transmission calcu-
lated by the FDTD method. The solid lines in Fig. 3 show
the fitted curves while the symbols represent the FDTD
transmissions of the different systems under study. The
fairly good fittings support both the 1D model and the pa-
rametrized Fano formula obtained from it.

In Fig. 4 the behavior of vs, Gs, and qs is plotted as
a function of the mass density. As expected, the renor-
malized frequency vs follows the law vs �

p
k�r. The

fit to that law (the dotted line) yields and effective con-
stant k � 1767 kg m23 s22. Figure 4 also shows the be-
havior of the Fano parameters when r ! `. Using the
r law for v0, we obtain, for large r: vs ! 0, Gs ! 0,
and qs ! 2

p
b, which is in agreement with our findings

of Figs. 4(a) and 4(b). It is interesting to compare the be-
havior of parameters Gs and qs as a function of the density
to the one of parameters G and q associated to photoion-
izing resonances in He-like ions as a function of the nu-
clear charge Z [3]. Both sets converge to a constant value
for large Z and r. Nevertheless, while G increases when
Z increases, Gs decreases when r increases. The main
difference consists in the existence of more than one non-
resonant channel in the atomic case. Although possible,
the existence of additional nonresonant channels for the
transmission in our elastic structures is not supported by
225502-4
our calculations. A similar analysis can be performed to
the resonance feature associated with the peak at around
1.57 kHz, yielding to very good fitting with Eq. (7), and
will be discussed elsewhere.

In conclusion, it has been shown that the transmission
of elastic waves across structures made of coated cylin-
ders present resonance features having a very asymmetric
profile. The physical origin of these resonances has been
investigated by a simple 1D mechanical model with ana-
lytical solution. It has been concluded that the existence
of localized modes associated to the cylindrical units are at
the origin of the interference phenomenon which results in
the asymmetric profiles (Fano profiles) observed in trans-
mission spectra. Also, their behavior have been character-
ized as a function of the cylinders’ mass density.
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