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Large two-dimensional sonic band gaps
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We show that absolute sonic band gaps produced by two-dimensional square and triangular lattices of rigid
cylinders in air can be increased by reducing the structure symmetry. In the case of square lattices, symmetry
reduction is achieved by a smaller diameter cylinder placed at the center of each unit cell. For triangular lattices
the reduction is achieved by decreasing the diameter of the cylinder at the center of the hexagons in the lattice.
Theoretical predictions are also demonstrated experimentally: starting from a honeycomb lattice~using cylin-
ders of 4 cm of diameter size and 6.35 cm nearest-neighbor distance! we have studied the transition to a
triangular symmetry by putting rods with increasing diameter~in the range 0.6–4 cm! at the center. The
greatest enhancement of the attenuation strength observed in transmission experiments has been obtained in the
high frequency region for diameter ratios in the range 0.1–0.3.@S1063-651X~99!51212-9#

PACS number~s!: 43.20.1g, 42.25.Bs, 52.35.Dm
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Since the seminal work of Yablonovitch@1# and John@2#,
who open the research in photonic crystals~PC!, we have
witnessed the appearance of new devices based on the
tence of photonic band gaps~PBG! in these dielectric peri-
odic structures. Also, because the underlying theory is ap
cable to other kind of waves, acoustic and elastic, a se
for periodic structures having properties of sonic band g
~SBG! or elastic band gap~EBG!, respectively, is currently
being performed. Therefore, the design, construction,
technological applications of a completely new type of cr
tals that could be called classical wave crystals is becomin
very promising project at the beginning of the new centu

In the field of acoustics much theoretical work has be
done proposing structures having SBG’s properties@3–6#.
The existence of SBG is due to a complex interplay betw
the sound velocity and density ratios of the composite m
rials, and their spatial arrangement. Experimentally, a f
works have claimed to observe absolute band gaps@7,8#.
Therefore, the actual possibility of building up compos
material having SBG open a new technological research
environmental protection.

One of the goals of PBG and SBG theory is the search
materials and/or topologies producing large gaps at the
sired range of frequencies. In PC it has been shown that
PBG can be enlarged by decreasing the crystal symm
through the introduction of a two-point basis set. Thus,
example, 3D PC based on a face-centered-cubic structur
not possess a full PBG between the first and second ba
but the ones having a diamond structure do because the
ditional point basis lifts the degeneracy of some bands@9#. In
the same manner, in two-dimensional~2D! structures,
Anderson and Giapis@10# obtained larger gaps when the
add a different size rod at the center of each unit cell

*Authors to whom correspondence should be addressed. E
tronic addresses: jsdehesa@uamca3.fmc.uam.es, fmese@fis.u
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square and honeycomb lattices. The latest conclusion aw
ened our interest about whether this sort of mechanism
effective in creating large SBG and/or enhancing the atte
ation measured in some 2D sonic crystals~SC! previously
studied by us@8#. In this Rapid Communication we show tha
this mechanism is also effective in SC, being the cause
such SBG enlargement a combination of two mechanism~i!
the achievement of higher filling fractions, and~ii ! the sym-
metry reduction. Also, here we demonstrate that mechan
~ii ! is much more effective than mechanism~i!.

The wave equation for the propagation of pressure wa
p(r ), with harmonic frequency,v, in a 2D-spacer5(x,y)
defined by a composite system having a sound veloc
v(r ), and density,r(r ), can be written as

“•S“p~r !

r~r ! D52
v2

v2~r !r~r !
p~r !. ~1!

This equation closely resembles to that of transver
magnetic waves propagating through a 2D composite die
tric medium e(r ). The corresponding magnetic field,H
5H(r ) r̂ , verifies the equation

“•S“H~r !

e~r ! D52
v2

c2
H~r !, ~2!

wherec is the light velocity. The resemblance between E
~1! and~2! suggests that the results found in Ref.@10# could
be extended to sound waves. Nevertheless, extrapolatio
results obtained on PBG theory to SC can be mislead
because of the different magnitudes involved in both eq
tions. Also, the different kind of waves involved~vectorial in
PC and scalar in SC!, the position dependence of the bu
modulusl(r )5v2(r )r(r ), and the huge contrast betwee
material parameters in the SC under research requires
c-
.es
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the conclusions of Anderson and Giapis@10# for PC must be
confirmed both theoretically and experimentally in SC.

We have obtained the acoustic band structure by solv
Eq. ~1! using a variational method introduced by some of
@11#. The pressure is developed as a linear combination
localized waves and the differential problem is transform
into a matrix problem. A brief report of the method can
found elsewhere@8#. Here the results were obtained usin
225 localized functions.

With regard to experiments, they have been performed
using the same set up as described in Ref.@8#. Briefly, in a
echo-free chamber, we study how the sound is scattere
different samples, which resemble minimalist sculptu
@12#. The sound transmitted across these structures is
corded by a sample microphone and is compared to
recorded by a reference microphone~which received the
sound without any attenuation by the sample!. Each sample
consists of 1 m long aluminum bars hanging on a fra
which can rotated around the vertical axis to explore a
direction of thek wave vector perpendicular to the cylinde
axis. Thus, to analyze the honeycomb-triangular transit
cylinders with diameterd154 cm are initially arranged in a
honeycomb lattice, being the nearest neighbor distance
cm. Afterwards, an additional cylinder with a variable diam
eter sized2 ~between 0.6 and 4 cm! is placed at the center o
each hexagon in the starting lattice. Apart from the ze
order transmission experiments~where the source an
sample microphone are colinear! we have also investigate
possible energy transfer to Bragg waves of higher orders
putting the sample microphone at angles tilted with resp
to theGX or GJ direction of the Brillouin zone~BZ!.

First, we start with the square lattice whose propert
have been studied by different groups@8,12–15#. Figure 1
summarizes the result of our calculations for this lattice. T
gap map shows that both directions of high symmetry h
pseudogaps that overlap each other for filling fractionsf
>0.3. The maximum absolute gap occurs when the cylind
are close-packed,f (CP)50.78. We have modified this struc

FIG. 1. Gap map for a square lattice of rigid cylinders in a
The dotted~solid! line defines the limits of the first pseudoga
along theGX ~GM! direction. An absolute sonic band gap~shaded
zone! occurs when the gaps along the two high symmetry directi
overlap. The maximum gap will be produced at the closed-pack
condition, f (CP)50.78, which is indicated by the vertical line.
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ture by adding a smaller rigid cylinder at the center of ea
square unit cell. Although the point group symmetry of t
Bravais lattice (C4v) does not change, the new crystal stru
ture has lower symmetry since the unit cell contains t
distinct basis units with no symmetry inversion. The additi
of the new cylinder, of diameterd2, at the center of the
lattice enhances the filling fraction, which takes the va
f r5p(d1

21d2
2)/(4a2). If the starting square lattice has a fil

ing fraction f <0.39 the diameterd2 can be increased up t
d1, and therefore, the gap of a square lattice with periodic
a/A2 is recovered. On the other hand, when the start
lattice has 0.39< f < f (CP), d2 is limited by the close-
packing condition;d2,max5A2a2d1. In this case, one can
obtain maximunf r when the close-packing condition is fu
filled, f r ,max(CP)50.92. After extensive calculation with
this structure, we found a general behavior. The gap betw
the first and the second bands~if it exists! decreases when w
increase the diameter ratio (b5d2 /d1) due to the bands ap
proaching at theM point of the BZ@the ~110! point#. At the
same time, new gaps appear at higher frequencies. In F
we show this effect for the case in which a square lattice w
f 50.415 get additional gaps by using the symmetry red
tion mechanism.

In the case of triangular lattices~their point group isC3v),
the gap map~not shown here! presents the first absolute ga
~the one between the first and second band! at f >0.5 @8#. For
the honeycomb lattice~a reduced-symmetry lattice of the tr
angular!, its gap map is plotted in Fig. 3. The honeycom
lattice always has larger gaps than the triangular one p
vided both lattices have equalf values. This is an example o
how symmetry reduction produce and enlarge the abso
gaps.

We have measured the evolution of the gaps when
honeycomb lattice is transformed into a triangular lattice
increasing the diameter,d2, of the cylinder placed at the
center of each hexagon. We started with the structure ha

s
g

FIG. 2. Gap map for the reduced-symmetry square lattice
rigid cylinders in air. The filling fractionf 50.415 atb50. For b
>0.1 the gaps are significatively larger than the ones of the sq
lattice with equalf ~see Fig. 1!. The maximum gap will be achieved
at the close-packing condition,b(CP)50.94, which is defined by
the vertical line.
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f 50.24, which is indicated by an arrow in Fig. 3. Expe
mental details have been explained previously. In Fig. 4
display typical attenuation spectra taken along the two h
symmetry direction of the BZ. Figure 5 shows the compa
son between the absolute gaps calculated as a functionb
and the borders of the attenuation band measured in tr
mission experiments~e.g., the arrows in Fig. 4!. It is remark-
able how the magnitude of the first gap decreases althouf
increases. The reason for this behavior is the enhanceme
the symmetry asb increases. The full symmetry is finall
achieved atb51, the triangular lattice condition. Also, no
tice the agreement between the experimentally deduced
ders of the low frequency gap and the calculated one.
disagreement observed for the high frequency gap can

FIG. 3. Gap map for the honeycomb lattice of rigid cylinders
air. The first absolute gap is defined by the overlap between
pseudogaps at theX point ~whose limits are represented by th
dotted lines!, and at theM point ~the continuous lines define it
limits!. The vertical line defines the close-packing condition in t
lattice, f (CP)50.605.

FIG. 4. Attenuation spectra taken along theGJ andGX direc-
tions, for the case of a reduced-symmetry triangular (d154 cm,
andd251 cm). The first two overlaps between attenuation ba
are the hatched zones in the plot and their borders~indicated by the
arrows! are plotted in Fig. 5. as full circles.
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understood taking into account two other mechanisms
can produce attenuation bands in zero-order transmission
periments:~1! the existence of deaf bands@8#, and ~2! an
energy transfer to Bragg waves of higher orders. The la
mechanisms have been experimentally explored through
detection of the scattered sound along a direction differ
from the incidentk wave vector. We have found no conclu
sive results supporting that this mechanism is the only
responsible of such big attenuation bands. In addition,
analysis of the pressure pattern of states in the bands exi
on that frequency range shows that they are antisymme
regarding the plane defined by the incident wave-vector
the cylinder axis, and this property is the fingerprint of de
states. Therefore, we conclude that attenuation bands in
frequency region 2700–3500 Hz are mainly due to d
bands.

In soundshielding devices not only the frequency range
gaps is important but also the strength of attenuation

e

s

FIG. 5. Gap map for the reduced-symmetry triangular lattice
rigid cylinders in air. The shaded areas represent the calculated
The dots define the limits of the overlap between attenuation ba
observed in transmission spectra measured alongGX and GM, re-
spectively.

FIG. 6. Area, normalized to the filling fractionf, of the first
attenuation-band-overlap observed in transmission pectra ta
along theGJ andGX directions, in the reduced-symmetry hone
comb lattice. The line is a guide for the eye.
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tained in the sound transmitted. In Fig. 6 we plot the area
the first attenuation band normalized to the filling fraction
a function ofb for the honeycomb-triangular transition stu
ied in Fig. 5. This normalized area could be considered a
single parameter defining the attenuation strength of a g
sonic structure. We observe that the attenuation streng
maximum whenb'0.2. This result lets us conclude that
order to improve soundproofing devices it is preferable
sacrifice a little of band-gap-width in order to have strong
attenuation effects.

In summary, we have shown that symmetry reduction
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2D square and triangular sonic crystals result in a band-
enlargement as in photonic crystals. Experiments perform
on the honeycomb-triangular transition confirm our theore
cal findings with regards to the behavior of the low fr
quency band gap. For the high frequency gap, our theore
analysis and experimental characterization indicates that
existence of deaf bands can explain the disagreement
tween experiments and theory.
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