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Electronic Levels of Cubic Quantum Dots
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We introduce an efficient variational method to solve the three-dimensional Schrödinger equation
for any arbitrary potential V (x, y, z). The method uses a basis set of localized functions which
are build up as products of one-dimensional cubic β-splines. We calculate the energy levels of
GaAs/AlGaAs cubic quantum dots and make a comparison with the results from two well-known
simplification schemes based on a decomposition of the full potential problem into three separate
one-dimensional problems. We show that the scheme making a sequential decomposition gives
eingenvalues in better agreement with the ones obtained variationally, but an exact solution is
necessary when looking for highly precise values.

In recent years, the progress in growing techniques
and the present degree of control of the fundamental
mechanisms involved in the epitaxy of strained layers
has allowed the built up of not only arrays of quan-
tum dots but also isolated quantum dots (QDs). These
three-dimensional (3D) structures are considered as “ar-
tificial atoms” whose dimension can be tailored. These
“atoms” are the subject of intense research in solid state
physics and device engineering [1]. They are also use-
ful for studying fundamental problems in the physics of
mesoscopic systems, like Coulomb [2] or spin blockades
[3]. To develop computational schemes which can pro-
duce the electronic states in these confined systems is
always an important issue since they will help to under-
stand not only the basic mechanisms that control their
energy values but also their transport or optical prop-
erties. It is clear that the external shape of the QD
will determine such confinement energy. However, more
important than the geometrical shape of the QD is the
potential profile V (x, y, z) in which such confinement is
produced. To the date, the envelope function approxi-
mation within the effective mass theory has proven to be

the more achievable scheme [4–6] with wide applicabil-
ity, despite the inherent simplifications involved in the
method. Following this scheme, we introduce a varia-
tional method that solves the 3D Schrödinger equations
associated with any potential profile V (x, y, z) defining
a corresponding QD structure. In order to test the accu-
racy of our method, we have employed two different sim-
plified approaches that can be used to reduced the full
3D problem into three one-dimensional (1D) problems
when the potential has a given geometrical shape: i) the
first consists of the simplest decomposition of the poten-
tial V (x, y, z) ≈ V (x) + V (y) + V (z) and ii) the other is
a sequential decomposition of the given potential. Com-
paring the results obtained from our method, i.e., com-
paring the exact solution of the Schrödinger equation to
both approximations, we conclude that such a sequen-
tial decomposition is the best approach when trying to
find eigenstates in very short computational times, even
though a considerable deviation is present for quite small
QDs.

The problem to be solved is the 3D Schrödinger equa-
tion (in a. u.):
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Ψ(x, y, z) + V (x, y, z)Ψ(x, y, z) = EΨ(x, y, z), (1)
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where m∗ is the electron effective mass that, for sim-
plicity, we assume to be homogeneous and isotropic and
V (x, y, z) is an arbitrary potential. The variational
method expands the wavefunction Ψ as a linear com-
bination of a finite number N of localized functions
φi(x, y, z), each one centered at the position i of a grid of
initially selected points (xi, yi, zi) defining the 3D space:

Ψ(x, y, z) =
N∑
i=1

ciφi(x, y, z). (2)

Each localized function is formed as a product of one-
dimensional cubic β-spline, i.e., piecewise C2-smooth cu-
bic polynomials [7]

φi(x, y, z) = βi(x)βi(y)βi(z). (3)

Cubic polynomials were chosen because they are the
lowest-order polynomials having nonzero second-order
derivatives. They have been successfully employed as
a basis set in lower-order Schrödinger equations; a rich
variety of 1D and 2D problems have been treated by
using the corresponding variational algorithms [8–12].
Any function φi follows the usual procedure for form-
ing a finite-element basis set. We start by introduc-
ing 3D mesh points defining I, J , and K knots in the

x, y, and z-axis, respectively, which can be uniformly
distributed initially. This is not a restrictive condi-
tion, and we can always define an additional number of
knots at selected positions to increase the accuracy of the
method, which is important in those problems showing
local abrupt changes in the potential, such as interfaces
and surfaces. Along any selected direction, the corre-
sponding 1D spline βi(x) is defined at a knot (xi, yi, zi)
and will extend from the knot (xi−2, yi, zi) on the left up
to the knot (xi+2, yi, zi) on the right.

The procedure will generate a total basis set consisting
of N = (I−4)×(J−4)×(K−4) independent φi’s that are
non-orthogonal. We shall remark that the wavefunction
Ψ defined in Eq. (2) is set automatically equal to zero
outside the region where the mesh points are defined. By
using the standard procedure, the expansion of Eq. (2)
will convert the differential equation problem expressed
in Eq. (1) into the following matrix problem:

(Hij − ESij) cj = 0, (4)

where Hij and Sij describe all the elements of the Hamil-
tonian and the overlap matrices, respectively. Hij are
defined by the following integrals:

Hij = − 1
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∫ ∫ ∫
βi(x)βi(y)βi(z)V (x, y, z)βj(x)βj(y)βj(z)dxdydz, (5)

where β′′ stands for the second derivative of the 1D spline
with respect to the argument inside the parenthesis. Sij
are given by

Sij =
∫ ∫ ∫

βi(x)βi(y)βi(z)βj(x)βj(y)βj(z)dxdydz.

(6)

Since every function βi and its derivatives are polyno-
mials, almost all the integrals above can be done exactly.
The last integral in Eq. (5), which involves the potential
profile, can also be calculated exactly for some analytical
potentials.

The variational parameters in our method are the coef-
ficients ci given in Eq. (2). Exact eigenvalues of the cor-
responding potential problem are always lower bounds
for our numerical results. This procedure does verify

the Rayleigh-Ritz variational principle: an error ε in the
wavefunction implies an error ε2 in the eigenvalues.

The matrix problem expressed in Eq. (4) is a symmet-
ric generalized eigenvalue problem whose solutions must
be obtained numerically. Nevertheless, thanks to the use
of a basis set of localized functions, the matrices Hij and
Sij are sparse; therefore, the computation time can be
substantially reduced [13].

We shall describe a single QD with a prism shape as
follows:

V (x, y, z) = VbΘ(x2 − L2
x

4
)Θ(y2 −
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y

4
)Θ(z2 − L2

z

4
). (7)

Vb is the barrier height and Θ(x) is the step function
[Θ(x) = 1 if x ≥ 0, Θ(x) = 0 if x ≥ 0].

We considered the case of GaAs cubic dots surrounded
by an AlxGa1−xAs background. We used a fixed elec-
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Fig. 1. Evolution of the ground state E1 (normalized to
the barrier height, Vb), vs the side of a cubic quantum dot.
The symbols (full circles) represent the energies calculated
variationally using the exact potential, Eq. (10). The dot-
ted lines define the values obtained using the standard linear
decomposition, Eq. (11). The dashed lines define the values
resulting from a sequential decomposition, Eq. (12). The pa-
rameters employed in the calculations were m∗ = 0.067 and
(a) Vb = 100 meV, (b) Vb = 300 meV, and (c) Vb = 500 meV.

tron effective mass of m∗ = 0.067, and several poten-
tial heights that simulated different aluminum concen-
trations. For each QD, the fundamental level E1 was
made exact up to the fourth digit by analyzing its be-
havior as a function of the number of basis set employed
in its description.

Since the method introduced here allows us to obtain
the fundamental level of the QD, we can use this value
to test the accuracy of other simplifying methods based
on the reduction of Eq. (1) to a 1D problem. The stan-
dard procedure splits the 3D potential in the following
manner:

V (x, y, z) ≈ VbΘ(x2 − L2
x

4
) + VbΘ(y2 −

L2
y

4
)

+VbΘ(z2 − L2
z

4
). (8)

This splitting make the corresponding Schrödinger equa-

tion separable, so the eigenenergies can be written as

E(nx, ny, nz) = ε(nx) + ε(ny) + ε(nz), (9)

where ε(n) are the eigenvalues of a 1D quantum well
with barrier Vb, whose values can be easily found [14].
The values obtained by using this approach are repre-
sented by the dotted lines in Fig. 1. In comparison with
the variational calculation, this procedure is exact in the
limit of infinite barriers, but it fails to predict the correct
energy values as the barrier height becomes finite or as
the length of the QW along any direction decreases, in
which case it predicts unbounded states while the exact
potential still has bounded-state solutions.

To correct the drawbacks associated with such a naive
procedure, we can use, instead, a sequential decomposi-
tion based on the following picture: the origin of a level
in a QD of dimension Lx×Ly×Lz is a confined level εij
of a quantum-well wire of section Lx × Ly, which is fur-
ther confined by another QW of thickness Lz and with
an effective barrier height Vb − εij . Moreover, the level
εij can be considered as originating from a bound level
εi of a QW of thickness Lx whose parabolic dispersion
along y is quantized by a second QW of length Ly and
effective barrier Vb − εi. Therefore, to calculate the fun-
damental level E1, we have to proceed as follows: First,
we obtain the fundamental level ε1 for a QW of thickness
Lx and barrier Vb. Second, the same is done to get the
ground level ε11 of a QW of dimension Ly and barrier
Vb − ε1. Third, we consider a QW of thickness Lz and
barrier height Vb − ε11. If ε111 is the fundamental level
of the third QW problem, the approximate solution for
the full 3D problem is E1 = ε1 + ε11 + ε111. This solu-
tion corresponds to the following decomposition of the
potential in Eq. (7):

V (x, y, z) ≈ VbΘ(x2 − L2
x

4
) + (Vb − ε1)Θ(y2 −

L2
y

4
)

+(Vb − ε11)Θ(z2 − L2
z

4
) (10)

In comparison with the standard decomposition, Eq.
(8), the y and z parts of the potential are now related
to each other and to the x -part through the eigenvalues
ε11 and ε1, respectively. The procedure applied to calcu-
late the fundamental level can be easily extrapolated to
obtain any confined level inside the QD. The values E1

obtained with this approach are defined by the dashed
lines in Fig. 1.

The comparison between the calculated ground lev-
els allows us to conclude that this sequential decomposi-
tion has several advantages: 1) Compared with the ex-
act treatment done by the variational method, it always
produces lower values, but they can be obtained with a
hand calculator; 2) compared with the widely used lin-
ear decomposition in Eq. (8) it makes good predictions
about the bound character of the level inside the QD.
Certainly, if the barrier height and/or the QD dimension
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produce ground levels deep in the QW, any potential de-
composition can be considered good. The conclusions
above are very encouraging and support the use of sim-
plified schemes for QDs with a pyramidal shape, but,
unfortunately, the existence of QDs with such a shape
is still controversial. However, special cases, as for ex-
ample when one grows drops of InGaAs on the top of
a GaAs surface [15], demand a full calculation, and the
variational method presented here is in order.

In conclusion, we have introduced a variational
method able to solve the 3D Schrödinger equation for
QDs of any potential shape. The fundamental energies
of several AlGaAs/GaAs cubic QDs have been calcu-
lated, and we have tested two different simplified schemes
that can reduce the 3D QD potential problem into three
1D problems. Results for the case of cubic QDs have
been compared with the values obtained variationally.
We have shown that a sequential decomposition of the
potential is competitive as a first approach to obtaining
the true levels, but exact solutions as presented here are
indispensable under certain conditions.
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Meseguer, J. Appl. Phys. 73, 5027 (1993).
[12] J. A. Porto and J. Sánchez-Dehesa, Phys. Rev. B 51,

14352 (1995).
[13] We use specially designed routines existing in the NAG

and/or the IMSL libraries.
[14] Frank L. Pilar, Elementary Quantum Chemistry

(McGraw-Hill, New York, 1990), Chap. 4.
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