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Hysteresis Effects on Quantum Wires: Do They Exist or Not?
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We present a self-consistent calculation for an arbitrary profile of quantum wires based on the
simultaneous solution of the Schrödinger and Poisson equations. In our description, the Fermi
energy level is maintained constant. Numerical results are discussed for rectangular quantum wires,
which are supposed to be obtained from permanent plastic deformation of δ− doped samples. We
are able to discuss very rigorously the conditions under which bi-stability exists in quantum wires.
Hysteresis effects occur if and only if exchange-correlation term of energy is taken into account.

Semiconductor devices, especially those named het-
erostructures, are very attractive systems to study the
quantum behavior of nature. Quantum-mechanical ef-
fects are particularly important for designing new classes
of devices for specific applications. As a general rule, the
final goal is to obtain smaller devices (for best integra-
tion) able to operate at higher frequencies for transmis-
sion of more information (and lower prices). Three steps
are fundamental in the engineering of complex semicon-
ductor devices before testing: to model, to grow, and to
process.

Heterostructures are complex devices of different semi-
conductor films for which the typical widths are of the
order of some atomic layers. The reality of growing
these structures opened new and enthusiastic possibil-
ities in physics (basic and applied), as well as in micro-
and nano-electronics. Results are very clear: direct ap-
plications to different fields of science and new high-
technology products. The benefits of these artificial man-
made crystals are easy to find anywhere: see for example
Refs. [1–5]

We want to study complex structures in which carri-
ers (electrons) are restricted to move in one-dimension
(1D), different from the usual three-dimensional (3D)
bulk materials, due to confinement effects. In particu-
lar, we intend to analyze what are called quantum wires

(QW), in which only one dimension remains unconfined
for the electrons movement. Quantum wires have a great
potential for many applications in microelectronics, such
as novel opto-electronics devices and transistors. They
can be obtained in two manners: either from a growth
profile [6] or from a technologic process on a sample [7].

Firstly, we describe the electrostatic potential for a
rectangular quantum wire of charge. Then, we intro-
duce the potential term due to accumulation of attracted
charges that leads to the self-consistent Schrödinger-
Poisson system of equations in which we take into ac-
count the Fermi energy as constant. Finally, we intro-
duce the exchange correlation energy in our formalism
and discuss the physical implications of that term. When
the exchange correlation is neglected, no hysteresis effect
is observed, even for a very asymmetric wire shape. How-
ever, we observe bi-stability when exchange correlation is
taken into account, even for absolutely symmetric cases
such as square quantum wires.

The electrostatic potential for (fixed) positive charges
can be obtained, as usual, from the Poisson equation.
Analytical solutions are found when a linear uniform dis-
tribution of charge along the wire direction is considered.
We shall call this potential φdop(x, y), in allusion to the
doping concentration fixed by the growing conditions.
That term is given by the following expression:

φdop(x, y) = − λ

2πε

∫ +a

−a
dX

∫ +b

−b
dY ln

(√
(x−X)2 + (y − Y )2

)
(1)
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where a and b are the lateral dimensions of our quantum
wire, λ is the linear charge density, and ε is the dielec-
tric constant. Integration of Eq. 1 can be done analyti-
cally, but this is out of our scope here. The solution of
the Schrödinger equation for this potential provides the
quantum energy levels and states accessible to electrons.

Each particular electronic level can receive as many
electrons as it is allowed: 4 (spin degeneracy multiplied
by the bi-directional possibility of movement) times the
integral over the one-dimensional density of states. For
T = 0K, electrons start to fill the first excited state

only after the ground state is completely occupied. This
process continues up to the total energy, which is given
by the summation of each electron energy, and reaches
the Fermi level, which is taken as a constant parameter
and is given by conditions of growing.

Electrons filling eigenstates of energy will behave
exactly as quantum wires of negative charge whose
space distributions are dependent on the (square) wave-
function geometries. Consequently, they will also con-
tribute to the electrostatic potential, but with a repulsive
term given by the following expression:

φacu(x, y) = − 1
2πε

∫ +∞

−∞
dX

∫ +∞

−∞
dY n(x, y) ln

(√
(x−X)2 + (y − Y )2

)
(2)

where n(x, y) is the one-dimensional electron density.
The potential energy to be considered in the Hamilto-
nian at this point is the sum of both the “doping” and the
“accumulation” terms, in which e represents the charge
of the electron:

V (x, y) = − |e| (φdop(x, y) + φacu(x, y)) . (3)

The electronic density is dependent on the Fermi dis-
tribution function f(E), the one-dimensional density of
states D1(E), and the “shape” of the electrons, which is
written as a summation over all occupied wave functions
ψ(x, y):

n(x, y) = −|e|
∞∑
i=1

∫ ∞
Ei

|ψi(x, y)|2 D1
i (E) f(E) dE. (4)

The temperature is a parameter to be fixed initially. For
T = 0 K, the expression above can be considerably sim-
plified without lack of generality. In that case, the sum-
mation above shall be limited to a fixed value ief . To
determine ief , we take into account the neutrality of
charges and assume the electronic effective mass approx-
imation m∗ to write

ief∑
i=1

gs |e|
√

2m∗(EF − Ei)
πh̄

= λ (5)

where gs is the spin degeneracy, Ei is the i-th eingen-
value, h̄ is Planck’s constant, and a factor 2 has been
considered to describe the degeneracy of the movement
along the ẑ direction.

Our first self-consistent system of equations is here-
after evidenced since the potential energy expressed in
Eq. 3 is explicitly dependent, through Eqs. 2 and 4, on
the form of the wave functions and energy eigenvalues.
These eigenstates are themselves directly dependent on
the potential to be considered because of the Schrödinger
equation to be solved.

In order to solve the bi-dimensional Schrödinger equa-
tion involved in the self-consistent system described in
this paper, we have made use of a variational method
already tested in many other situations. The analytical
procedure is quite simple and consists of changing a dif-
ferential equation into a matrix eigenvalue problem. We
have made use of cubic β-spline functions as a basis set,
with the variational parameters being the amplitudes of
specific polynomials. Such a method was presented by
Porto and Sanchez-Dehesa [8]; it has been extensively
tested in many different cases, and it works very well.

We have studied quantum wires with surface areas
varying typically from 10 Å × 40 Å up to 40 Å × 100 Å.
The doping concentration is considered as an input pa-
rameter, and we take values between 0.8 × 108m−1 and
4.0 × 108m−1. The electronic effective mass of GaAs,
m? = 0.0667, was used. Finally, all results in this pa-
per are presented for T = 0K. Temperature effects and
the effective mass variation will be discussed in a later
communication.

We choose to exhibit numerical results for a quantum
wire whose dimensions are 40 Å × 100 Å. However, we
applied our method without major problems for a wide
range of surface area varying from 10 Å × 10 Å up to
150 Å × 150 Å. The self-consistent calculation must be
pursued very carefully to avoid numerical problems and
misunderstanding of results. Many details have to be
considered: e.g., looking for the ideal size of the integra-
tion cell, choosing the best number of β-splines functions,
etc.

Ending the first part of this study, we mention that ab-
solutely no effect of bi-stability was observed. If this re-
sult is intuitive when considering square quantum wires,
it’s less obvious for rectangular forms where asymmetric
wave functions are obtained. However, hysteresis effects
do not appear in the calculation of any variable applied
to this system.

Due to the current controversy about hysteresis effects
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in quantum wire systems, as for example bi-stability in
the carrier concentrations, we pursued this work by in-
cluding a new energy term in the total potential energy.
This new energy is due to a local-field approximation for
many-body interactions of electrons. It’s usually called
the exchange-correlation energy and has been neglect up
to this point.

In spite the fact that many different formulations exist
to express the exchange-correlation energy, we consid-
ered the same expression as proposed by Takagaki and
Ploog [5] in order to be consistent with previous results
already presented in the literature. Therefore, we in-
cluded in Eq. 3 the following term:

Vxc(x, y) = −
0.0784e2 3

√
n(x, y)

ε

1 + 0.0338
ln
(

1 + 18.38a0
3
√
n(x, y)

)
a0

3
√
n(x, y)

 (6)

where the cited authors defined a0 = 4πεh̄2/m∗e2 as
the effective Bohr radius. This term is obviously self-
consistent.

The final self-consistent form of the new potential en-
ergy presents some differences from previous calculation.
When Vxc is included into the Schrödinger equation, self-
consistency is obtained faster. In Fig. 1, we show Vxc,
considering the same wire as before. Since neutrality of
electric charges is imposed, the electrical field far from
the wire must be zero or very small; consequently, the
self-consistent potential is constant.

In Fig. 2, we show that hysteresis effects are effectively
present. These effects are observed only when the doping
concentrations correspond to the limit in which a partic-
ular energy level is very close to the Fermi energy, i.e.,
when the doping concentration is being increased (de-
creased) and the system is near the limit that one more
energy level must be added (retired) to maintain the to-
tal electrical-charge neutrality. Numerically, this is done

Fig. 1. (a) Potential energy term due to many body effects
expressed as an exchange-correlation factor calculated by
mean-field approximation theory was included in the Hamil-
tonian. The details of the calculation were presented in the
references cited in the text. Inclusion of this term improves
the convergence of self-consistent calculations. (b) In the in-
sert we see a schematic representation of rectangular carriers.

by the following procedure: we start with the smallest
(largest) value of λ (doping concentration) presented in
Fig. 2 and solve the self-consistent Schrödinger-Poisson
system of equations taking into account Vdop. After this
calculation is over, we increase (decrease) the value of
λ and re-start the calculation, but we take into account
the former self-consistent potential obtained as the initial
input.

It’s clear from our results that bi-stability effects are
present only when the potential energy of the exchange-

Fig. 2. Hysteresis or bi-stability effect on (a) electronic
occupation and (b) energies levels as functions of the doping
carrier concentrations. These effects only occur when the
potential energy due to the exchange correlation is taken into
account. We conclude that bi-stability is not an effect of
symmetry, but is due to electron-electron interactions.
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correlation term is taken into account. On the contrary,
when the Schrödinger-Poisson equations are coupled only
by Eq. 3, no hysteresis effect is noted, even for rectan-
gular quantum wires for which very asymmetric wave-
functions are obtained and for which hysteresis could be
a priori expected. In fact, it seems absolutely correct
that such an effect of bistability appears when exchange
correlation is taken into account. It is normally accepted
that exchange correlation, as the name implies, is a di-
rect measure of how much the system is correlated. For
the situation considered in this paper, it represents the
correlation among all the electrons composing the sys-
tem.

To visualize the effect of exchange correlation, we can
imagine a flexible line joining all the electrons involved
in our description. Therefore, we can talk about some
form of state of correlation. This line is responsi-
ble for trying, as much as possible, to keep the system
in the same state of correlation it was in before any
kind of variation. When the number of occupied levels
is expected to change due to the variation of the Fermi
level (or equivalently in our formulation to the variation
of λ), the state of correlation obviously change too,
since electrons will be forced to re-organize themselves
in another spatial configuration. Thus, hysteresis is a di-
rect consequence of the presence of such a “line.” Near
the crossing of the electronic energy eigenstate with the
Fermi level, electrons try to remain in the state of lower
energy when λ (the quantum wire charge density) in-
creases while in the absence of correlation they would
already be in a higher level for the same variation. On
the contrary, when λ is decreasing, the electrons change
their configuration to remain in the higher level. This
rearrangement will not occur in the absence of exchange
correlation because all electrons are independent of each
other. The intensity, or relevance, of bistability is related
to the coefficients entering the formulation of the local-
field-approximation described in Eq. 6. We associate the
word “intensity” in this context with the area inside the
hysteresis region.

We presented here a complete self-consistent calcu-
lation of the electronic levels for two-dimensional sys-

tems. Particularly, we applied our method to rectangu-
larly shaped quantum wires. The electrostatic potential
for the rectangular charge distribution was presented and
was used as the seed to start the convergence process for
the self-consistent eigenvalues of the system. The central
conclusion of this work is related to the origin of hystere-
sis effects on electrical quantities of quantum wires, such
as the occupation number of levels. Exchange-correlation
was considered in the usual form presented in the liter-
ature, and it was responsible for every hysteresis effect
observed. Even for rectangular systems, for which wave
functions are not symmetric, hysteresis effects are not
present in the absence of an exchange correlation con-
tribution. On the other hand, even for square quantum-
wires, which present very symmetric eigenstates, hystere-
sis effects emerge when we include exchange correlation.
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