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An analysis of the reflectance of sonic band-gap crystals consisting of sguare arrays of rigid
cylinders in air is presented. The standing wave formed in front of the structures is studied both
experimentally and theoretically. Experiments have been performed with a mobile robotized
microphone that obtains pressure maps on the plane perpendicular to the axes of the cylinders.
Enhancements of the standing wave ratio (SWR) are observed in frequency regions where
attenuation bands appear in zero-order transmission experiments. Also, the SWR presents
oscillations that can be related to the finite dimension of the structure (Fabry—Perot effect). Both
features are well described by calculations based on a double-scattering approach. © 2001
Acoustical Society of AmericaDOI: 10.1121/1.1369784]

PACS numbers: 43.20.Fn, 43.20.Ks, 43.20.Ye [ANN]

I. INTRODUCTION

The existence of frequency regions where the propaga-
tion of electromagnetic waves is forbidden was predicted in
certain structures having a periodic modulation of the dielec-
tric function.> The structures that exhibit such behavior are
caled photonic-band-gap (PBG) materials. The underlying
theory has been applied to other types of waves like sound or
elastic waves and the corresponding structures are called
sonic-band-gap (SBG) or elastic-band-gap (EBG) materials.
Great theoretical effort has been put into the study of these
kinds of waves.>® Most of the works calculated the acoustic
band structure of infinite crystal using the plane-wave expan-
sion method. Recently, other approaches based on a varia-
tional method’ and a Korringa—Khon—Rostoker method®
have been developed. On the other hand, finite systems have
been studied by the transfer-matrix method® and multiple-
scattering theory.'® In this work we use multiple-scattering
theory to study our finite samples. In our approach each scat-
terer is characterized by its scattered pressure, which links
the diffracted pressure field to the incoming one. Our proce-
dure is a simplified version of the one employed in Ref. 11,
which uses a rigorous multiple-scattering theory to study
light scattering by dielectric cylinders. We will see that this
simplified approach, which takes up to double-scattering
events, reproduces the experiments fairly well.

Most experimental work on SBG structures reports zero-
order attenuation spectra.”*?!® A recent paper by Torres
et al* shows nice pictures of Bloch waves on a liquid hav-
ing wave velocity modulation. In the same spirit we have
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developed an experimental setup which permits the measure-
ment of pressure patterns in the plane where the two-
dimensional arrays of scatterers are deployed.

Making use of both theoretical and experimental tools,
our goal in this work is to study the reflectance properties of
SBG crystals formed by two-dimensional arrays of rigid rods
in air. Those properties will be inferred from the study of the
partial standing wave formed in front of the SBG structure.
As we discuss below, the method of pressure measurement
effectively detects a full standing wave whose standing wave
ratio (SWR) alows the characterization of some features in
the acoustic band structure. Also, the comparison with our
model based on a multiple-scattering approach facilitates
such analysis.

Il. THEORETICAL APPROACH

A. Sound scattering by an ensemble of rigid
cylinders in single-scattering approach

Let us first compute the scattering of a sound plane
wave, with frequency w, by a cylinder of radius R, placed at
the origin of coordinates. The incident wave travels in a di-
rection perpendicular to the cylinder’'s axis (i.e., along the
positive X axis) and impinges on a cylinder infinite along the
Z axis. If we assume a tempora dependence e™'“!, the wave
can be expressed as

S=o
pincid_ gikx _ gikr cos 6 _ 2 iSJS(kI’)eiSH, (1)
S=—x
where k is the wave number (k=2#/\) and Jg is the Bessel
function of the first kind and order s. The scattered wave
takes the form
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Pe= 2 Ady(kne™, )

where Hg is the Hankel function of the first kind and order s
with the superscript (1) omitted for simplicity; Hg(2)
=J(2) +iY4(2), Ys(2) isthe Bessal function of the second
kind and order s. The coefficients Ag are calculated by ap-
plying the boundary condition on the cylinder’s surface.

If we assume arigid cylinder, the radial velocity of the
air particles at the surface must be zero. This velocity is
generated by the combination of the plane wave and the scat-
tered wave. Since the velocity is proportional to the pressure
gradient, this boundary condition is

J inc scatt
Sp [P+ P _g =0. 3

After an easy calculation, the coefficients are
A~ 105 1(KRo) = Js1(KRy))
® (Hs-1(KRg) —Hs:1(KRp))

The total pressure at any point on the XY plane is the
sum of the scattered wave and the incident wave

P=pincy pseat, (5)

(4)

Now, if we consider that the wave is scattered not by asingle
cylinder but by an ensemble, a scattered wave is generated
on every cylinder and, therefore, to obtain the net pressure
we have to add the waves of all cylinders at any point of the
XY plane. This is a single-scattered approach since it in-
volves the scattered pressure originated in each cylinder by
just the incident wave arriving on it. Let us assume that the
jth cylinder is placed at the point (x;, y;); so, if we take the
phase origin at x=0, when the plane wave reaches this cyl-
inder its phase will be kx;, and the corresponding scattered
pressure at this point must be the same as the one calculated
above multiplied by the phase factor exp(ikx;)

S=

Pjscatt:eikxj E ASHS(er-)eiS(’J. (6)
S=—x®

Therefore, the total pressure at the point (x, y) takes the form

N
P(x,y) =PI+ >, psat
=1

N S=o0

:ei|<x+lz1 e > AH(kr))e's, (7)

S=—x

N being the number of cylinders (j=1, ...,N).
We must keep in mind that this pressure field is related
to the system of coordinates of each cylinder |

r=Vx=x)?+(y—y)?

8

This approach usually works well in systems where the scat-
terers are distant enough from each other; in other words,
when the fraction of volume occupied by the cylinders is
small.

2599 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001

FIG. 1. Notation used for a change of coordinate system between cylinder
jth and Ith. They are placed at the points (x;, y;) and (X, , y)).

B Sound scattering by an ensemble of cylinders with
double-scattering term

Now, consider cylinder jth and Ith shown in Fig. 1. As
we mentioned before, the field generated by the plane wave
on the jth cylinder is

S=o
Pi=e™ > AH(kr))e'sf. )
S=—x
Using Graf’'s formula™ for the Hankel function, we can ex-
press the term HS(krj)e'S"i in the Ith coordinate system
q=o

He(krpe'sli= >, ellc=Dhily _ (kry)dq(kr)e'a,
T (10)
The pressure scattered by the jth cylinder in the system of
coordinates of the Ith cylinder is
s=c —e
Pj|: _2 Aseikxj q_z e[i(sfq)("i]Hq,s(kr”)\]q(kn)eiqg'.
T (11)

The field generated at the Ith cylinder produced by the wave
scattered by the jth cylinder can be written in the following
form:

S=o

PP“: E A]-|SHS(kr|)eis‘9'. (12)
S= —
If we apply the boundary condition on the Ith cylinder

J
&_H[PjI+PPjI]r|:R0:0a (13)

kX; —q)0:
(9_” 5:2_00 A X]q;m eli(s q)o”]qus(kﬁj)\]q(kn)e'qal
S=®
+ E AJ'SHs(krl)eiSH' =0. (14)
S=—x

n=R,

Making use of the relations between the partial derivatives of
the Bessel and Hankel functions, the last equation takes the
form
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q:m
A D el DU (krj)(Jq-1(KRy) =g+ 1(KRo)) €%+ A (Hs 1 (KRo) — Hgs 1 (KRy)) €S =0. (15)
q: o]

Now it is possible to find the coefficients Ajs

CALMNEEZT el TN (kryj) (Jg+ 1(KRo) — Jg-1(KRy))

ela=9)6 (16)

Ajls_ (Hsfl(kRo)_HSJrl(kRO))

We can repeat the same process, but this time the Ith cylinder is the one that induces the scattered wave on the jth. In this case

the coefficients are

ALz dz" el DlH,_ (krj)(Jg+1(KRy) —Jg-1(KRy))

el(@=9;, (17)

Aujs (Hs-1(KRg) —Hs: 1(KRy))

It is clear that j =1 makes no sense regarding the coefficients Ajs . Therefore, the coefficients can be cast in the following

form:

Aseikxlzgzojooe[i(s_qw“]qus(krjl )(Jq+1(kR0) _Jqfl(kRO))

ela-96; (18)

Ajjs=(1—4))

where §; isthe Kronecker delta(6;=1if | =] and 6;=0 if
I #j). The pressure induced on the jth cylinder by the Ith is

S=x

PP|J-=S:2_OO AjjsHe(kr))e's0. (19)

So, the pressure field produced by a finite number of cylin-
ders, N, due to the double-scattering process is
S=®

N N
PPEai=3 > > AjsHs(kr))e. (20)
I=1j=1s=-
Thisis the multiple-scatter term employed in our calculation.
Finally, the pressure at any point (X, y) will be the sum
of all contributions

P(x,y)= P4 pseaty. p pscat

N S=

=+ > e X AH(kr))e's’)
=1 §=—o

S=x

N N
+2 E 2 A”sHS(krj)eiS”J. (21)
=151 5

Notice that the summations over j and | permit the analysis
of any arrangement of cylinders, either ordered or disor-
dered. Here, we are concerned with ordered structures.

Let us stress that our approach cuts the expansion pro-
cedure of Twersky'® after the double-scattering term. Our
simplified approach is justified by the agreement with experi-
mental results as described below.

IIl. EXPERIMENTS

The experiments have been performed in an anechoic
chamber of 8 6x 3-m? size. As a sound source we used a
speaker placed at the focus of a parabolic reflector. The re-
flector is employed to collimate the beam. Nevertheless, the
distance between the source and sample is not enough to
produce full plane-wave fronts when the sound reaches the
sample.
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(Hs-1(kRg) —Hs11(kRyo))

With the aim of obtaining pressure maps on the plane
perpendicular to the cylinder’'s axis, we have developed a
computer-controlled automatic positioning system (called ro-
bot for short) capable of sweeping the microphone through a
grid of measuring points located in a plane. The movement
along each X- or Y-axis is accomplished by means of steeper
motors with a maximum resolution of 0.25 mm per step. The
maximum length of each axis is 1800 mm. Nevertheless,
larger distances can be explored by hand relocation of the
whole frame of the robot. Sound-pressure measurements are
automatically taken by means of a B&K 2144 frequency
analyzer controlled by a computer through a general purpose
interface bus (GPIB) interface. At each grid point the micro-
phone samples the sound with a sampling frequency of 15
kHz. Afterwards the analyzer makes the fast Fourier trans-
form (FFT) of such data and produces the corresponding
pressure spectrum with a resolution of 8Hz. Frequencies be-
low 6.4 kHz are well described in the spectra. A total of 256
spectra has been taken to generate an averaged spectrum,
which is the one finally assigned to that grid point. The total
measuring time in one point is 10 s. As aresult we obtain at
each point, and for a given frequency, the root-mean-squared
(rms) pressure, P,.(X,y). In order to put it in decibels we
used a reference pressure P, x=20 uPa; in other words,
L exp(X,Y) =20 10g10( Pyms(X,Y)/Pyes). The total time employed
to elaborate a pressure map with 400 grid points, like the
ones shown here, is about 7 h.

Our SBG crystals are built up by hanging cylindrical
rods on a frame which has the crystal symmetry. Here, we
have studied square arrays of hollow aluminum rods of R,
=2 cm radius put in a square lattice with 11 cm of lattice
constant, a. The fraction of volume occupied by the cylinders
f is quite small: f=xR5/a?=0.104. It has been shown
previously!’ that this structure does not possess a full acous-
tic band gap.

In Fig. 2 we show the two samples under study. They
were constructed along the X axis, the incident sound direc-
tion, in order to represent the two high-symmetry directions
in the Brillouin zone; i.e., the I'X direction [Fig. 2(a)] and
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FIG. 2. (a) Geometry of the sample used to study the scattering of sound
waves incident along the I'X direction. (b) Sample employed to study sound
waves aong the I'M direction. The incident direction is always from left to
right in the figures.

I'M direction [Fig. 2(b)], respectively. Both structures have
five rows of cylinders so as to have short computational
times, and to make for an easier comparison. We choose
them as test materials to study their properties in reflectance
by using our experimental setup.

IV. RESULTS AND DISCUSSION

The structures under study have been analyzed previ-
ously by using zero-order transmission experiments, and the
following results were obtained: (1) along the I'X direction
an attenuation band appears'® in the frequency region (1260—
1750 Hz); (2) along the I'M direction the attenuation band
measured covers the region (1900—2500 Hz). When com-
pared to the acoustic band structure calculated by a varia
tional method one finds that attenuation along I'X is fairly
well explained by the gap existing at the region (1204-1764
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Hz). On the contrary, along the I'M no gap was found in the
band calculation. The origin of the attenuation along this
direction is twofold. One is the existence of one deaf band;’
i.e, a band that is not coupled with the incident sound for
reasons of symmetry. The other is the possible energy trans-
fer to Bragg waves of higher order when the sound leaves the
sample. In what follows we will see how these effects are
shown in our experiments and by our multiple scattering
calculation. First, we analyze pressure maps. Afterwards, the
study of the standing wave observed in front of the structure
will give us further confirmation of the SBG crystal proper-
ties inferred from the transmission experiments.

A. Pressure maps

The pressure, P(X,y), has been caculated by our
double-scattering approach (see Sec. |1) at different frequen-
cies. The sumsto the orders of Hankel functions, sor g, have
been truncated to five terms. This truncation is justified due
to the fast decreasing of the coefficient’s modulus. Thus, for
example, at 2720 Hz, |Ag|/|As|~140. On the other hand, to
reduce the computational time the double-scattering term,
Eq. (20), is caculated by using just first-neighbors interac-
tion; i.e, Ajjs=0 if r;;>2a.

To compare with experiments we define a theoretical
RMS-pressure, P7(x,y) = 1P P* = }|P(x,y)|?, which is the
average squared pressure at each point.

Therefore, the pressure in decibels is

Lineo(X,¥) = 20 logso(| P(x,Y)|/ @), (22)

where « is an adjustable parameter that takes into account
that the incident pressure is not unity in the experiments. In
particular, we will present here results for two relevant fre-
quencies; both are in regions where attenuation bands are
observed.

Figure 3 shows the calculated pressure pattern at 1600
Hz for the sample constructed along the I'X direction [see
Fig. 2(a)]. It can be observed how the pressure decreases as
the wave penetrates inside the structure. This behavior is
well explained by the fact that the frequency is inside the
existing acoustic gap along this direction. Both low transmis-
sion and high reflectance are observed along the incident
direction, as is shown in Fig. 3. On the other hand, Fig. 4
plots the map obtained at 2540 Hz for the sample constructed
along the I'M direction. In comparison with the previous
result, we now notice how the pressure takes nonzero values
at angles tilted with respect to the incident direction and in
the lateral sides of the structure. In this case the attenuation
measured in the forward direction is due to an energy trans-
fer to other directions; i.e., other than the collinear between
source and microphone.

In Fig. 5 we compare pressure maps cal culated and mea-
sured for the same sample and at the same frequency as in
Fig. 3. The area represented in front of the structure is x
e[—0.985 m, —0.485 m], ye[—0.160 m, 0.160 m]. This
plot shows that both experiment and theory display periodic
high- and low-pressure levels, which clearly define standing
waves that are in good qualitative agreement.

Figure 6 compares the measured values (squares) with
the predictions of the model inside the region (—0.985 m,
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FIG. 3. Double-scattering calculation
of the mean-square pressure pattern at
1600 Hz for the sample along the I'X
direction [see Fig. 2(a)].

0.

when it reaches the structures. This effect will be discussed
further in the next subsection.

B. Standing wave ratio

If we consider that an incident sound wave with unit
pressure amplitude impinges on the SBG crystal, it will be

FIG. 4. Double-scattering calculation
of the mean-square pressure pattern at
2540 Hz for the sample along the I'M
direction [see Fig. 2(b)].
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partially reflected. The net pressure in front of the crystal is
the superposition of the incident and reflected wave

cos(kx— wt) + R cos( — kx— wt)
=A(X)cos(— wt— ¢(X)), (23)

where R is the reflection coefficient, ¢(x) is a phase angle
which is of no concern here, and A(X)
=1+ 2R cos 2kx+R?. Only for R=+1 is a full standing
wave formed. For the general case R+ =1 the sum of the
incoming traveling wave and the reflected wave is a partial
standing wave. If we explore the wave with a microphone, as
we have done, we are, in fact, measuring its mean sguare
pressure, P2. In other words, we are measuring A(x), which
ranges (if R>0) from a maximum value (1+ R) at antinode
positions kx=0+nsr, to a minimum value (1—-R) at node

2603 J. Acoust. Soc. Am., Vol. 109, No. 6, June 2001

L1 e

position kx=m/2+n7. The standing wave ratio is defined
by19

. ,
P 1+R
$= ( )2 =SWRZ. (24)
F)min (1_R)

Experimentally, to obtain the SWR it is better to work in
terms of rms-pressures

SV\/Rexp: L pmax— L pmin
=10 |0910(Pmaxlpref)2_ 10 logo F)minlpref)z
=20 10910( P max /P min) - (25)

In this equation Lppi, @nd L pmay are the rms-pressure levels
measured in decibels, P, is an arbitrary value (see Sec. I11),
and P, and P, are the maximum and minimum values of
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FIG. 6. Comparison between the effective pressures measured (symbols)
and calculated (solid line) for the sample constructed along the I'X direction
at 1600 Hz. The data represented are in the region (—0.985 m, —0.485 m)
aong the x axis.

the root time-averaged pressures, respectively.
With regards to theoretical calculation, the SWR can be
calculated using the following formula:

SVVRtheo: 20 IOglO(|Pmax|/|Pmin|)- (26)

Figures 7 and 8 show the SWRs aong the two high-
symmetry directions. I'X and I'M, respectively. The thick
solid lines represent the measurements, while dotted lines
define the calculations using the theory described in Sec. I1.
On the other hand, to evaluate the effect associated with a
possible nonplanar wavefront, a phase mismatch between the
cylinders in the planes perpendicular to the incident wave
has been introduced in the model: the phase factors are con-
sidered to have the form e™/Reaweeril instead of exp(ikx)),
where r;=(x;, y;) is the position vector of the cylinder j,
and Ry, IS the position of a line source at a distance L in
front of the sample; Rgyee=(—L,0). The thin solid lines in
Figs. 7 and 8 represent the calculations for this cylindrical
wavefront with a fitted value L =10a.

When the sound wave impinges the structure along the
I'X direction (see Fig. 7), the SWR measured (thick solid
line) show an enhancement in the very same frequency re-

OF o] rX
25 '
@ 20t \
i% L $ i i
§ 15F
2 10}
1 n 1 1 n n 1 I 1 1 1
1000 1500 2000 2500 3000
frequency (Hz)

FIG. 7. Frequency dependence of the standing wave ratio (SWR) (in dB)
measured (thick solid line) and calculated for the sample along the T'X
direction. The dotted line represents the calculated results for an incoming
sound plane wave. The thin solid line shows the corresponding ones calcu-
lated with an incident sound with a cylindrical shape (see the text).
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SWR (dB)
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frequency (Hz)
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FIG. 8. Frequency dependence of the SWR (in dB) measured (thick solid
line) and calculated for the structure along the I'M direction. The dotted line
represents the cal culated results for an incoming sound plane wave. The thin
solid line shows the corresponding ones calculated with an incident sound
with a cylindrical shape (see the text).

gion where the first gap appears in the acoustic band struc-
ture. The lack of states available to sound transmission pro-
duces a large reflectance R and, consequently, explains the
SWR increasing. With regard to the oscillations observed,
they are related to the resonances associated with the finite
thickness of the SBG crystal (Fabry—Perot resonances). The
frequency of these resonances is determined by kd=mar,
m=12,..., d=4a=0.44 m being the thickness of the
sample constructed along this direction [see Fig. 2(a)]. From
the oscillation period, Aw, it would be possible to obtain the
sound velocity inside the sonic crystal (SC), ¢, through the
formula cgc= A wd/ 7. Nevertheless, since the period mea-
sured changes with frequency (its values are in the range
222-355 Hz), a frequency-dependent sound velocity must be
considered instead. The study of this magnitude, which im-
pinges on the broad problem of homogenization, requires the
analysis of more structures and detailed calculations on their
corresponding acoustic bands for comparison. Such atask is
beyond the scope of this work. The comparison with the
SWR resulting from our double-scattering model is qualita-
tively good, although both calculations (i.e., plane and cylin-
drical wavefronts, respectively) define the gap shifted with
respect to the measurements and the band structure calcula-
tion. This disagreement mainly comes from the fact that we
didn’'t include all the multiple-scattering terms as they are in
the acoustic band calculation. Furthermore, the result for the
case of a cylindrical wavefront predicts a smaller gap.
When the sound is incident along the I'M direction (see
Fig. 8) we notice an SWR enhancement in the region (1800—
2700 Hz), though no gap appears in the acoustic band struc-
ture calculated along this direction. Now, the origin of large
SWR values is associated with the existence of a deaf band
that goes from 1878 Hz up to 2798 Hz. This band, ideally
uncoupled, weakly couples with the exciting sound and pro-
duces large reflectance values. The multiple-scattering cal cu-
lations are also in qualitatively good agreement and repro-
duce most of the features observed. Again, the theoretical
frequencies at which the SWR enhances are shifted (now to
lower frequencies) compared to the experimental ones and to
the ones deduced from band structure. Regarding the Fabry—
Perot oscillations, its period is now larger since the dab
thickness is smaller, d=4a/\2=0.31 m. These oscilla-
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tions are well reproduced by our models. In fact, we observe
that the results with the cylindrical wavefront give a better
account of the SWR amplitude. This effect leads us to con-
clude that phase mismatch plays a role and has to be in-
cluded in improved models based on the multiple-scattering
approaches.

V. SUMMARY

In this work we have studied the standing wave formed
in front of a SBG crystal when a sound wave impinges on it.
The crystals analyzed consist of two-dimensiona arrays of
rigid cylindersin air. Experiments were conducted in an free-
echo chamber by using a new experimental setup based on a
computer-controlled automatic positioning system which is
able to obtain the effective pressure pattern on the plane
perpendicular to the cylinder axis. On the other hand, we
have used a theoretica approach based on a multiple-
scattering algorithm, which takes into account up to double-
scattering events. The comparison between theory and ex-
periments has allowed us to obtain intrinsic properties of the
SBG crystal. In particular, we have shown that gaps and
uncoupled bands can be characterized in the SWR of the
standing wave. Moreover, the finite thickness of our SBG
structures along the sound propagation direction produces
Fabry—Perot-type resonances that were detected as oscilla
tions in the SWR.
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