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Superprism effect in opal-based photonic crystals
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This paper investigates the superprism effect in opal-based three-dimensional photonic crystals which con-
sist of an face-centered cubic~fcc! array of close-packed dielectric spheres embedded in a host. The light
propagation angle inside the opals is determined by the group velocity vector of the bulk eigenmodes having
the strongest coupling with the incident light at the boundary of the opal. It is found that the superprism effect
takes place quite generally in the frequency range where many flat bands exist owing to the zone folding. The
numerical simulations of the superprism effect in bare opal systems indicate that the effect can be used as
frequency selector devices as well as beam splitters.
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I. INTRODUCTION

Recently, photonic crystals~PC’s! attract much attention
due to their possible applications in light control devices.
far, studies of PC’s have been focused on the photonic b
gap in which the photon density of states is zero. In t
region the propagation of the radiation field is forbidden a
thus a variety of novel phenomena, e.g., inhibition of sp
taneous emission,1 are possible. A PC with a full photoni
band gap resembles an insulator in which the Fermi ene
lies in the energy gap. However, PC’s have other applica
than just being used as photonic insulator, that is, they ca
employed as novel photonic conductors. Light propagat
inside PC’s is quite different from that in ordinary materia
This is mainly caused by the anisotropy of the photonic d
persion relation which reflects the space group symmetr
the PC. The anisotropy is quite large even if the perio
modulation of the PC is weak. As Kosakaet al.showed,2 the
anisotropy can be utilized as the mechanism of the su
prism effect, i.e., an extraordinary angle- and waveleng
sensitive light propagation. We know that ordinary prism a
based on the wavelength dependence of the refractive in
Generally the dependence is small and the light propaga
angle is determined by Snell’s law. As a result, the angle-
wavelength-sensitivity is very limited. In a PC the sensitiv
can be greatly enhanced by changing various of its par
eters. In addition, the sensitivity can be also strongly mo
fied by the geometry of the boundary surface.

So far, the superprism effect has been studied in tw
dimensional ~2D! PC’s ~Ref. 3! and auto-cloned three
dimensional~3D! PC’s,2,4 where the out-of-plane propaga
tion was neglected. Recent progress in fabrication techniq
has produced 3D PC’s with various geometrical structu
including simple cubic,5 body-centered cubic,6 and fcc~Ref.
7! structures. In these photonic crystals the 3D anisotrop
the photonic bands dispersion relation is very large and
out-of-plane propagation can not be neglected. Therefor
careful analysis of the superprism effect in these PC’s is
order.

In this paper the superprism effect is investigated in op
based 3D PC’s. These PC’s consist of an fcc structure
closed-packed dielectric spheres embedded in a host w
0163-1829/2001/64~24!/245113~7!/$20.00 64 2451
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different dielectric material. These photonic systems ha
several advantages in technological applications, being
more important the easy process of fabrication.7 We are
mainly interested in the correlation among the input and o
put light propagation angles as well as their frequency
pendence. For simplicity, we will restrict our study to th
response of light at two selected boundaries of the se
infinite photonic crystal. At a given frequency of the incide
light, since several bulk eigenmodes with different directio
of propagation could be excited, we must know the mod
with the strongest coupling with the incident light. In th
work, we introduce an useful method to explore the coupl
and then extract the most plausible direction of the lig
propagation in the PC by using the method. Whereas
correlation is very complicated, several common features
the light propagation are obtained.

The paper is organized as follows. In Sec. II the kine
matching condition between the incident light and bu
eigenmodes in the PC is derived by using the concept of
surface Brillouin zone~SBZ!. Branching ratio of the bulk
eigenmodes at a given incident light is explored in Sec.
Results of numerical simulations of the superprism effect
discussed in Sec. IV. Finally, in Sec. V we summarize o
results.

II. KINETIC MATCHING CONDITIONS

The opal-based PC’s can be classified in three main
egories according to the dielectric materials in the sphe
and in the host.~1! Bare opals, in which silica spheres wit
dielectric constant 2.1 are embedded in air, are the simp
opal-based PC’s.7 These systems have no omnidirection
photonic band gap. Besides, since the index contrast betw
the spheres and air is very small, the photonic band struc
is quite similar to that of the empty lattice model with infi
nitely small periodic modulation.~2! Loaded opals, in which
the air voids of the bare opals are in-filled with another
electric material such as a polymer8 or with a semiconductor
such as Si,9 Ge,10 CdS,11 etc. The photonic properties coul
be enhanced with respect to the bare opal systems if
dielectric contrast between silica and the in-filled materials
increased.~3! Inverse opals, which are obtained when t
silica in the loaded systems is dissolved by chemical mea
In these systems one can reach the maximum dielectric
©2001 The American Physical Society13-1
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trast and an omnidirectional band gap could be obtain if
material infiltrated has a dielectric constant high enough.12,13

As was mentioned before, the opal-based PC’s have
close-packed fcc structure of dielectric spheres and thus
filling fraction of spheres is about 0.74.

In principle, one might consider that bare opals have
weak anisotropy in the dispersion relation because of
small index contrast. However, it is not the case because
anisotropy is caused by the symmetry of the space gr
which exists even if the periodic modulation is weak.

Let us consider the symmetries of the dispersion rela
in the opal-based PC’s. The eigenfrequencyv(k) with Bloch
wave number vectork within the first Brillouin zone~BZ!
has the following symmetries:

v~Rk!5v~k!, ~1!

v~k1G!5v~k!, ~2!

whereR is an element of theOh group, which is the point
group of the fcc structure of spheres, andG is the reciprocal
lattice vector of the fcc structure. Since the group veloc
v(k) is the gradient ofv(k), similar equations hold for the
group velocity

v~Rk!5Rv~k!, ~3!

v~k1G!5v~k!. ~4!

These equations give a severe restriction to the light pro
gation irrespective of details of the system. For example,k
is on a mirror plane in the BZ, the normal component of t
group velocity to the plane is zero. Thus, the group veloc
vector must be parallel to the plane. On a high symme
axis in the Brillouin zone, e.g.,L ~i.e., theG-L interval!,
several mirror planes intersect each other. This means
the group velocity vector must be parallel to the intersect
lines and thus parallel to the axis concerned. Since the gr
velocity vector of an eigenmode gives the direction of pro
gation of the eigenmode, the direction of the light propa
tion is also parallel to the axis.

In order to get the response of light inside these PC
effects at the air/opal interface must be incorporated, beca
the superprism effect stems from the boundary of the PC.
simplicity, we assume a semi-infinite opal-based PC wh
boundary is normal to a certain direction. Strictly speaki
in this case the spatial symmetry of the photonic crystal
duces to a 2D one. However, the arguments given above
still employed as far as properties of the eigenmodes in b
are concerned. In what follows we focus on the photo
crystals with the boundary normal to the~111! or ~001! di-
rection. In the~111! case the photonic crystal can be r
garded as a semi-infinite stack of monolayers that are c
posed of the triangular array of dielectric spheres with per
a/A2. Here,a is the period of a cubic cell of the fcc lattice
There is theC3v symmetry in the plane normal to~111!. In
the ~001! case the stack of monolayers of spheres, wh
periodicity is the square lattice with perioda/A2, forms the
photonic crystals. In this case,C4v is the relevant symmetry
group.
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As mentioned before, the photonic crystal still has a
translational symmetry. Thus, the reduced wave vector in
surface Brillouin zone~SBZ! as well as frequency is con
served. The SBZ, which is defined by the Wigner-Seitz c
of the 2D reciprocal lattice associated with the boundary s
face, is an efficient notion to analyze PC with a boundar

In order to see how the eigenmodes couple to the incid
light, it is important to project the bulk photonic band stru
ture on the SBZ. Typical projected band diagrams are sho
in Figs. 1~a! and 1~b!, which represent the projection of th
photonic band structure of the bare opal on the SBZ ass
ated to the fcc~111! and ~001! boundary surfaces, respec
tively.

In Fig. 1 the shaded regions correspond to the allow

FIG. 1. ~a! Projection of the photonic band structure of the ba
opal on the SBZ of the fcc~111! surface.~b! Projection on the SBZ
of the ~001! surface. The corresponding SBZ’s are shown in t
insets. The shaded regions defines the bulk eigenmodes. The e
nal radiation field exists above the light line which is represented
the thick white line.
3-2
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SUPERPRISM EFFECT IN OPAL-BASED PHOTONIC CRYSTALS PHYSICAL REVIEW B64 245113
frequency region of the bulk eigenstates and the thick w
line defines the light line, above which the external pla
wave is allowed to exist. The blank regions above the li
line represent pseudogaps. The incident light in a pseudo
cannot enter into the photonic crystal. For example, the in
dent light with the reduced wave vector lying near theK
point of SBZ of the fcc~111! surface cannot couple with
bulk eigenmodes if its frequency is aroundva/(2pc)51.1.

The group velocity of the bulk eigenmodes gives anot
criterion on the coupling. Physically, the eigenmode w
negativevz ~we take thez direction to be normal to the
boundary and the photonic crystal is inz.0) should be ne-
glected. Thus, only the bulk eigenmodes with positivevz can
couple with the incident light.

To summarize, the kinetic matching conditions betwe
the bulk eigenmodes and the incident light are given as
lows. ~a! The frequency and the reduced wave vector in S
are conserved.~b! The bulk eigenmodes are above the lig
line. ~c! vz is positive. If these conditions are satisfied, t
incident angles (u inc ,f inc) and the propagation angles in th
photonic crystal (uout,fout) are given by

k5
v

c
~sinu inccosf inc ,sinu incsinf inc ,cosu inc!, ~5!

v5uvu~sinuoutcosfout,sinuoutsinfout,cosuout!, ~6!

wherek is the wave vector of the incident light.

III. BRANCHING RATIO

In the previous section we focused on the kinema
across the air/opal interface and did not take account
matching condition for the fields at the boundary. At lo
frequencies a couple of bands are almost degenerate be
they originate from two independent polarizations at a giv
wave number vector in free space. Thus, for the incid
light with a certain polarization the overcounting of the bu
eigenstates happens if only the kinetic matching conditi
are taken into account. Moreover, at high frequencies sev
bulk eigenmodes are kineticly matched to the incident li
~see Fig. 3!. The coupling strength between these eige
modes and the incident light differs from mode to mode.
expect that only a few eigenmodes are strongly coupled w
the incident light. Otherwise, the superprism effect is qu
difficult to handle. This is not an optimistic expectation, b
numerical simulations indicate, as we will see, this is
case.

If the incident light impinges the sample along a hi
symmetric axis of the PC, the in-plane symmetry of the b
eigenmodes can be used to reduce the overcounting. H
ever, along the high symmetric axis, the superprism ef
does not take place, because the group velocity vecto
parallel to the axis irrespective of frequency. Thus, only
boundary condition of the field strength serves for this p
pose. As a consequence a natural question arises: how
we impose the boundary condition on the bulk eigensta
In principle, we can solve this problem by considering t
resonant band structure14,15 of the semi-infinite sample an
by relating it to the band structure in bulk. Instead, below
propose an alternative method to explore the coupling.
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The layer-KKR method16–19can serve for this purpose. I
this method both the transmission spectrum through a fi
slab and the band structure of PC’s composed of a reg
array of nonoverlapping spheres in a host can be calcul
very accurately in an unified manner by using the scatter
matrices of a monolayer of spheres as input ingredient. If
slab thickness is large enough, the electromagnetic field
the deepest region of the slab can be regarded as a sup
sition of the true bulk eigenstatesa; in other words, the field
at the region is not affected by the finite size of the samp
Thus, instead of imposing the boundary condition, the cal
lation of the superposition coefficientsca gives an estimation
of the coupling. In addition, the coefficients have a dire
physical meaning, that is, they give the branching ratio~BR!
of the bulk eigenstates

BRa5
ucau2

(a8 uca8u
2

, ~7!

where the summation is over all the bulk eigenmodes sa
fying the kinetic matching conditions. The coefficients c
be evaluated by a kind of overlapping integral between
field excited in the bulk by the incident light and the actu
eigenstates of the infinite PC as explained below.

In the layer-KKR method the photonic band structure
obtained by

S Q112Q12Q22
21 Q21 Q12Q22

21

2Q22
21 Q21 Q22

21 D S u1~N!

u2~N!
D

5eikzdS u1~N!

u2~N!
D , ~8!

whereu6(N) is the column vector composed of the Fouri
coefficients of the forward (1) and backward (2) propagat-
ing modes in the electric field in the space~void! between the
(N21)-th andNth layers as

u6~N!5S uh1

6 ~N!

uh2

6 ~N!

A
D , ~9!

Evoid~r !5(
h

uh
1~N!eiKh

1
•r1uh

2~N!eiKh
2
•r, ~10!

Kh
65ki1h6 ẑAevoid

v2

c2 2~ki1h!2. ~11!

Here,h denotes the 2D reciprocal lattice vector associated
the 2D periodicity on the surface,ki[(kx ,ky) is the wave
vector within the SBZ, andevoid is the dielectric constant o
the void. In Eq.~8! Q’s are the scattering matrices of th
monolayer17 which relateu6(N) with u6(N11) as

S u1~N11!

u2~N!
D 5S Q11 Q12

Q21 Q22
D S u1~N!

u2~N11!
D . ~12!

Let us denote Eq.~8! simply asTu(N)5eikzdu(N). In
this equationT is equal to the transfer matrix which relate
u(N) with u(N11) as
3-3
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T. OCHIAI AND J. SÁNCHEZ-DEHESA PHYSICAL REVIEW B64 245113
u~N11!5Tu~N!. ~13!

SinceT is not Hermitian, the left eigenstateuL of T is gen-
erally different from the complex conjugate of the rig
eigenstateuR . Assume that these are normalized as

~uL
a!†uR

a85daa8 . ~14!

The coupling of the actual eigenstate with realkz
(a) , is esti-

mated by the overlapping

ca5~uL
a!†udeep, ~15!

whereudeep is a column vector which contains the Fouri
coefficients of the electric field excited by the incident lig
in the deepest void region of the sample and is defined

udeep5S udeep
1

udeep
2 D 5S 1

Q21
R D ~12Q12

L Q21
R !21Q11

L uinc .

~16!

In the above equationuinc is the column vector which corre
sponds to the incident light as

uinc5S uinc,h1

uinc,h2

A
D , ~17!

Einc~r !5(
h

uinc,he
iKh

1
•r, ~18!

andQL,QR are the scattering matrices for the front-half a
rear-half layers of the sample as is depicted in Fig. 2.

In Eq. ~15! there is a selection rule on the spatial symm
try of the electric field. Since the transfer matrixT commutes
with the symmetry operations of the point group relevant
the incidentk vector, the eigenstates ofT are classified ac-
cording to the irreducible representations of the point gro
Thus,ca becomes zero ifubulk is attributed to the differen
irreducible representation from that ofuL

a . As an example, in
what follows we estimated the BR of the bulk eigensta
when the incidentk vector lies in a mirror plane.

Let us consider incident light whoseki component coin-
cides with theM point of the SBZ. Following the procedur
explained above we employed a 32-monolayers slab of
bare opal along the~111! direction to calculate the electri
field in the space between the 16th and 17th layer, where
bulk configuration is assumed to be achieved. At the sa
time, the photonic dispersion relation of the fully period

FIG. 2. Schematic illustration of the geometry used in the c
culation of the branching ratio.
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system is also calculated alongkz with the sameki wave
vector. In Fig. 3 we show such dispersion relation in the h
frequency region@0.9–1.2# where many bands appear due
folding effects. Now, let us discuss the case of one freque
in a multibranching regime; for example,va/(2pc)51.0.
At this frequency Fig. 3 shows that there are four eigensta
which are kineticly matched to the incident light; i.e., th
ones with positive slope. However, if the incident light isS
polarized, that is, the polarization vector of the electric fie
is parallel to the boundary, its symmetry under the mir
reflection is odd. On the other hand, the bulk eigenstates
also classified by the parity of the mirror reflection. Thu
bulk eigenmodes with even parity can not couple to the
cident light. This fact is confirmed by calculating the magn
tude ofucau2. The valuesucau2 of the even eigenmodes~thin
lines in Fig. 3! are less than 10215, whereas those of the od
eigenmodes~thick lines in Fig. 3! are 0.0017 and 0.9665. A
this point we have to notice that modes with negative slo
also contributes to the fieldubulk in Eq. ~13! because of the
finite size of the sample; theirucau2 values are 0.0011 and
0.048 at this frequency. Nevertheless, the values of the n
tive component will not been taking into account to calcula
the BR associated to the semi-infinite system we are con
ering here. Thus, the BR of the dominant mode at the wo
ing frequency is about 99.8%. This kind of dominance in t
BR is found in a large region of (v,ki) and it is very useful
for technological applications. Figure 3 also includes the
values at the frequency 1.15~in red. units! where mainly two
bands are excited by the incident light, being their BR’s
and 67 %. The remaining 1% is associated to the rest of
bands satisfying the kinetic matching conditions.

We must remark the the procedure described abov
applicable with slight modifications in the the Pendry’s tran
fer matrix method.20 The group velocity of the bulk eigen
modes can be calculated in this method by taking the spa

l-

FIG. 3. The photonic band structure of the bare opal at theM
point in the SBZ of the fcc~111! surface. Eigenmodes have eve
parity ~thin lines! or odd parity ~thick lines! with respect to the
mirror plane which containsM. The branching ratio of the eigen
modes atva/2pc51.0,1.15~horizontal lines! are given.
3-4
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average of the Poynting vector of the eigenmode in a u
cell. However, since the method is based on finite differ
tiation of Maxwell’s equation, the results at high frequenc
are dubious compared to the layer-KKR method.

IV. RESULTS AND DISCUSSION

The method described in the previous sections were
amined numerically for the bare opal system. In order
obtain the group velocity, which is very difficult in the laye
KKR method, a combined use of the plane wave expans
method and the layer-KKR is needed. In the plane wa
expansion method the group velocity can be easily calcula
by the Hellman-Feynmann theorem.

At a given polar and azimuthal angles as well as f
quency of the incident light, we first calculated the ba
structure and the couplingca of the bulk eigenstates by th
layer-KKR method ~see Sec. III!. Since the layer-KKR
method is a kind of ‘‘on-shell’’ method,kz , which is the
normal component of the Bloch wave vector to the bound
surface, is obtained as the output. Among the actual b
eigenstates with realkz

a we select the ones with the large
ucau2. By using the wave vector (ki ,kz) of the leading one as
the input, the band structure along with the group veloc
was calculated by theE method of the plane wave expansio
After confirming that~a! there is the eigenmode whose fr
quency is near to the input frequency within 1% of error a
that ~b! vz of the eigenmode is positive, we calculated t
polar and azimuthal angle of the propagating light inside
photonic crystal by Eq.~6!. In case that condition~b! is not
satisfied, we selected the next leadingkz

(a) as the input in the
plane wave expansion and recalculated the eigenfrequ
and the group velocity.

In the plane wave expansion 537 reciprocal lattice vec
were used. The convergence is good even with this ra
small number of reciprocal lattice vectors because of
small index contrast between the spheres and air. As for
layer-KKR method we used spherical harmonics up tol max
56 and 37 reciprocal lattice vectors relevant to SBZ. A go
convergence is also obtained with these values.

First, let us consider the superprism effect near the e
of a pseudogap. It is well known that a pseudogap op
between the second and third bands along theG-L direction
in the fcc Brillouin zone; i.e., at theG point of the SBZ
associated with the surface normal to~111! @see inset of Fig.
1~a!#. The gap still opens if the reduced wave vector on S
is apart from theG point, as was shown in Fig. 1. In Fig.
uout is plotted as a function of frequency. Here, the bound
surface is normal to the~111! direction and the polar and
azimuthal angles of theS-polarized incident light areu inc
510° andf inc5220°, respectively. In this parametrizatio
of u inc andf inc , the positivex axis is parallel to the (1̄10)
direction and accordingly the positivey axis is parallel to
(1̄1̄2).

At the edge of the pseudogapvz becomes zero, so tha
uout generally reaches up to 90° irrespective ofvx ,vy . This
behavior is clearly seen in Fig. 4 below the band gap@i.e., at
va/(2pc).0.65# and above it. Figure 4 also shows th
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Snell’s law with the spatially averaged dielectric constant

sinuout5
1

nav
sinu inc , ~19!

works fairly well in the remaining part of the displayed fre
quency region. In bare opalsnav.1.35 and thus atu inc
510° one obtainsuout57.33°, which is represented by th
thin horizontal line in Fig. 4, As forfout, it is observed that
the deviation from Snell’s law (fout5f inc) is small. There-
fore, the superprism effect obtained near the pseudo
could be used as a frequency-selector device.

Next, let us discuss the superprism effect in the freque
region where several eigenmodes are kineticly matched
the incident light. Now, the BR of bulk eigenmodes vari
with the frequency. In most of the cases examined the r
of the leading modes is greater than 30% and there are m
modes whose BRs are less than a few percent. Similar re
in experiments were reported.3 In this region the superprism
effect appears quite generally at any angle of incidence. T
is due to the huge anisotropy of the flat bands which exis
this region due to folding effects. In Fig. 5 the propagati
direction inside the opal (uout,fout) is plotted as a function
of frequency for a given incident direction. Here, the boun
ary surface and the coordinate system is the same as in
4. The polar and azimuthal angles, which define the incid
light areu inc540° andf inc5220°, respectively. In contras
to the superprism effect near the pseudogap~see Fig. 4!, now
fout also reveals large sensitivity to frequency; in fa
Dfout.100° for Dv.0.1 ~in red. units!. Also, it can be
observed a split of the incident beam inside the opal
frequencies aboveva/(2pc)51.1. This phenomenon is
caused by the fact that two eigenmodes are coupled to
incident light with a similar strength. The resulting bifurc

FIG. 4. The superprism effect in a bare opal sample cut al
the ~111! surface at low frequencies. The incident direction is fix
at (u inc ,f inc)5(10°,220°). The horizontal lines represents the r
sults obtained by the Snell’s law using a spatially averaged die
tric constant. Notice how the polar angle inside the photonic cry
shows a large sensitivity to frequency near the pseudogap edg
3-5
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tion of the light serves as the beam splitter in which t
intensities of the two beams are almost the same.

To conclude, Fig. 6 shows the results for the superpr
effect when the boundary surface is normal to the~001! di-
rection. As it is known, the pseudogap between the sec
and the third bands, which are doubly degenerate inD @i.e.,
the G point in the SBZ of the fcc~001! surface#@see Fig.
1~b!# is very small in comparison to the~111! case@see Fig.
1~a!#. Therefore, a fine tuning of frequency is necessary
order to get the superprism effect near the first~001!
pseudogap. Nevertheless, the superprism effect also ap
quite generally in the frequency region where many
bands exist.

FIG. 5. The superprism effect for a bare opal sample cut al
the ~111! surface at high frequencies. The incident direction is fix
at (u inc ,f inc)5(40°,220°). Both the polar and azimuthal angle
defining the propagating direction inside the opal show a large
sitivity to frequency.

FIG. 6. The superprism effect for a bare opal cut along the
~001! surface. The incident direction is fixed at (u inc ,f inc)
5(10°,45°). The horizontal line represents the Snell’s law with
average dielectric function.
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The incident direction is fixed at every frequency by t
following polar and azimuthal anglesu inc510° and f inc
545°, respectively. Here, the azimuthal angle is defined w
respect to a (x,y) set of axis in which the positivex axis is
parallel to (1̄10) and the positivey axis is parallel to~110!.
In addition, the numerical simulation shown in Fig. 6 corr
sponds to the case in which theki lies in a mirror plane of
the groupC4v , which is the relevant symmetry group in th
fcc ~001! plane. As a consequence,fout must be 45° or
2135°, values that were confirmed by our numerical sim
lation. The output polar angle reveals a remarkable sens
ity to frequency. In a similar manner than in the~111! case
~see Fig. 4! uout shows a huge frequency dependence in
narrow region close to the edges of the pseudogap. In c
trast, the superprism effect aroundva/(2pc)51 and above
is more pronounced than in the~111! case; now three
branches with an almost same order of coupling stren
This effect indicates that inside the photonic crystal the in
dent beam splits into three beams with almost equal inten
will be observed. It is interesting to remark that among t
three branches the lowest one propagates exactly along
very same~001! direction whenva/2pc.1.05,0.95.

V. SUMMARY

In this paper the superprism effect is theoretically inve
tigated in bare opals with the boundary surface normal to
~111! or ~001! direction. The bare opals, which consist of
closed-packed fcc structure of silica spheres in air are
simplest opal-based 3D photonic crystals. The direction
light propagation inside the opal is determined by the gro
velocity of the eigenmodes which are kineticly matched w
the incident light and have the largest coupling with the fie
excited by the incident light. We have observed two rema
able frequency regions in which the superprism effect ta
place. One is near the edges of pseudogaps and the oth
the region where many flat bands exist. In the latter reg
the effect takes place quite generally due to the enhan
anisotropy of the bands. Our numerical simulations dem
strated that many eigenmodes can be weekly coupled to
incident light. We have particularly emphasized the symm
try characters of the opal crystals, because they impos
strong limitation of the direction of propagation and are a
plicable to other kinds of photonic crystals consisting of f
arrays of spheres. This work predicts many interesting ap
cation of bare opal systems such as frequency selector
vices as well as beam splitters. It is hoped that these pre
tions stimulates further experiments having these goals.
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