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Localized defect modes in finite metallic two-dimensional photonic crystals

T. Ochiai and J. Sa´nchez-Dehesa
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We present a comprehensive analysis of localized defect modes in finite photonic crystals with an isolated
defect by means of the multiple-scattering theory. The scattering cross section of such systems can show
resonance peaks owing to the tunneling through the defect, from which the eigenfrequency, eigenfunction,
irreducible representation, and quality factor of the corresponding defect modes are obtained. The method,
which is first applied to two-dimensional photonic crystals composed of dielectric cylinders, shows a fairly
good agreement with known results obtained by the other methods. The method is also applied to clusters
consisting of Drude-type metallic cylinders in a square configuration, where the eigenfrequencies of the
localized modes are predicted as a function of the radius of the defect cylinder.
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I. INTRODUCTION

A photonic crystal~PC! with artificial defects has many
potential applications as an active or passive photonic
vice. It can be a frequency selector, a light-emitting diode
low threshold laser, etc. Thus, much effort has been devo
to study localized defect modes relevant to these appl
tions. The traditional approach to study localized def
modes is to use the supercell method, in which the Blo
boundary condition is applied to a large supercell where
defect is embedded and the corresponding Maxwell’s eq
tions are solved in the frequency1 or time domain.2 Alterna-
tively, it is possible to impose an absorbing bounda
condition3 to the supercell in the finite-difference time
domain ~FDTD! method.4–6 Recently, multiple-scattering
methods have been introduced to describe the photonic p
erties of finite two-dimensional7–10 ~2D! and
three-dimensional11 ~3D! PCs. In this formalism the spher
cal or cylindrical harmonics centered at each scattering
ject are employed as the basis set of the radiation field
thus good accuracy in numerical calculation is obtained
PCs made of nonoverlapping spheres or cylinders. In a
tion, since the multiple-scattering formalism is a kind
‘‘on-shell’’ method, we can treat the objects with frequenc
dependent dielectric function in an equal footing as the
jects with constant dielectric function.

Here, a comprehensive analysis of localized defect mo
is performed by means of multiple-scattering theory for fin
dielectric and metallic 2D PCs. Thus, in what follows w
restrict ourselves to PCs consisting of cylinders with infin
height, radiusr, and dielectric constante r aligned periodi-
cally in an uniform background with dielectric constanteb .
We further restrict our study to the optical responses to
light with a k vector contained in the plane perpendicular
the cylindrical axis (z axis!. Therefore, the multiple-
scattering formalism is much simplified, because the dec
pling of the radiation field into TE~transverse electric! and
TM ~transverse magnetic! polarization occurs. Though w
present results for 2D PCs, the method can be extende
3D PCs in a parallel way.

In order to investigate localized defect modes we foc
0163-1829/2002/65~24!/245111~8!/$20.00 65 2451
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our interest to the far-field responses of the finite PCs wit
defect component created at the center. In particular, the s
tering cross section is our concern. Several authors stu
defect modes by monitoring the near-field transmittance
the PC.7,9 However, we think the definition of the transmi
tance in the near field is a little bit ambiguous, becaus
could be affected by various surface effects. Instead, the
field is preferable to monitor the response of the PC with
defect. In this case surface modes does not contribute to
cross section owing to their evanescent feature. Thus, op
modes in bulk can be extracted well. If the correspond
infinite photonic crystal has a photonic band gap and s
ports a localized defect mode in the gap, the scattering c
section shows peak in the spectrum of the cross section
function of frequency, which reveals a resonance tunne
through the defect mode. In addition, at the resonance
quency the radiation field is highly localized in the defe
region. With these ingredients it is possible to obtain prop
ties of the localized defect modes, that is, their eigenfrequ
cies, eigenfunctions, irreducible representations, and t
corresponding quality factor.

Here, two typical PC systems are studied to demonst
the validity, efficiency, and wide applicability of the metho
One is a triangular array of dielectric cylinders in air for th
case of TM polarization. The other is a square array
Drude-type metallic cylinders under TE polarization. T
first case is chosen as a benchmark for our method bec
this structure was previously studied by means of the FD
method.12 Therefore, its defect mode is known very acc
rately. On the contrary, in the second case even the b
structure of the infinite system is not well known because
frequency dependence of the dielectric function forbids
apply simple plane-wave expansion and FDTD methods
this system. In addition, for the TE polarization, the eige
states associated to surface-plasmon excitations, which
pear in the band structure, are not well approximated b
superposition of plane waves. So far, to the best of
knowledge, only a few papers13–16 have reported the TE
band structure of metallic cylinders with a frequenc
dependent dielectric function and none has studied the p
defect mode in detail.
©2002 The American Physical Society11-1
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The paper is organized as follows. After giving a bri
summary of the multiple-scattering theory, the method to
tract properties of defect modes is explained in Sec. II.
Sec. III the method is applied to dielectric systems pre
ously investigated by another method. In Sec. IV the met
is applied to a Drude-type metallic system of cylinders wi
out dissipation, where the eigenfrequencies of defect mo
are calculated as a function of the defect size. Finally, S
IV summarizes the results.

II. OPTICAL RESPONSE OF FINITE
PHOTONIC CRYSTALS

For clusters composed of infinitely long cylinders paral
to each other, there is a translational invariance along thz
direction~the cylinders axis!. This invariance allows the de
coupling of the polarizations in the Maxwell equation, as
as the optical response within the plane perpendicular to
z direction is concerned. As a result, the vectorial Maxw
equation reduces to a pair of scalar equations:

1

e~x!
¹2c~x!1

v2

c2
c~x!50 for TM, ~1!

“•S 1

e~x!
“c~x! D1

v2

c2
c~x!50 for TE. ~2!

Here, c5Hz(Ez) for the TE ~TM! polarization and a har
monic time dependence, which is specified by angular
quencyv, is assumed for the radiation fieldc. On the other
hand, e(x) denotes the position dependent dielectric fun
tion, wherex is the 2D vector positionx5(x,y).

In the multiple-scattering formalism the induced radiati
field ca

ind(x) by the cylindera centered atxa is expanded by
the cylindrical harmonics aroundx5xa as

ca
ind~x!5(

l
Hl~qbux2xau!eil u(x2xa)ca,l

ind . ~3!

Here, l is the angular momentum,Hl is the Hankel function
of first kind, qb[Aebv/c, and u(x) is the argument ofx.
The multipole coefficientca,l

ind is self-consistently determine
by the following equation:7–10

c̃a
ind5taS c̃a

ext1 (
bÞa

Gabc̃b
indD , ~4!

wherec̃a
ind is a column vector whosel th component isca,l

ind .
The first term in the parentheses of the above equation
resents the incident external plane wave on the cylindera, its
explicit form being

~ c̃a
ext! l5 i leiki•xa2 i l u(ki ), ~5!

where the plane wave has wave vectork i(uk i u5qb). The
second term in the parentheses represents the contributi
the induced field by the other cylindersb(Þa). HereGab is
the propagator fromb to a and is expressed by the Hank
function of first kind as
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~Gab! l ,l 85Hl 82 l~qbuxa2xbu!ei ( l 82 l )u(xa2xb). ~6!

The sum of these two terms can be regarded as the
consistent incident wave for the cylindera. The self-
consistent scattered wave~induced field! by a is obtained by
multiplying it with the t matrix, which is given by

~ ta! l ,l 85
2e rrbJl~r r !Jl

8~rb!1ebr rJl~rb!Jl
8~r r !

e rrbJl~r r !Hl
8~rb!2ebr rJl~rb!Hl

8~r r !
d l ,l 8 ,

~7!

for TE,

~ ta! l ,l 85
2rbJl~r r !Jl

8~rb!1r rJl~rb!Jl
8~r r !

rbJl~r r !Hl
8~rb!2r rJl~rb!Hl

8~r r !
d l ,l 8 ~8!

for TM,

r r5
v

c
Ae r r 5qrr , rb5qbr . ~9!

The induced radiation field in the void between the cylind
is given as the sum of the induced fields by everya cylinder:

c ind~x!5(
a

ca
ind~x!. ~10!

Inside the cylindera the radiation field is given by

ca
ins~x!5(

l
Jl~qr ux2xau!eil u(x2xa)~sac̃a

ind! l , ~11!

wheresa is an analog of thet matrix and relates the multiple
components of the scattered field to those of the field ins
the cylinder. Its expression is given by

~sa! l ,l 852
2i e r

p

1

e rrbJl~r r !Jl
8~rb!2ebr rJl~rb!Jl

8~r r !
d l ,l 8

~12!

for TE,

~sa! l ,l 852
2i

p

1

rbJl~r r !Jl
8~rb!2r rJl~rb!Jl

8~r r !
d l ,l 8

~13!

for TM.

By truncating the angular momentum withinu l u< l max, Eq.
~4! reduces to a linear equation where the dimension of
relevant matrix isN(2l max11),N being the number of cylin-
ders in the clusters. Thus, this equation can be numeric
solved by Gaussian elimination.

An important physical quantity regarding the optical r
sponses of the clusters is the scattering cross section o
cluster. The elastic differential cross section of the cluste
given by
1-2
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dsel

du
5u f ~u!u2, ~14!

f ~u!5(
l ,a
A 2

pqb
e2 iqbx̂•xa1 i l u~2 i ! l 11ca,l

ind , ~15!

x̂5~cosu,sinu!. ~16!

Finally, the total cross section including absorption is o
tained with the optical theorem as

s tot52A2p

qb
Imf „u~k i !…. ~17!

These quantities are relevant to the far-field distribution.
order to analyze the near-field response, the field config
tion given by Eqs.~10! and ~11! along with the electromag
netic energy inside the cylinders are needed.

Let us remark that Eq.~4! with vanishingc̃a
ext is the clus-

ter version of the Korringa-Kohn-Rostoker~KKR! equation
for 2D PCs.17–19 In fact, the KKR equation is obtained from
Eq. ~4! by taking into account the Bloch theorem in the u
cell. From this point of view, in a large cluster we expect th
the cluster version of the KKR determinant defined by

DN~v![det@d l l 8dab2~ taGab! l ,l 8~12dab!# ~18!

has a zero in the complex plane ofv. The real partvc of the
zero corresponds to an eigenfrequency of the infinite ph
nic crystal and the imaginary partG/2 of the zero is the
resonance width. The width reduces as the cluster size
creases and vanishes at infinite system. The ratioQ[vc /G
is identified as the quality factor of the resonance in
cluster. The zero causes a pole ofca,l

ind ands tot @through Eqs.
~15! and~17!# in the complex plane ofv, and gives generally
an asymmetric shape of the resonance as a function
frequency.

From the resonances we can extract properties of a lo
ized defect mode as well as the eigenstates in a contin
spectrum. Normally, the resonance corresponding to
eigenstate in a continuum spectrum is broad for small c
ters. However, the resonance corresponding to the de
mode in a band gap is quite sharp. Therefore, by looking
a sharp resonance in a band gap of the corresponding infi
photonic crystal, it is possible to identify the eigenfrequen
of the defect mode. In addition, since the induced field
very concentrated in a defect region, effects of the exte
plane wave is negligible in this region. Thus, the localiz
defect mode can also be obtained by looking at the indu
field c ind.

If the PC with an isolated defect has a certain point-gro
symmetry, the defect mode can be classified according to
irreducible representations of that point group. In the cas
the square and triangular lattices the relevant point gro
areC4v andC6v , respectively. Let us suppose that the def
mode is attributed to an one-dimensional irreducible rep
sentationR. Under a point-group operationA the induced
field at the resonance approximately satisfies
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wherexR(A) is the character ofA in the representationR. In
terms of the multipole coefficient the above equation can
written as

~61! lcA21a,6 l
ind e6 i l f(A)5xR~A!ca,l

ind , ~20!

wheref(A) is defined by

u~A21x!56u~x!1f~A!. ~21!

Since the irreducible representation can be identified by
characters of the point-group operations, we can extract
irreducible representation of the defect mode from Eq.~20!
as follows.20 Obviously, the numerical data ofca,l

ind for the
truncated set ofa,l approximately satisfies Eq.~20!. Thus,
from the data set, it is only possible to obtain the estima
value of the characterxR

est(A), which is the most plausible
value of xR(A). By means of the least-squares method,
value is given by

xR
est~A!5

(
a,l

Re@~61! lcA21a,6 l
ind e6 i l f(A)~ca,l

ind!* #

(
a,l

uca,l
indu2

.

~22!

As will be seen in Sec. III, this value is very close to the tr
value of the characterxR(A) in the representationR.

A few remarks concerning the symmetry characterizat
should be noted. Attention must be paid to the symmetry
the incident plane wave. If the plane wave is incident alon
symmetric axis, e.g., theG-M direction of the triangular lat-
tice, it cannot excite the resonance of the defect mode w
odd parity with respect to the axis. This is because the in
dent plane wave is even with respect to the axis. Thus,
changing the angle of incidence we can selectively excite
defect modes. The second remark is concerning degene
defect modes. If the defect mode is doubly degenerate,
induced field at the resonance can be well approximated
linear combination of the eigenfunctions of the degener
pair. For instance, the defect mode with theE representation
of C4v can be excited by the plane wave incident along a
high-symmetry axis of the square lattice. This is because,
E mode always includes the component of the even pa
with respect to the axis. On the other hand, theA1 mode can
also be excited by the plane wave along any high-symm
axis. Thus, theE mode cannot be distinguished from theA1
mode in this point of view. However, the possibility of th
A1 mode is excluded by looking at the field configuratio
along with the estimated value of the character at the re
nance. TheA1 mode is symmetric with respect to any sym
metry axis of the square lattice, whereas theE mode is not.
As a result, theE mode can be distinguished from theA1
mode.
1-3
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III. DIELECTRIC CYLINDERS AS A TEST EXAMPLE

In order to demonstrate how the method works, let
consider a cluster composed of a triangular array of dielec
cylinders as in Fig. 1~a!. We assumee r513,eb51, and r
50.2a, wherea is the lattice constant. As a defect, we simp
remove the cylinder at the center of the cluster andn layers
of the cylinders are assumed to be surrounding the de
cylinder @n52 in Fig. 1~a!#. The band structure of the TM
polarization of the corresponding infinite photonic crystal
shown in Fig. 2. There are two band gaps in the concer
frequency range and the lower one supports a localized
fect mode with theA1 representation ofC6v when one cyl-
inder is removed. The eigenfrequency of the defect mod
aboutva/2pc50.39 according to the FDTD method.12 As
discussed before, the defect mode produces a peak in
scattering cross section of the cluster due to the reso
tunneling through the defect mode.

The comparison of the backwards differential cross s
tions of the clusters with and without the defect is shown
Fig. 3. A remarkable feature in the spectra is the appeara
of a plateau at the photonic band-gap positions.10 This comes

FIG. 1. Schematic illustration of the clusters used in numer
calculations.~a! n layers of cylinders arranged in a triangular latti
surrounding a defect cylinder.~b! n layers of cylinders arranged in
a square lattice surrounding a defect cylinder.n52 in both plots.

FIG. 2. Photonic band structure for the TM modes of the cor
sponding infinite photonic crystal shown in Fig. 1~a!. The shaded
regions define the band gaps. The following parameters were u
e r513,eb51, andr 50.2a.
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from rigid reflection of the incident wave due to zero dens
of state in the band gaps. Besides, for the cluster with def
we can see a dip aroundva/2pc50.39 in the plateau. This
dip is caused by the resonant tunneling through the locali
defect mode. The width of the dip is considerably narro
even at three surrounding layers. This also indicates the
fect mode has very highQ. The radiation field at the fre-
quency of the dip is highly localized in the defect and theA1
symmetry of the defect mode can be seen clearly in Fig
The numerical estimation of the characters by the lea
squares method is listed in Table I. The values indicate
the localized defect mode is certainly attributed toA1.

l

-

d:

FIG. 3. Frequency dependence of the backwards differen
cross section of two clusters with three surrounding layers. T
upper~lower! panel shows the cluster without~with! a defect. The
external plane wave impinges the cluster along theG-M direction
@u(k i)530°#. The material parameters are the same as in Fig.

FIG. 4. The radiation field at the resonance frequencyva/2pc
50.387 89 in the cluster with four surrounding layers. The exter
plane wave is incident alongG-M @u(k i)530°# of the triangular
lattice.
1-4
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Let us have a close look at the resonance shape as a
tion of frequency. The left panel of Fig. 5 shows the clus
size dependence of the resonance shape in the total
section. Notice that the resonance shape changes as the
ber of the surrounding layers increases, and it is gener
asymmetric as was discussed before. The resonant frequ
vc converges to a certain value that can be identified to
eigenfrequency of the localized defect mode in the infin
photonic crystal. On the other handG reduces exponentially
asN increases. As a consequence, the quality factorQ of the
defect mode, which is shown in the right panel of Fig. 5, a
increases withN. We can see that an extremely highQ value
~larger than 10 000! is achieved with four surrounding layer
Nevertheless, let us point out the exponentially growingQ
factor is generally prohibited in real material. In fact, t
positive imaginary part in the dielectric constant is not ne
ligible in real material. This causes a dielectric loss that g
erally makes theQ factor saturated asN increases.21,22

IV. METALLIC CYLINDERS

Next, let us consider a cluster composed of a square a
of metallic cylinders as Fig. 1~b!. As mentioned before, the
multiple-scattering formalism is a kind of ‘‘on-shell
method, so that it can treat metallic components w
frequency-dependent dielectric constant. For simplicity,
assume the cylinders of the Drude metal whose dielec
constant is given by

TABLE I. Numerically estimated characters ofC6v for a local-
ized defect mode in a hexagonal lattice. The values indicate tha
can attributed a representationA1 to the mode.

2C6 2C3 C2 3sy 3sx

xR
est 0.998 870 0.998 911 0.998 948 0.998 870 0.998 9

FIG. 5. ~Left panel! Behavior of the resonance shape in the to
cross section as a function of the surrounding layers. Note tha
width of the panel is 0.001 in normalized units of frequency.~Right
panel! Quality factor of the resonanceQ plotted as a function of the
numberN of cylinders in the cluster.
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2

v2D ~23!

with e`51.0 andvpa/(2pc)51.0. The radiusr of the cyl-
inders is taken to be 0.3a, wherea is the lattice constant o
the square lattice.

The TE band structure of the corresponding infinite PC
shown in Fig. 6. Here, we used the KKR method to calcul
the photonic band structure. The angular momentum cu
l max in the band calculation was taken to be 7.

As can be seen in the figure, several bands aro
va/(2pc)50.7, are flat owing to the localized nature of th
surface plasmon.16 The number of these flat bands increa
asl max increases. This is due to the Drude dielectric functi

FIG. 7. Eigenfrequencies and their irreducible representation
localized defect modes in the photonic band gap of a square arra
Drude-type metallic cylinders in air. The horizontal and vertic
coordinate are the radius of the defect cylinder and the normal
frequency, respectively. See text for the parameters.

e

l
he

FIG. 6. The photonic band structure of an square array of m
tallic cylinders. See text for the parameters used in the numer
calculation.
1-5
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FIG. 8. Radiation fields at resonances corresponding to the~a!, ~b!, ~c!, ~d!, and~e! points in Fig. 7 are shown in~a!, ~b!, ~c!, ~d!, and~e!,
respectively. The resonance frequencies areva/2pc50.854 75~a!, 0.877 83~b!, 0.823 03~c!, 0.838 20~d!, and 0.866 87~e!. In ~a! and~b!
the external plane wave is incident alongG-M @u(k i)545°# of the square lattice andr d50 was taken. In~c!, ~d!, and~e! the external plane
wave is incident alongG-X@u(k i)50°# and r d50.5a. ~f! shows the exact cluster used in the calculations for~c!, ~d!, and~e!.
245111-6
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Eq. ~23!. The cylinder with dielectric function Eq.~23! has a
sequence of resonances, whose frequencies converge t
surface-plasmon frequencyv5vp /A2 as the angular mo
mentum increases.23 Thus, if we increase the cutoff froml max
to l max11 in the band calculation, a new flat band appea
However, the eigenfrequencies of the rest of the bands
almost the same at both cutoffsl max11 and l max, respec-
tively, if l max is large enough. In this sense a good conv
gence was achieved atl max57 in the concerned frequenc
range.

A photonic band gap is obtained in 0.8043<va/2pc
<0.9038. Thus, in this region we may expect that a localiz
defect mode appears when a structural defect is introdu
As a defect, we assume the cylinder of the Drude metal@Eq.
~23!# with radiusr d(Þr ). In this case the defect modes ten
to avoid being localized in the defect cylinder, because
dielectric constant of the cylinders is negative in the gap.
interesting structure may be found if the defect cylind
touches the cylinders surrounding it. As was discussed
several authors,24 the touching metallic cylinders causes
strong enhancement of the radiation field and a slightly
ferent structure from separate cylinders is expected. In f
we observed that near the touching conditionr d50.7a there
is a very weak resonance that is difficult to identify in t
spectrum of the cross section. This indicates that the de
mode corresponding to the resonance is not confined we
the cluster and that we must take larger clusters for cha
terization of the defect mode. The detailed investigation
this phenomenon is beyond the scope of the present pa
Thus, in the following we restrict ourselves to the range
<r d<0.6a. By examining the optical responses of the def
clusters of Fig. 1~b!, the eigenfrequency spectrum of the d
fect modes is determined. With regards to resonance sha
behavior similar as Fig. 5 is observed, when the numbe
surrounding layers increases. In fact, three surrounding
ers are enough to have a good convergence within four d
for the eigenfrequencies of the concerned defect modes

Figure 7 shows the eigenfrequencies of the defect mo
along with their irreducible representations as a function
r d . The eigenfrequencies of the defect modes are increa
functions of the radiusr d , becausede(x) is negative for
positivedr d .25 As is seen in this figure, we have more th
one defect mode at certain ranges ofr d . In addition a level
crossing occurs between theB2 and theE modes aroundr d
50.12a.

The near-field images of the defect modes at the~a!, ~b!,
~c!, ~d!, and~e! points in Fig. 7 are shown in Fig. 8. In Fig
8~a! and 8~b! r d is equal to zero and the external plane wa
is incident alongG-M @u(k i)545°# of the square lattice. In
~a! theE mode is excited. As was discussed previously, o
the mode with even symmetry among the degenerate pa
the E representation can be excited. The other mode of
degenerate pair can be excited by the plane wave w
u(k i)5245°. The field configuration is merely a replica
Fig. 8~a! rotated with 90°. As for~b!, the B2 symmetry of
C4v is clearly seen. In Figs. 8~c!, 8~d!, and 8~e! r d is equal to
24511
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0.5a and the external plane wave is incident alo
G-X@u(k i)50°# of the square lattice. The localized nature
these defect modes, theB1 symmetry for ~c!, and theA1
symmetry for~e! are clearly seen in these figures. As for~d!,
the field configuration is of the even component with resp
to thex axis among the degenerate pair of theE representa-
tion. Similarly as~a!, the odd component is excited by th
external plane wave withu(k i)590°.

Compared to the resonances in Figs. 8~a! and 8~b!, those
in Figs. 8~c!, 8~d!, and 8~e! are weak in the average streng
of the radiation field in the defect region and thus the rad
tion fields of~c!, ~d!,and~e! are more extended than those
~a! and ~b!. This property is quite natural because the vo
between the cylinders, in which the radiation field is n
evanescent in this case, becomes narrow for larger d as it can
be observed in Fig. 8~f!.

V. SUMMARY

To conclude, this work has performed a comprehens
analysis of the localized defect modes in finite photonic cr
tals by the multiple-scattering theory. By using this theo
the eigenfrequency, the eigenfunction, the irreducible rep
sentation, and the quality factor of a localized defect mo
can be predicted by looking at the sharp resonances in
scattering cross section. The method has been applied to
cases. First, a set of clusters consisting of a triangular a
of dielectric cylinders have been studied and a good ag
ment concerning above properties with those by the FD
method were obtained. Second, we have investigated a s
clusters composed of an square array of Drude-type met
cylinders. In the latter case the eigenfrequency spectrum
been predicted as a function of the radius of the def
cylinder.

It should be emphasized that the method can be applie
3D PCs made of dielectric or metallic spheres in a para
way. In this case the dimension of the relevant equation
equal tod[2N( l max11)2. Thus, for large clusters the dimen
sion is so large that much CPU time~proportional tod3)is
necessary for Gaussian elimination. Nevertheless, an
cient algorithm to solve the equation for 3D PCs was int
duced recently.11 By means of this algorithm, the CPU tim
needed is proportional toN2( l max11)3, which is much
smaller thand3. Although the problem to find localized de
fect mode in 3D is much harder than that in 2D, we thi
that this approach can overcome the difficulties associate
the supercell method when it is applied to 3D PCs with
defect.

ACKNOWLEDGMENTS

The authors are grateful to F. J. Garcı´a de Abajo for valu-
able discussions. This work was supported by the Project
IST-1999-19009 PHOBOS of the European commission.
acknowledge the computing facilities provided by the Cen
de Computacio´n Cientı́fica at the Universidad Auto´noma de
Madrid.
1-7



D.

s

e

s.

m
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