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Localized defect modes in finite metallic two-dimensional photonic crystals
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We present a comprehensive analysis of localized defect modes in finite photonic crystals with an isolated
defect by means of the multiple-scattering theory. The scattering cross section of such systems can show
resonance peaks owing to the tunneling through the defect, from which the eigenfrequency, eigenfunction,
irreducible representation, and quality factor of the corresponding defect modes are obtained. The method,
which is first applied to two-dimensional photonic crystals composed of dielectric cylinders, shows a fairly
good agreement with known results obtained by the other methods. The method is also applied to clusters
consisting of Drude-type metallic cylinders in a square configuration, where the eigenfrequencies of the
localized modes are predicted as a function of the radius of the defect cylinder.
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I. INTRODUCTION our interest to the far-field responses of the finite PCs with a
defect component created at the center. In particular, the scat-
A photonic crystal(PO with artificial defects has many tering cross section is our concern. Several authors studied
potential applications as an active or passive photonic dedefect modes by monitoring the near-field transmittance of
vice. It can be a frequency selector, a light-emitting diode, ahe PC”° However, we think the definition of the transmit-
low threshold laser, etc. Thus, much effort has been devotethnce in the near field is a little bit ambiguous, because it
to study localized defect modes relevant to these applicacould be affected by various surface effects. Instead, the far
tions. The traditional approach to study localized defecfield is preferable to monitor the response of the PC with a
modes is to use the supercell method, in which the Blochiefect. In this case surface modes does not contribute to the
boundary condition is applied to a large supercell where theross section owing to their evanescent feature. Thus, optical
defect is embedded and the corresponding Maxwell's equanodes in bulk can be extracted well. If the corresponding
tions are solved in the frequerfcgr time domairf. Alterna-  infinite photonic crystal has a photonic band gap and sup-
tively, it is possible to impose an absorbing boundaryports a localized defect mode in the gap, the scattering cross
conditior? to the supercell in the finite-difference time- section shows peak in the spectrum of the cross section as a
domain (FDTD) method*® Recently, multiple-scattering function of frequency, which reveals a resonance tunneling
methods have been introduced to describe the photonic progharough the defect mode. In addition, at the resonance fre-
erties of finite  two-dimensional™® (2D) and  quency the radiation field is highly localized in the defect
three-dimensiondt (3D) PCs. In this formalism the spheri- region. With these ingredients it is possible to obtain proper-
cal or cylindrical harmonics centered at each scattering obties of the localized defect modes, that is, their eigenfrequen-
ject are employed as the basis set of the radiation field angies, eigenfunctions, irreducible representations, and their
thus good accuracy in numerical calculation is obtained foorresponding quality factor.
PCs made of nonoverlapping spheres or cylinders. In addi- Here, two typical PC systems are studied to demonstrate
tion, since the multiple-scattering formalism is a kind of the validity, efficiency, and wide applicability of the method.
“on-shell” method, we can treat the objects with frequency-One is a triangular array of dielectric cylinders in air for the
dependent dielectric function in an equal footing as the obease of TM polarization. The other is a square array of
jects with constant dielectric function. Drude-type metallic cylinders under TE polarization. The
Here, a comprehensive analysis of localized defect modefirst case is chosen as a benchmark for our method because
is performed by means of multiple-scattering theory for finitethis structure was previously studied by means of the FDTD
dielectric and metallic 2D PCs. Thus, in what follows we method!? Therefore, its defect mode is known very accu-
restrict ourselves to PCs consisting of cylinders with infiniterately. On the contrary, in the second case even the band
height, radiusr, and dielectric constar¢, aligned periodi-  structure of the infinite system is not well known because the
cally in an uniform background with dielectric constast. frequency dependence of the dielectric function forbids to
We further restrict our study to the optical responses to theapply simple plane-wave expansion and FDTD methods to
light with a k vector contained in the plane perpendicular tothis system. In addition, for the TE polarization, the eigen-
the cylindrical axis ¢ axis). Therefore, the multiple- states associated to surface-plasmon excitations, which ap-
scattering formalism is much simplified, because the decoupear in the band structure, are not well approximated by a
pling of the radiation field into TEtransverse electricand  superposition of plane waves. So far, to the best of our
TM (transverse magneliqolarization occurs. Though we knowledge, only a few papérs® have reported the TE
present results for 2D PCs, the method can be extended ttand structure of metallic cylinders with a frequency-
3D PCs in a parallel way. dependent dielectric function and none has studied the point
In order to investigate localized defect modes we focusdefect mode in detail.
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The paper is orggnized as follows. After giving a brief (Gaﬂ)u,:HI_I(qb|xa_xﬁl)ei(|'—|)a(xa—xﬁ)_ (6)
summary of the multiple-scattering theory, the method to ex-
tract properties of defect modes is explained in Sec. Il. InThe sum of these two terms can be regarded as the self-
Sec. lll the method is applied to dielectric systems previ-consistent incident wave for the cylinder. The self-
ously investigated by another method. In Sec. IV the methodonsistent scattered wavi@duced field by « is obtained by
is applied to a Drude-type metallic system of cylinders with-multiplying it with the t matrix, which is given by
out dissipation, where the eigenfrequencies of defect modes

are calculated as a function of the defect size. Finally, Sec. —&ppdi(pr)J) (pp) + €pprdi(pp) ) (pr)
IV summarizes the results. (ta)i = 7 7 117
€rppdi(pr)H, (pb) — €oprdi(pp)H, (pr)
Il. OPTICAL RESPONSE OF FINITE )
PHOTONIC CRYSTALS for TE
For clusters composed of infinitely long cylinders parallel , ,
to each other, there is a translational invariance alongzthe = ppdi(pr)d (pp) +prdi(pPp)d (pr)
direction (the cylinders axis This invariance allows the de- (ta)r= 3o H (o) —pr I o H. (pr) a1 (8
coupling of the polarizations in the Maxwell equation, as far PoIP T P) = Prdit P/ T L Pr
as the optical response within the plane perpendicular to the for TM
z direction is concerned. As a result, the vectorial Maxwell or M,
equation reduces to a pair of scalar equations:
w
1 w2 Pr:E\/E—rrZery Pp=pl- 9
——VZ(x)+ — $(x)=0 for TM, (1)
e(x) c The induced radiation field in the void between the cylinders
is given as the sum of the induced fields by evergylinder:
1 w?
V-(—V:,b(x) +—(x)=0 forTE. (2 ) .
€(x) c? Y= ). (10

Here, y=H,(E,) for the TE (TM) polarization and a har- . _ S

monic time dependence, which is specified by angular frelnside the cylinder the radiation field is given by

guencyw, is assumed for the radiation field On the other

hand, e(x) denotes the position dependent dielectric func- ins(y) =S 3 x—x el 0-xa) (g 7ind 11

tion, wherex is the 2D vector positiox=(X,Y). Ya'X) 2| (X =x]) (Sathe ) (Y
In the multiple-scattering formalism the induced radiation

field "(x) by the cylindera centered ax,, is expanded by wheres,, is an analog of thé matrix and relates the multiple
the cyﬁndrical harmonics arournd=x. as “ components of the scattered field to those of the field inside

the cylinder. Its expression is given by

Va0 =2 Hiaelx—x))e" Xy (3 ) Die, 1 5
Sa)i 1=~ ; ; N
, = ~ :
Here,| is the angular momentunt], is the Hankel function €rppdi(pr)Jdi (pb) — €0prdi(pp)d) (pr) 1
of first kind, gp=e,w/c, and 6(x) is the argument ok.
The multipole coefficientﬁg]jj is self-consistently determined for TE
by the following equatiod:°
e - ) 2i 1 5
ind__ ex in S I'=—— S ; '
Vet 9 2, CusVi. @ T pudip0 3 (o) prdi(pn) 3 (o) -
_ _ 13
wherey/' is a column vector whoskth component g/ .
The first term in the parentheses of the above equation rep- for TM.

resents the incident external plane wave on the cylindéts

explicit form being By truncating the angular momentum withjj<I .., EQ.

(4) reduces to a linear equation where the dimension of the
(B2, =i'eiki xail k), (5) relevant matrix iN(2l ,,.x+1),N being the number of cylin-

“ ders in the clusters. Thus, this equation can be numerically
where the plane wave has wave veclkg(|ki|=q,). The solved by Gaussian elimination.
second term in the parentheses represents the contribution of An important physical quantity regarding the optical re-
the induced field by the other cylindegg # ). HereG 5 is  sponses of the clusters is the scattering cross section of the
the propagator fronB to « and is expressed by the Hankel cluster. The elastic differential cross section of the cluster is
function of first kind as given by
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doe YA = xR(A) M), (19
=g ~fOF, (14)
whereyg(A) is the character oA in the representatioR. In
[ A terms of the multipole coefficient the above equation can be
—e_iqu'xa+i| 0( —ij )|+1¢
q

f(6)=2

l,a

nd ~(15)  written as

a,l

R I, ind =il p(A) — ind
x=(cos#f,sin o). (16) (£1) dp-1, -8 XR(A) Ui s (20
Finally, the total cross section including absorption is ob-where¢(A) is defined by

tained with the optical theorem as

5 O(AIX) == 0(X)+ H(A). (21)
ar
To=2\ Elmf(b’(ki))- 17

Since the irreducible representation can be identified by the
These quantities are relevant to the far-field distribution. Inlcr?:(;igglr: g tpeifr?ggttiggogfptﬁf?Eé%?Sn'n(\;V;eCﬁg;g;d the
order to analyze the near-field response, the field configura- follows20 (F))b iously. th ical data af™ for th
tion given by Eqs(10) and(11) along with the electromag- &S follows:™ Obviously, the numerical data af,, for the

netic energy inside the cylinders are needed. truncated set of,| _a_pproximatel)_/ satisfies E_cq20). Thqs,
. L~ ot from the data set, it is only possible to obtain the estimated
Let us remark that Eq4) with vanishingy?" is the clus-

. ) . value of the characteyS{A), which is the most plausible
ter version of the Korringa-Kohn-Rostok@KKR) equation R :
for 2D PCs'~%°In fact tr?e KKR equation(*i(s otztai(r]led from value ofxr(A). By means of the least-squares method, the

Eq. (4) by taking into account the Bloch theorem in the unit value is given by
cell. From this point of view, in a large cluster we expect that
the cluster version of the KKR determinant defined b i . i
y > Rel(+1) i, e O]
Dn(w)=def 8/ 8us— (t.Gap)1/(1=8,p)] (18 XE(A)=
> [vmil?
a,l “

has a zero in the complex plane of The real partw, of the
zero corresponds to an eigenfrequency of the infinite photo- (22
nic crystal and the imaginary paft/2 of the zero is the
resonance width. The width reduces as the cluster size inAs will be seen in Sec. IlI, this value is very close to the true
creases and vanishes at infinite system. The @tow./I"  value of the characteyg(A) in the representatioR.
is identified as the quality factor of the resonance in the A few remarks concerning the symmetry characterization
cluster. The zero causes a pole@’ﬂ andoy [through Egs.  should be noted. Attention must be paid to the symmetry of
(15) and(17)] in the complex plane ab, and gives generally the incident plane wave. If the plane wave is incident along a
an asymmetric shape of the resonance as a function slymmetric axis, e.g., thE-M direction of the triangular lat-
frequency. tice, it cannot excite the resonance of the defect mode with
From the resonances we can extract properties of a locabdd parity with respect to the axis. This is because the inci-
ized defect mode as well as the eigenstates in a continuughent plane wave is even with respect to the axis. Thus, by
spectrum. Normally, the resonance corresponding to amhanging the angle of incidence we can selectively excite the
eigenstate in a continuum spectrum is broad for small clusdefect modes. The second remark is concerning degenerate
ters. However, the resonance corresponding to the defedefect modes. If the defect mode is doubly degenerate, the
mode in a band gap is quite sharp. Therefore, by looking foinduced field at the resonance can be well approximated as a
a sharp resonance in a band gap of the corresponding infinitsnear combination of the eigenfunctions of the degenerate
photonic crystal, it is possible to identify the eigenfrequencypair. For instance, the defect mode with teepresentation
of the defect mode. In addition, since the induced field isof C,, can be excited by the plane wave incident along any
very concentrated in a defect region, effects of the externatigh-symmetry axis of the square lattice. This is because, the
plane wave is negligible in this region. Thus, the localizedE mode always includes the component of the even parity
defect mode can also be obtained by looking at the inducedith respect to the axis. On the other hand, #yemode can
field y™Md. also be excited by the plane wave along any high-symmetry
If the PC with an isolated defect has a certain point-groupaxis. Thus, the&e mode cannot be distinguished from tAg
symmetry, the defect mode can be classified according to th@ode in this point of view. However, the possibility of the
irreducible representations of that point group. In the case ofA; mode is excluded by looking at the field configuration
the square and triangular lattices the relevant point groupalong with the estimated value of the character at the reso-
areC,, andCg, , respectively. Let us suppose that the defectnance. TheA; mode is symmetric with respect to any sym-
mode is attributed to an one-dimensional irreducible repremetry axis of the square lattice, whereas Ehenode is not.
sentationR. Under a point-group operatioA the induced As a result, theE mode can be distinguished from tidg
field at the resonance approximately satisfies mode.
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FIG. 1. Schematic illustration of the clusters used in numerical g , |
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calculations(a) n layers of cylinders arranged in a triangular lattice &

surrounding a defect cylindefb) n layers of cylinders arranged in < 5L

~

a square lattice surrounding a defect cylindex2 in both plots.

0

lll. DIELECTRIC CYLINDERS AS A TEST EXAMPLE

In order to demonstrate how the method works, let us

consider a cluster composed of a triangular array of dielectric
cylinders as in Fig. (). We assumes,=13,=1, andr
=0.2a, wherea is the lattice constant. As a defect, we simply
remove the cylinder at the center of the cluster arldyers
of the cylinders are assumed to be surrounding the defect

cylinder[n=2 in Fig. 1a)]. The band structure of the TM

polarization of the corresponding infinite photonic crystal is
shown in Fig. 2. There are two band gaps in the concerne
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FIG. 3. Frequency dependence of the backwards differential
cross section of two clusters with three surrounding layers. The
uppetlower) panel shows the cluster withduiith) a defect. The
external plane wave impinges the cluster alongIth®! direction

[ 8(k;) =30°]. The material parameters are the same as in Fig. 2.

from rigid reflection of the incident wave due to zero density
gf state in the band gaps. Besides, for the cluster with defect,

frequency range and the lower one supports a localized d&v€ ¢an see a dip arounda/2mc=0.39 in the plateau. This

fect mode with theA; representation o€¢, when one cyl-
inder is removed. The eigenfrequency of the defect mode i
aboutwa/2wc=0.39 according to the FDTD methd@iAs
discussed before, the defect mode produces a peak in th

dip is caused by the resonant tunneling through the localized
defect mode. The width of the dip is considerably narrow
even at three surrounding layers. This also indicates the de-
gct mode has very higlQ. The radiation field at the fre-

scattering cross section of the cluster due to the resonaf'€ncy of the dip is highly localized in the defect and fhe

tunneling through the defect mode.

The comparison of the backwards differential cross sec-
tions of the clusters with and without the defect is shown in
Fig. 3. A remarkable feature in the spectra is the appearan

of a plateau at the photonic band-gap positibHiEhis comes
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FIG. 2. Photonic band structure for the TM modes of the corre-
sponding infinite photonic crystal shown in Figial The shaded

2

symmetry of the defect mode can be seen clearly in Fig. 4.
The numerical estimation of the characters by the least-
squares method is listed in Table I. The values indicate that
dbe localized defect mode is certainly attributedAtp

-3.61

~14.4

=252

—-46.8

-57.7

—68.5

-79.3

0
x/a

FIG. 4. The radiation field at the resonance frequeney2mc
=0.387 89 in the cluster with four surrounding layers. The external

regions define the band gaps. The following parameters were useglane wave is incident alon§j-M[ 6(k;)=30°] of the triangular
lattice.

e,=13,,=1, andr=0.2a.
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TABLE I. Numerically estimated characters 6§, for a local-
ized defect mode in a hexagonal lattice. The values indicate that we
can attributed a representatidn to the mode.

2C6 2C3 Cz 30'y 3(TX

X&' 0998870 0.998911 0.998948 0.998870 0.998 911

a/21c

Let us have a close look at the resonance shape as a funi§
tion of frequency. The left panel of Fig. 5 shows the cluster ~ %4
size dependence of the resonance shape in the total cro:
section. Notice that the resonance shape changes as the nui
ber of the surrounding layers increases, and it is generally 02
asymmetric as was discussed before. The resonant frequenc
w; converges to a certain value that can be identified to the
eigenfrequency of the localized defect mode in the infinite 0
photonic crystal. On the other hahdreduces exponentially
asN increases. As a consequence, the quality faQtof the FIG. 6. The photonic band structure of an square array of me-
defect mode, which is shown in the right panel of Fig. 5, alsaallic cylinders. See text for the parameters used in the numerical
increases withN. We can see that an extremely hi@hvalue  calculation.

(larger than 10 000is achieved with four surrounding layers.

Nevertheless, let us point out the exponentially growipg w2

factor is generally prohibited in real material. In fact, the er(w)=ew< 1- —Z) (23
positive imaginary part in the dielectric constant is not neg-

w
ligible in real material. This causes a dielectric loss that gen-

: 1.22 with €,,=1.0 andwya/(27c)=1.0. The radius of the cyl-
erally makes th& factor saturated al increases: inders is taken to be 0a3 wherea is the lattice constant of

the square lattice.
IV. METALLIC CYLINDERS The TE band structure of the corresponding infinite PC is

Next, let us consider a cluster composed of a square arra%{‘own in Fig. 6. Here, we used the KKR method to calculate
of metallic cylinders as Fig. (b). As mentioned before, the the photonic band structure. The angular momentum cutoff
multiple-scattering formalism is a kind of “on-shell” !maxin the band calculation was taken to be 7.

method, so that it can treat metallic components with AS can be seen in the figure, several bands around
frequency-dependent dielectric constant. For simplicity, we®@/(27¢)=0.7, are flat owing to the localized nature of the
assume the cylinders of the Drude metal whose dielectriurface plasmotf The number of these flat bands increase

T X M T

constant is given by aslnaxincreases. This is due to the Drude dielectric function
25 ; ; ; ; 10° 0.95
20 L 5 layers 1 L 110 0.9 ©
) M £ ss 0
=15 | 1t 1 10 g
o 3
3 layers A E
B, ©
10 110° 0.8
5 ) ) ) ) ) 102 0'75 1 Il 1 1 Il
0.3875 0.388 038850 20 40 60 80 100 0 0.1 02 03 04 05 06
wa/2mc N r/a

FIG. 5. (Left pane) Behavior of the resonance shape in the total  FIG. 7. Eigenfrequencies and their irreducible representations of
cross section as a function of the surrounding layers. Note that thiocalized defect modes in the photonic band gap of a square array of
width of the panel is 0.001 in normalized units of frequen&ight Drude-type metallic cylinders in air. The horizontal and vertical
pane) Quality factor of the resonand@ plotted as a function of the coordinate are the radius of the defect cylinder and the normalized
numberN of cylinders in the cluster. frequency, respectively. See text for the parameters.
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<
= 0.0
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FIG. 8. Radiation fields at resonances corresponding téahéb), (c), (d), and(e) points in Fig. 7 are shown ifa), (b), (c), (d), and(e),
respectively. The resonance frequenciesaaé2rc=0.854 75(a), 0.877 83(b), 0.823 03(c), 0.838 20(d), and 0.866 87e). In (a) and(b)
the external plane wave is incident alofigM[ 6(k;) = 45°] of the square lattice and,=0 was taken. Ir(c), (d), and(e) the external plane
wave is incident alond™-X[ 6(k;)=0°] andr4=0.5a. (f) shows the exact cluster used in the calculationgdpr(d), and(e).
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Eq. (23). The cylinder with dielectric function Eq23) hasa 0.5a and the external plane wave is incident along

sequence of resonances, whose frequencies converge to teX[ 6(k;) =0°] of the square lattice. The localized nature of

surface-plasmon frequenayzwp/\/ﬁ as the angular mo- these defect modes, th&, symmetry for(c), and theA;

mentum increases. Thus, if we increase the cutoff froty,,, ~ Symmetry for(e) are clearly seen in these figures. As (d),

to I naxt1 in the band calculation, a new flat band appearsthe field configuration is of the even component with respect

However, the eigenfrequencies of the rest of the bands ar® thex axis among the degenerate pair of theepresenta-

almost the same at both cutoffg,,+1 and |, respec- tion. Similarly as(a), the odd component is excited by the

tively, if |, is large enough. In this sense a good conver-external plane wave witl#(k;) =90°.

gence was achieved &t,,=7 in the concerned frequency =~ Compared to the resonances in Fig&)&nd 8b), those

range. in Figs. §c), 8(d), and &e) are weak in the average strength
A photonic band gap is obtained in 0.864@a/2wc  of the radiation field in the defect region and thus the radia-

<0.9038. Thus, in this region we may expect that a localizedion fields of(c), (d),and(e) are more extended than those of

defect mode appears when a structural defect is introduceé® and (b). This property is quite natural because the void

As a defect, we assume the cylinder of the Drude ni@&gl  between the cylinders, in which the radiation field is not

(23)] with radiusr 4(#r). In this case the defect modes tend evanescent in this case, becomes narrow for Ig§ges it can

to avoid being localized in the defect cylinder, because thée observed in Fig.(8).

dielectric constant of the cylinders is negative in the gap. An

interesting structure may be found if the defect cylinder V. SUMMARY

touches the cylinders surrounding it. As was discussed by To conclude, this work has performed a comprehensive

several authorg! the touching metallic cylinders causes A Jnalvsis of the localized defect modes in finite photonic cr
strong enhancement of the radiation field and a slightly dif- ysIS callz . S In inté photonic crys-
als by the multiple-scattering theory. By using this theory,

ferent structure from separate cylinders is expected. In fac{he eigenfrequency. the eigenfunction. the irreducible repre-
we observed that near the touching conditigr- 0.7a there 9 q y, the €19 ! . P
sentation, and the quality factor of a localized defect mode

is a very weak resonance that is difficult to identify in the&an be predicted by looking at the sharp resonances in the

spectrum of the cross section. This indicates that the defe attering cross section. The method has been aoplied to two
mode corresponding to the resonance is not confined well iR 9 : L .app
cases. First, a set of clusters consisting of a triangular array

the cluster and that we must take larger clusters for charac—]c dielectric cvlinders have been studied and a qood aaree-
terization of the defect mode. The detailed investigation of? Y 9 g

this phenomenon is beyond the scope of the present papghh EVEETD EYE BEREE VL T B B E T
Thus, in the following we restrict ourselves to the range 0 i ' g

<r4=0.6a. By examining the optical responses of the defectclusters composed of an square array of Drude-type metallic

clusters of Fig. tb), the eigenfrequency spectrum of the de_cylinders. In the latter case the eigenfrequency spectrum has
1g. ), the eigenireq Y sb been predicted as a function of the radius of the defect
fect modes is determined. With regards to resonance shape inder
behavior similar as Fig. 5 is observed, when the number o?y : . .
. : . It should be emphasized that the method can be applied to
surrounding layers increases. In fact, three surrounding lay; . : . .
I . =3D PCs made of dielectric or metallic spheres in a parallel
ers are enough to have a good convergence within four digits . . : SO
. : Way. In this case the dimension of the relevant equation is
for the eigenfrequencies of the concerned defect modes. ual tod=2N(l . ..+ 1)2. Thus, for large clusters the dimen-
Figure 7 shows the eigenfrequencies of the defect mode E)n i so_lar eniﬁiat ml.JCh CI,DU tinﬁgro ortional tod?)is
along with their irreducible representations as a function of 9 prop

. X . - necessary for Gaussian elimination. Nevertheless, an effi-
fa- The elgenfrequenmes of the defect mpdes are Increasingent alggrithm to solve the equation for 3D PCs was intro-
functions of the radiusy, becausede(x) is negative for

positive 6t 4.2° As is seen in this figure, we have more than duced recently: By means of this algorithm, the CPU time

. " needed is proportional toN?(l nat1)°, which is much
one d_efect mode at certain rangesr gf In addition a level smaller tharse’. ,pAIthough the [grn(;etl)xlen? to find localized de-
c_rgsi,lzl;lg occurs between iy and thek modes around fect mode in 3D is much harder than that in 2D, we think
- fhe ﬁear-field images of the defect modes at(#e(b) that this approach can overcome the difficulties associated to
(©), (), and(e) points in Fig. 7 are shown in Fig. 8. In Fig. the supercell method when it is applied to 3D PCs with a

8(a) and 8b) r4 is equal to zero and the external plane WavedefeCt'
is incident alongl’-M[ 6(k;) =45°] of the square lattice. In

(a) the E mode is excited. As was discussed previously, only

the mode with even symmetry among the degenerate pair of The authors are grateful to F. J. Garcie Abajo for valu-

the E representation can be excited. The other mode of theble discussions. This work was supported by the Project No.
degenerate pair can be excited by the plane wave withST-1999-19009 PHOBOS of the European commission. We
0(k;)=—45°. The field configuration is merely a replica of acknowledge the computing facilities provided by the Centro
Fig. 8@ rotated with 90°. As for(b), the B, symmetry of de Computacio Cientfica at the Universidad Altmma de
C., is clearly seen. In Figs.(8), 8(d), and &e) ry is equal to  Madrid.
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