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On the Reachability Index of Positive 2-D Systems

Esteban Bailo, Rafael Bru, Josep Gelonch and Sergio Romero

Abstract— The structural property of local reachability for positive 2-D
systems refers to single local states. The smallest number of steps needed
to reach all local states of a system is the local reachability index of the
system. This index may exceed the system dimension. Some authors have
studied upper bounds on the local reachability index for specific positive
2-D systems and have suggested different upper bounds for any positive
2-D system. In this paper, the local reachability index for a special class
of positive 2-D systems is characterized and an upper bound for this
index is derived. A comparison with previous results is presented.

Index Terms— Positive two dimensional (2-D) systems, reachability,
Hurwitz products, influence digraph, local reachability index, nonnegative
matrices.

I. INTRODUCTION

During the last decade, the theory of the positive two-dimensional
systems has been considerably enhanced by the study of different
physical problems (see [1], [2] and [3]).

One of the most frequent representations of positive 2-D systems is
the Fornasini-Marchesini model (see [4] and [1]) which is as follows:

xi+1, j+1 = A1xi+1, j +A2xi, j+1 +B1ui+1, j +B2ui, j+1 (1)

where local states x(·, ·) ∈ R
n
+, inputs u(·, ·) ∈ R

m
+, A1,A2 ∈ R

n×n
+ ,

B1,B2 ∈ R
n×m
+ and initial global state χ0 := {x(h,k) : (h,k) ∈ C0}

being C0 := {(h,k) : h,k ∈ Z,h+ k = 0} the separation set. Let us
denote this system by (A1,A2,B1,B2).

The smallest number of steps needed to reach all local states of the
system is the local reachability index of that system. The reachability
index in positive 1-D systems, which is always bounded by n (see
[5], [6]), has been studied in [7], [8], [9], [10] and [11]. However,
on characterizing the reachability index seems to be a hard task for
a positive 2-D system.

In [12], the authors suggested n2

4 as an upper bound for the local
reachability index of every positive 2-D system. Later on, in [1],
the same authors reviewed the aforementioned conjecture suggesting
(n+1)2

4 as a new upper bound.
Before [1] was published, Kaczorek (see [13]) reviewed [12] and

checked that the upper bound n2

4 fails with an example. Moreover,
in that same paper, the author stated that 2(n+1) is an upper bound
for the local reachability index of the nth order positive 2-D general
models. Hence, such an upper bound is also useful for Fornasini-
Marchesini Models (see [4]) since these kinds of systems are a
particular case of nth order positive 2-D general models. However,
since (n+1)2

4 is greater than 2(n + 1) for all n ≥ 8, if the first bound
fails, the second one necessarily does.

The paper has been organized as follows: Section II introduces
some notations and basic definitions used in the paper. In Section III,
the local reachability index for a special class of positive 2-D systems
is completely characterized. Moreover, for this class of systems is
checked that the corresponding indices are always bounded by (n+1)2

4 ,
they even turn to be (n+1)2

4 in suitable conditions.
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II. NOTATIONS AND PRELIMINARY DEFINITIONS

Denote by |i|n = 1 + ((i − 1) mod n), i ∈ N; by bzc the lower
integer-part of z ∈ R and by col j(A) the jth column of the matrix A.

Definition 1: Hurwitz products of the n× n matrices, A1 and A2
are defined as

A1
itt jA2 = 0, when either i or j is negative,

A1
itt0A2 = A j

1, if i ≥ 0, A1
0tt jA2 = A j

2, if j ≥ 0,
A1

itt jA2 = A1(A1
i−1tt jA2)+A2(A1

itt j−1A2), if i, j > 0.
Note that ∑

i+ j=l
A1

i
tt

jA2 = (A1 +A2)
`.

Definition 2: (see [1]) A 2-D state-space model (1) is (positively)
locally reachable if, upon assuming χ0 = 0, for every x∗ ∈ R

n
+,

there exists (h,k) ∈ Z × Z, h + k > 0, and a nonnegative input
sequence u(·, ·) such that x(h,k) = x∗. When so, the state is said
to be (positively) reachable in h+ k steps. The smallest number of
steps that allows to reach every nonnegative local state represents the
local reachability index ILR of such system.

Local reachability is equivalent to the possibility of reaching every
vector of the standard basis of R

n or equivalently to a corresponding
positive monomial vector, that is, any positive multiples of the ith
vector of the standard basis of R

n. Denote by yi any ith positive
monomial vectors. In the same way, a monomial matrix is a nonsin-
gular matrix having a unique positive entry in each row and column.

Therefore, the study of local reachability can be reduced to the
analysis of the reachability matrix in k-steps (see [1])

Rk = [B1 B2 A1B1 A1B2 +A2B1 A2B2 A2
1B1 · · · Ak−1

2 B2 ]

= [(A1
i−1tt jA2)B1 +(A1

itt j−1A2)B2 ]i, j≥0, 0<i+ j≤k

when k varies over N since the local reachability property is held
if and only if there exist n pairs (hi,ki) ∈ N×N, i = 1, . . . ,n, and
n indices j = j(i) ∈ {1,2, . . . ,m} such that (A1

hi−1ttki A2)col j(B1)+
(A1

hittki−1A2)col j(B2) is an ith monomial vector, that is, there exists
k ∈ N such that Rk contains an n×n monomial matrix.

Definition 3: (see [1]) Associated with system (1), a directed
digraph called 2-D influence digraph is defined. It is denoted by
D (2)(A1,A2,B1,B2), which is given by (S,V,A1,A2,B1,B2), where
S = {s1,s2, . . . ,sm} is the set of sources, V = {v1,v2, . . . ,vn} is the
set of vertices, A1 and A2 are subsets of V ×V whose elements
are called A1-arcs and A2-arcs respectively, while B1 and B2 are
subsets of S×V whose elements are called B1-arcs and B2-arcs
respectively. There is an A1-arc (A2-arc) from v j to vi if and only if
the (i, j)th entry of A1 (A2) is nonzero. There is a B1-arc (B2-arc)
from s j to vi if and only if the (i, j)th entry of B1 (B2) is nonzero.

A path P in D (2)(A1,A2,B1,B2) from vi to v j is a sequence of
adjacent arcs (i.e. (vi,vi1),(vi1 ,vi2 ), . . . ,(vir ,v j)). In particular, an s j-
path is a path originating from the source s j.

Denote by p (q) the number of 1-arcs (2-arcs) occurring in a path
P . The pair (p,q) is called the composition of P and p + q its
length.

A circuit is defined to be a path whose extreme vertices coincide
and if each vertex appears exactly once as the first vertex of an arc,
the circuit is said to be a cycle.

A vertex vi is called reachable in p + q steps (briefly reachable)
if the corresponding ith monomial vector is reachable in p+q steps
(yi appears in the reachability matrix in (p + q)-steps). That is (see
[1]), from the combinatorial point of view, there exist p,q ∈ Z+,
0 < p + q, such that all s-paths of composition (p,q) finish in
the same vertex vi ((s,vi1), . . . ,(vir ,vi)) and from the matrix point
of view, (A1

p−1ttqA2)col jB1 +(A1
pttq−1A2)col jB2 = yi, for some

j ∈ {1, . . . ,m}. Denote by IR(vi) the minimum length of the s-paths
reaching vi.
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Fig. 1. Digraph for the special class of systems in section III.

III. LOCAL REACHABILITY INDEX FOR A SPECIAL CLASS OF

SYSTEMS

Let us consider an nth order positive 2-D system (A1,A2,B1,B2)
with B2 = 0, B1 a column vector with just two positive entries and 2-D
influence digraph of this system consists of two loops corresponding
to that unique source s with n1 (v1, . . . ,vn1 ) and n2 (w1, . . . ,wn2 )
vertices respectively and with all 1-arcs except for 2-arcs (vk,vk+1)
and (wh,wh+1). That is, (A1,A2,B1,B2) is similar under permutation
matrices to (Â1, Â2, B̂1, B̂2) being

Â1 =

[
Â′

1 0
0 Â′′

1

]
, Â2 =

[
Â′

2 0
0 Â′′

2

]
, B̂1 = [y1 +yn1+1] and B̂2 = 0,

where both Â′
1 ∈R

n1×n1
+ and Â′′

1 ∈R
n2×n2
+ have the following structure




0 0 · · · 0 0 0 · · · +
+ 0 0 0 0 · · · 0
...

. . .
. . .

...
...

...
...

0 · · · + 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 + 0 0
...

...
...

...
. . .

. . .
...

0 0 · · · 0 0 · · · + 0




(2)

except for the case when both Â′
1 and Â′′

1 have the structure of the
upper left block of (2) and both Â′

2 ∈ R
n1×n1
+ and Â′′

2 ∈ R
n2×n2
+ have

the following structure



0 · · · · · · 0 0 · · · · · · 0
...

...
...

...
0 · · · · · · 0 0 · · · · · · 0
0 · · · · · · + 0 · · · · · · 0
...

...
...

...
0 · · · · · · 0 0 · · · · · · 0




(3)

except for the case when both Â′
2 and Â′′

2 have the structure of the
lower left block of (3), + denoting a strictly positive entry. Moreover,
2-D influence digraph is illustrated in Fig. 1 where continuous
(dotted) arrows represent 1-arcs (2-arcs).

For this class of systems we concisely denote 2-influence digraph
by means of the quadruple (n1,{k};n2,{h}) with k (h) indicating
where the single 2-arc of the first (second) cycle is located. In
addition, n1 and n2 indicating the number of vertices of each
cycle respectively and n = n1 + n2. Finally, the vertices vn1+1,
vn1+2, . . . ,vn1+n2 are relabelled as w1, w2, . . . ,wn2 , to distinguish the
vertices of both cycles.

Example 1: The positive 2-D system described by the matrices

(A1,A2,B1,B2) =






0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0


 ,




0 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


 ,




1
0
1
0
0


 ,




0
0
0
0
0







has a 2-D influence digraph (2,{1};3,{3}), with n1 = 2, n2 = 3,
k = 1 and h = 3, given in Fig. 2.

Firstly, let us give a necessary condition for local reachability.

2 
v

1
w

2
w

1
v s

3
w

Fig. 2. Digraph for system in example 1.

Lemma 1: Let a locally reachable system with 2-D influence
digraph (n1,{k};n2,{h}) then the lengths of the cycles are different;
i.e., n1 6= n2.

Proof: Note that every s-path P finishing in the vertex v1 has
a composition (1 + r(n1 − 1),r) for some r ∈ Z+. Furthermore, if
n1 = n2, it is clear that there exists another s-path with the same
composition of P finishing in the vertex w1. Hence, the vertex v1 is
not reachable.

Secondly, let us verify, in a constructive way, that a system with
2-D influence digraph (n1,{k};n2,{h}) having n1 6= n2 is locally
reachable. At the same time, we will obtain the local reachability
index upon assuming without a loss of generality that n1 < n2.
Furthermore, this index ILR will be deduced in accordance to the order
of c1 and c2 being c1 := max{k,h} and c2 := min{k +n1,h+n2}.

Note that

k < k +n1, k ≤ n1 < n2 < h+n2 and h < h+n2. (4)

First case: c1 ≥ c2

In this case, considering both c1 ≥ c2 and (4), one finds that c1 = h,
c2 = k +n1 and k < k +n1 ≤ h < h+n2 .

Let us study the reachable vertices vi and their corresponding
indices IR(vi). The reachable vertices will be deduced studying all
the possible s-paths with the same composition in 2-D influence
digraph, that is, calculating step by step the different products of
Hurwitz’s appearing in the reachability matrices, (A1

i−1tt0A2)B1,
(A1

i−1tt1A2)B1, and so on.
To facilitate the reading, let us use a schematic representation. On

the left side, let us indicate the s-paths of a given composition, more
specifically let us point out the cycle chosen to construct the s-path
and those arcs involved. On the other side, let us indicate the Hurwitz
products pertaining to the s-path on the left side. To simplify, we will
denote by yvi and yw j the monomial vectors yi and yn1+ j, respectively.

If 0 < ` ≤ k, no vertices are reached by s-paths of composition
(`,0) (see Fig. 1) since

s−path of Composition (`,0) Corresponding Hurwitz Products

In 1−cycle

(s,v1),(v1,v2), . . . ,(v`−1,v`) (A1
`−1tt0A2)yv1 = A`−1

1 yv1 = yv`

In 2−cycle

(s,w1),(w1,w2), . . . ,(w`−1,w`) (A1
`−1tt0A2)yw1 = A`−1

1 yw1 = yw`

(5)
then (A1

`−1tt0A2)B1 = (A1
`−1tt0A2)(yv1 + yw1 ) = yv` + yw` .

However, if k < ` ≤ h, the vertex w` is reachable since

s−path of Composition (`,0) Hurwitz Products

In 1−cycle

No paths (Need one 2−arc) (A1
`−1tt0A2)yv1 = A`−1

1 yv1 = 0

In 2−cycle

(s,w1),(w1,w2), . . . ,(w`−1,w`) (A1
`−1tt0A2)yw1 = A`−1

1 yw1 = yw`

(6)
then (A1

`−1tt0A2)B1 = (A1
`−1tt0A2)(yv1 + yw1 ) = yw` .
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Note that IR(w`) = ` if k < ` ≤ h. Moreover, no other ver-
tices are reached by s-paths of composition (`,0) if h < ` since
(A1

`−1tt0A2)B1 = 0.
Likewise, using c2 = k + n1 ≤ h = c1 and knowing that if i = `,

∀ ` ≥ 0, Hurwitz products are

(A1
`−1

tt
1A2)B1 = (A`−1

1 A2 +A`−2
1 A2A1 + · · ·+A1A2A`−2

1 +A2A`−1
1 )B1;

then,

if 0 < ` ≤ k−1 :

s−path of Composition (`,1) Hurwitz Products

In 1−cycle

No paths (Need k 1−arcs) (A1
`−1tt1A2)yv1 = 0

In 2−cycle

No paths (Need h 1−arcs) (A1
`−1tt1A2)yw1 = 0

if k ≤ ` < k +n1 :

s−path of Composition (`,1) Hurwitz Products

In 1−cycle

(s,v1), . . . ,(vk,v|k+1|n1
), . . . ,(v|`|n1

,v|`+1|n1
) (A1

`−1tt1A2)yv1 = yv|`+1|n1

In 2−cycle

No paths (Need h 1−arcs) (A1
`−1tt1A2)yw1 = 0

if k +n1 ≤ ` < h :

s−path of Composition (`,1) Hurwitz Products

In 1−cycle

No paths (Need two 2−arcs) (A1
`−1tt1A2)yv1 = 0

In 2−cycle

No paths (Need h 1−arcs) (A1
`−1tt1A2)yw1 = 0

if h ≤ ` < k +n2 −1 :

s−path of Composition (`,1) Hurwitz Products

In 1−cycle

No paths (Need two 2−arcs) (A1
`−1tt1A2)yv1 = 0

In 2−cycle

(s,w1), . . . ,(wh,w|h+1|n2
) . . . ,(w|`|n2

,w|`+1|n2
) (A1

`−1tt1A2)yw1 = yw|`+1|n2

Thus, if k ≤ ` < k + n1, v|`+1|n1
is reachable and if h ≤ ` < k +

n2−1, w|`+1|n2
is also reachable since (A1

`−1tt1A2)B1 = yv|`+1|n1
and

(A1
`−1tt1A2)B1 = yw|`+1|n2

, respectively.
Moreover, if k ≤ ` < n1, v|`+1|n1

= v`+1 is reachable and if n1 ≤
` < k + n1, v|`+1|n1

= v`+1−n1 is reached using the unique s-path of
composition (`,1), then IR(v`) = `+n1, if 1 ≤ ` ≤ k, and IR(v`) = `,
if k +1 ≤ ` < n1 +1. Analogously, IR(w`) = `, if h+1 ≤ ` ≤ n2 and
IR(w`) = `+n2 , if 1 ≤ ` ≤ k.

In addition, it is already known that IR(w`) = `, if k < ` ≤ h.
Therefore, all vertices have been reached (before taking two laps
on one of the cycles) and hence, the local reachability index of this
system is ILR = k +n2.

Example 2: Let (A1,A2,B1,B2) be the positive 2-D system given
in example 1 then 2-D influence digraph is (2,{1};3,{3}). Therefore,
c1 = max{k,h} = h = 3 and c2 = min{k+n1,h+n2}= min{3,6} = 3
then c1 ≥ c2.

Hence, following the case c1 ≥ c2 one obtains:

IR(v1) = 3, IR(v2) = 2,
IR(w1) = 4, IR(w2) = 2, IR(w3) = 3.

Thus, the local reachability index is ILR = k +n2 = 1+3 = 4.

Second case: c1 < c2

Reasoning as in the first case, it is clear that studying all the
possible s-paths with the same composition in 2-D influence digraph,
one may obtain the reachable vertices and hence, when the system
is reachable, the local reachability index of the system.

Similarly to the first case, we start to study the vertices reached by
s-paths of composition (`,0) depending on the order relation between
` ∈ N and c′1 := min{k,h}, that is:

• If 0 < ` ≤ c′1, no vertices are reached by s-paths of composition
(`,0) since (A1

`−1tt0A2)B1 = yv` + yw` (see (5)).
• If c′1 < ` ≤ c1, there are two possibilities:

a) If c′1 = h < ` ≤ c1 = k, the vertex v` is reached by s-paths
of composition (`,0) and IR(v`) = ` since (see (6))

(A1
`−1

tt
0A2)B1 = yv` . (7)

b) If c′1 = k < ` ≤ c1 = h, the vertex w` is also reached and
IR(w`) = ` since

(A1
`−1

tt
0A2)B1 = yw` . (8)

• If c1 = max{k,h} < `, no vertices are reached by s-paths of
composition (`,0) because (A1

`−1tt0A2)B1 = 0.
Now, let us study depending on the cycle chosen the vertices

reached by s-paths of composition (`−1,1). Note that each one of
these s-paths end either in a vertex v|`|n1

with k < ` ≤ k + n1, or in
a vertex w|`|n2

with h < ` ≤ h+n2. Firstly, let us analyze the s-paths
in 1-cycle with such a composition taking c′2 := c′1 +n1, that is:

• If c′1 = k < ` ≤ c1, v|`|n1
is reached by s-paths of composition

(`−1,1) and IR(v|`|n1
) = ` because (A1

`−2tt1A2)B1 = yv|`|n1
.

• If c1 < `≤ c′2, no vertices are reached by s-paths of composition
(`−1,1) since (A1

`−2tt1A2)B1 = yv|`|n1
+ yw|`|n2

.

• If c′2 < `≤ k+n1, the vertex v|`|n1
is already reached by s-paths

of composition (`−n1,0) (see (7)).
Therefore, to conclude the study of 1-cycle, it is necessary to

analyze when the vertex v|`|n1
with c1 < `≤ c′2 is reached and hence

its local reachability index IR(v|`|n1
) may be derived.

Note that for every v|`|n1
with c1 < ` ≤ c′2, there exists an s-path

of composition (`− 1,1) ending in it. However, this vertex is not
reached by this s-path since there exists another one of the same
composition ending in w|`|n2

. This last statement is due to the fact
that an s-path of composition (`−1,1) (with length `) ends in w|`|n2
if and only if h+1 ≤ ` ≤ h+n2 which is always true.

On the whole, the s-paths ending in v|`|n1
with c1 < ` ≤ c′2 have a

composition (`−1 + r(n1 −1),1 + r), for each r ∈ Z+. In addition,
taking into account that the length of such s-paths is `+ rn1, there
exists another s-path with the same composition ending in w|`+rn1|n2
if and only if

h+1+ rn2
(a)
≤ `+ rn1

(b)
≤ h+(r +1)n2 . (9)

The inequality (9-(b)) is true for all r since `+ rn1 ≤ c2 + rn1 =
min{k,h}+n1 + rn1 ≤ h+(r +1)n1 < h+(r +1)n2, while (9-(a)) is
true if and only if r ≤ (`−h−1)/(n2 −n1).

Thus, there exist no s-paths of composition (`−1+r(n1−1),1+r)
ending in a vertex in 2-cycle if r ∈ Z+ and r > (`−h−1)/(n2 −n1).
Then, the vertex v|`|n1

is reached using an s-path of composition (`−

1+ r(n1 −1),1+ r) with r = b(`−h−1)/(n2 −n1)c+1. Therefore,

IR(v|`|n1
) = `+n1

(⌊
`−h−1
n2 −n1

⌋
+1

)
. (10)

Note that every vertex in 1-cycle has been reached and its asso-
ciated index calculated. The previous steps are summarized in the
following table:
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First Cycle k +1 ≤ ` ≤ k +n1
Case Composition IR(v|`|n1

)

k < ` ≤ c1 (`−1,1) `

c1 < ` ≤ c′2
(`−1+ r(n1 −1),1+ r)

r =
⌊

`−h−1
n2−n1

⌋
+1 `+ rn1

c′2 < ` ≤ k +n1 (`−n1,0) `−n1

Finally, it is obvious that the highest value of (10) is obtained when
` = c′2 = min{k,h}+n1 . Then, |`|n1 = min{k,h} and

IR(vmin{k,h}) = min{k,h}+n1

⌊
min{k,h}+n2 −h−1

n2 −n1
+1

⌋
. (11)

Secondly, let us study the vertices of the second cycle reached by
s-paths of composition (`−1,1).

• If c′1 = h < `≤ c1, the vertex w|`|n2
is reached by s-paths of com-

position (`−1,1) and IR(w|`|n2
) = ` because (A1

`−2tt1A2)B1 =
yw|`|n2

.
• If c1 < `≤ c2, no vertices are reached by s-paths of composition

(`−1,1) because (A1
`−2tt1A2)B1 = yv|`|n1

+ yw|`|n2
.

• If c2 < `≤ c′1 +n2, w|`|n2
is also reached and IR(w|`|n2

) = ` since
(A1

`−2tt1A2)B1 = yw|`|n2
.

• If c′1 + n2 < ` ≤ h + n2, the vertex w|`|n2
is already reached by

s-paths of composition (`−n2,0) (see (8)).
Therefore, to conclude the study of 2-cycle, it is necessary to

analyze when the vertex w|`|n2
with c1 < `≤ c2 is reached and hence

its local reachability index IR(w|`|n2
) may be derived.

In general, the s-paths ending in w|`|n2
have a composition (`−1+

r(n1−1),1+r), for every r ∈Z+. Moreover, taking into consideration
that the length of these s-paths is `+ rn2, there exists another s-path
with the same composition ending in v|`+rn2|n1

if and only if

k +1+ rn1
(a)
≤ `+ rn2

(b)
≤ k +(r +1)n1 . (12)

The inequality (12-(a)) is true for all r since ` > k and n1 < n2,
while (12-(b)) is true if and only if r ≤ (k +n1 − `)/(n2 −n1).

Thus, there exist no s-paths of composition (`−1+r(n2−1),1+r)
ending in a vertex in 1-cycle if r ∈Z+ and r > (k+n1 −`)/(n2 −n1).
Then, the vertex w|`|n2

is reached using an s-path of composition (`−

1+ r(n1 −1),1+ r) with r = b(k +n1 − `)/(n2 −n1)c+1. Therefore,

IR(w|`|n2
) = `+n2

(⌊
k +n1 − `

n2 −n1

⌋
+1

)
. (13)

Note that every vertex in 2-cycle has been reached and its associ-
ated index calculated which is summarized as follows:

Second Cycle h+1 ≤ ` ≤ h+n2
Case Composition IR(w|`|n2

)

h < ` ≤ c1 (`−1,1) `

c1 < ` ≤ c2
(`−1+ r(n2 −1),1+ r)

r =
⌊

k+n1−`
n2−n1

⌋
+1 `+ rn2

c2 < ` ≤ c′1 +n2 (`−1,1) `
c′1 +n2 < ` ≤ h+n2 (`−n2,0) `−n2

Following, it is analyzed which is the vertex w|`|n2
with c1 < `≤ c2

to provide the maximum local reachability index of the vertices in
2-cycle and for that, it is shown which is the maximum ˜̀∈ N with
c1 < ˜̀≤ c2 leading to the maximum length of s-paths reaching w

|˜̀|n2
.

To simplify, let us consider r` :=
⌊

n1+k−`
n2−n1

⌋
. Obviously, the highest

value r̃ of r` is obtained when ` = c1 +1 as c1 < `≤ c2 i.e. r̃ = rc1+1.
Let us define

˜̀:= n1 + k− (n2 −n1)r̃. (14)

2
v

1
w

3
w1

v s
2
w

3
v

4
v

4
w5

w

Fig. 3. Digraph for system in example 3.

Thus, ˜̀≤ n1 + k and c1 < ˜̀≤ c2 because k ≤ h+n1 −1 and

˜̀ ≤ n1 +h+(n1 −1)− (n2 −n1)b(n1 −1)/(n2 −n1)c
= n1 +h+((n1 −1) mod (n2 −n1)) ≤ h+n2 −1.

if n2 +h < n1 + k. In addition, r˜̀=
⌊

n1+k−˜̀
n2−n1

⌋
= n1+k−˜̀

n2−n1
= r̃,

IR(w
|˜̀|n2

) = k +n1

⌊
k +n2 −max{k,h}−1

n2 −n1

⌋
+n2, (15)

and IR(w
|˜̀|n2

) ≥ IR(w|`|n2
) for all `, c1 < ` ≤ ˜̀.

Lastly, when ` > ˜̀, ` = ˜̀+ t(n2 −n1)+a taking t :=
⌊

`−˜̀
n2−n1

⌋
and

a := (`− ˜̀) mod (n2 −n1). Furthermore,

r` =

⌊
r̃− t −

a
n2 −n1

⌋
=

{
r̃− t −1, if a 6= 0;
r̃− t, if a = 0,

then r` < r̃ since t and a cannot be simultaneously zero. When so, it
is obvious that IR(w|`|n2

) < IR(w
|˜̀|n2

). Hence, IR(w|`|n2
) ≤ IR(w

|˜̀|n2
)

for all ` such that c1 < `≤ c2. Besides that, IR(w
|˜̀|n2

) given in (15) is
strictly greater than IR(vmin{k,h}) calculated in (11) as k−max{k,h}=
min{k,h}−h. Therefore, for this special class of systems,

ILR = k +n1

⌊
k +n2 −max{k,h}−1

n2 −n1

⌋
+n2. (16)

Example 3: Let (A1,A2,B1,B2) be a positive 2-D system given by

A1 =
[

e2 | e3 | e4 | 0 | e6 | e7 | e8 | 0 | e5
]
∈ R

9×9
+ ,

A2 =
[

0 | 0 | 0 | e1 | 0 | 0 | 0 | e9 | 0
]
∈ R

9×9
+ ,

B1 =
[

e1 + e5
]
∈ R

9×1
+ and B2 = 0 ∈ R

9×1
+ , with 2-D influence

digraph (4,{4};5,{4}) corresponding to Fig. 3.
Therefore, c1 = max{k,h} = 4 and c2 = min{k + n1,h + n2} = 9.

Hence, following the case c1 < c2 it is obtained

IR(v1) = 9, IR(v2) = 14, IR(v3) = 19, IR(v4) = 24,

IR(w1) = 21, IR(w2) = 17, IR(w3) = 13, IR(w4) = 9, IR(w5) = 25.

Thus, the local reachability index is

ILR = k +n1

⌊
k +n2 −max{k,h}−1

n2 −n1

⌋
+n2

= 4+4
⌊

4+5−4−1
5−4

⌋
+5 = 25 = IR(w5).

Finally, let us verify that the above formula obtained in the case
c1 < c2 is also useful for the first case c1 ≥ c2.

As we have seen, when c1 ≥ c2 then h = max{k,h} ≥ k + n1.
Consequently,

k +n2 −max{k,h}−1 = k +n2 −h−1
= (k +n1 −h)+(n2 −n1 −1) ≤ n2 −n1 −1.

Hence,
⌊

k+n2−max{k,h}−1
n2−n1

⌋
= 0, and when so, the expression (16) is

reduced to ILR = k +n2, which is the desired aim. Summing-up, the
local reachability index of the system with 2-D influence digraph
(n1,{k};n2,{h}) is given in all cases by expression (16).
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Afterwards, the following result holds.

Theorem 1: Let (A1,A2,B1,B2) be a positive 2-D system with 2-D
influence digraph (n1,{k};n2,{h}). Then, this system is reachable if
and only if n1 6= n2 and so the local reachability index ILR is given
by

ILR = k + ñ1

⌊
k + ñ2 −max{k,h}−1

ñ2 − ñ1

⌋
+ ñ2,

where ñ1 = min{n1,n2} and ñ2 = max{n1,n2}.
Proof: If n1 = n2, Lemma 1 establishes that the system is not

reachable. For the case n1 < n2, the local reachability index of the
system (n1,{k};n2,{h}) is given by expression (16) as it has been
analyzed formerly. Finally, the case n1 > n2 is reduced to the previous
case taking the system (A2,A1,B1,B2) with 2-D influence digraph
(n2,{h};n1,{k}).

Note that for this class of special systems the local reachability
index always appears to be associated with the vertices of the second
cycle w| j̃|n2

, being j̃ given by expression (14). Besides that, if h ≤ k,
the value of h does not influence the local reachability index.

Lemma 2: Let (A1,A2,B1,B2) be a positive 2-D system with 2-
D influence digraph (n1,{k};n2,{h}), being n1 and n2 fixed natural
numbers with n1 < n2 and n1 + n2 = n. Then, the maximum local
reachability index is achieved by those systems satisfying k = n1 and
h ≤ k. Moreover, under these circumstances,

ILR = n+n1

⌊
n2 −1
n2 −n1

⌋
. (17)

Proof: Since k + n2 − max{k,h} − 1 is greatest when
max{k,h} = k and when so, k + n2 −max{k,h}− 1 = n2 − 1. Then
by k ≤ n1 and n1 +n2 = n, the results are held.

Theorem 2: Any systems (A1,A2,B1,B2) with 2-D influence di-
graph (n1,{k};n2,{h}) where n1 6= n2 and = n1 + n2 satisfy the
condition that its local reachability index ILR is upper bounded by
(n+1)2

4 . In addition, for every odd natural number n there exists at
least one system with 2-D influence digraph (n1,{k};n2,{h}) such
that its local reachability index is equal to this upper bound.

Proof: The maximum value of (17) occurs if n2−n1 = 1. In this
case n = n1 +n2 = 2n1 +1 is an odd natural number and n1 =

(n−1)
2 ,

n2 =
(n+1)

2 . Then,

ILR = n+n1

⌊
n2 −1
n2 −n1

⌋
= n+n2

1 = n+
(n−1)2

4
=

(n+1)2

4
.

If n is an even natural number, the minimum value of n2 − n1 is 2
and it occurs when n1 = n

2 −1 and n2 = n
2 +1. In this case,

ILR = n+n1

⌊
n2 −1
n2 −n1

⌋
= n+

( n
2
−1

)⌊n
4

⌋
. (18)

Notice that n = n1 + n2 ≥ 3 as n1 6= n2 and if n is an even natural
number then n ≥ 4. Hence, if n is a multiple of 4 i.e. n = 4p, p ∈ N,
then

⌊ n
4
⌋

= p = n
4 and so (18) is equal to n2+6n

8 . Finally, if n is even
but not multiple of 4 that is n = 4p+2, p ∈ N, then

⌊ n
4
⌋

= p = n−2
4

and so (18) is equal to (n+2)2

8 . To shorten,

max{ILR} =






(n+1)2

4
, if n is an odd number,

n2 +6n
8

, if n is a multiple of 4 and

(n+2)2

8
, otherwise.

It is obvious that
(n+2)2

8
≤

(n2 +6n)

8
<

(n+1)2

4
, ∀n ≥ 2. Hence,

ILR ≤ (n+1)2

4 , which completes the proof.

IV. REMARKS ON THE LOCAL REACHABILITY INDEX

Let us see that the upper bound obtained in this paper is only valid
for the class of the chosen systems. There are many examples whose
local reachability index is greater than (n+1)2

4 . In the same way, such
examples show us that all well-known conjectures are not valid for
any positive 2-D systems.

Example 4: Let the system

(A1,A2,B1,B2) =








0 0 0
1 1 0
0 1 0



 ,




0 1 0
0 0 0
0 0 1



 ,




1
0
0



 ,




0
0
0









with 2-D influence digraph corresponding to Fig. 4, note that IR(v1) =

s
1
v

2
v

3
v

Fig. 4. Digraph for system in example 4.

1, IR(v2) = 2 and IR(v3) = 6 since all s-paths of composition (1,0),
(2,0) and (3,3) end in the single vertex v1, v2 and v3, respectively.
Thus, the system is locally reachable and ILR = 6. Therefore, the
upper bound (n+1)2

4 given in the precedent section is not useful for
this system since ILR = 6 > 4 = (n+1)2

4 if n = 3.
Therefore, an upper bound of the local reachability index of any

positive 2-D system must be greater than (n+1)2

4 , which shows that
the conjecture given in [1] fails.
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