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a b s t r a c t

In this work a technique to improve the condition number si of a simple eigenvalue
λi of a matrix A ∈ Cn×n is given. This technique obtains a rank one updated matrix
that is similar to A with the eigenvalue condition number of λi equal to one. More
precisely, the similar updated matrix A + viq∗, where Avi = λivi and q is a fixed
vector, has si = 1 and the remaining condition numbers are at most equal to the
corresponding initial condition numbers. Moreover an expression to compute the
vector q, using only the eigenvalue λi and its eigenvector vi, is given.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let A ∈ Cn×n and let λi be a simple eigenvalue of A with associated right and left eigenvectors vi and
li, respectively. The condition number of λi is given by

si = ∥vi∥ ∥li∥
|l∗i vi|

≥ 1,

that is, si is the inverse of the cosine of the angle between the right and left eigenvectors of A associated
with λi (see [1–3]). To compute si some authors assume that the right and left eigenvectors are normalized.
However, we assume that the right eigenvectors are normalized and the left eigenvectors are chosen in such
away that l∗i vi = 1.

The interpretation of the condition number of an eigenvalue λi is that an O(ϵ) perturbation in A can cause
an O(ϵsi) perturbation in the eigenvalue λi. So, if si is near to 1 a perturbation in A will have less effect.
Byers and Kressner [4] study the variation of the condition number of a complex eigenvalue under a real
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perturbation and they show that restricting the backward error to be real the condition number decreases
at most by a factor of 1/

√
2. Therefore, an interesting and more general problem is the following: Can we

update the matrix A maintaining the same spectrum and improving the corresponding eigenvalue condition
numbers?

In this work, we show that an n×n complex matrix with n distinct and ill conditioned eigenvalues can be
updated, with a rank one perturbation, to a similar matrix such that one of its eigenvalue condition number
is one and the remaining eigenvalue condition numbers are less than or equal to those of the matrix A. In
addition, the sensitivity of eigenvectors are given. Finally, Theorem 2 gives a method to obtain this rank
one perturbation where it is only necessary to know one eigenvalue and its corresponding right eigenvector.

It is worth to note that the rank one modification has also been used to update the singular value
decomposition [5] and the symmetric eigenproblem [6].

2. Improving eigenvalue condition numbers

In this section we apply the Brauer’s Theorem and the results given in [7,8] to improve the eigenvalue
condition number of a matrix with pairwise distinct eigenvalues.

Theorem 1. Let A ∈ Cn×n be a matrix with eigenvalues λ1, λ2, . . . , λn, pairwise distinct, and v1, v2, . . . , vn,
their associated unit right eigenvectors. Let s1, s2, . . . , sn, be the corresponding eigenvalue condition
numbers. Then, there exists an n-dimensional vector q(1), with q∗(1)v1 = 0, such that the matrix A(1) =
A + v1q∗(1) is similar to A and the corresponding condition numbers of its eigenvalues satisfy that s(1)

1 = 1
and s(1)

i ≤ si, for i = 2, 3, . . . , n. Moreover, if v(1)
1 , v

(1)
2 , . . . , v

(1)
n are the associated eigenvectors of A(1),

then v(1)
i − vi

 = |⟨vi, v1⟩| = |v∗1vi| i = 2, 3, . . . , n.

Proof. Let q be an arbitrary solution of the equation q∗v1 = 0. By the Brauer’s Theorem (see [9,7]) A and
A+ v1q∗ are similar matrices. Let l1, l2, . . . , ln, be the left eigenvectors of A associated with λ1, λ2, . . . , λn,
respectively, and such that l∗j vi = δij , i, j = 1, 2, . . . , n. Then, the eigenvalue condition numbers are

si = ∥vi∥ ∥li∥
|l∗i vi|

= ∥li∥, i = 1, 2, . . . , n.

By [7, Propositions 1.1. and 1.2.] and [8], the right {w1, w2, . . . , wn} and left {r1, r2, . . . , rn} eigenvectors of
A+ v1q∗ associated with λ1, λ2, . . . , λn, are respectively

w1 = v1, wi = vi −
q∗vi
λ1 − λi

v1, i = 2, 3, . . . , n,

r∗1 = l∗1 +
n
i=2

q∗vi
λ1 − λi

l∗i , r∗i = l∗i , i = 2, 3, . . . , n.

 . (1)

Since

r∗1w1 = r∗1v1 =

l∗1 +

n
i=2

q∗vi
λ1 − λi

l∗i


v1 = l∗1v1 +

n
i=2

q∗vi
λ1 − λi

l∗i v1 = 1, (2)

r∗iwi = l∗iwi = l∗i

vi −

q∗vi
λ1 − λi

v1


= l∗i vi −

q∗vi
λ1 − λi

l∗i v1 = 1, i = 2, 3, . . . , n,
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the condition numbers s̃i of the eigenvalues λi, i = 1, 2, . . . , n, of the updated matrix A+ v1q∗ are

s̃1 = ∥w1∥ ∥r1∥
|r∗1w1|

= ∥v1∥ ∥r1∥ = ∥r1∥,

s̃i = ∥wi∥ ∥ri∥
|r∗iwi|

= ∥wi∥ ∥li∥ = ∥wi∥ si, i = 2, 3, . . . , n.

 . (3)

Therefore, s̃i ≤ si, whenever ∥wi∥ ≤ 1, for i = 2, 3, . . . , n.

Since wi = vi − q∗vi
λ1−λi v1, by the approximation theory the vector wi has minimal norm when q∗vi

λ1−λi v1 is
the orthogonal projection of vi on span{v1}, that is, when

q∗vi
λ1 − λi

v1 = Projv1(vi) = ⟨vi, v1⟩
∥v1∥2

v1 = (v∗1vi) v1.

Then, we need that the vector q satisfies the following system

q∗v1 = 0,
q∗vi = (λ1 − λi) (v∗1vi) , i = 2, 3, . . . , n.

 . (4)

Let q(1) be the unique solution of this consistent system. Consider now the updated matrix with this unique
solution A(1) = A+ v1q∗(1) and let us denote the eigenvectors of this matrix with the superscript (1). By (1)
the right and left eigenvectors of A(1), {v(1)

1 , v
(1)
2 , . . . , v

(1)
n } and {l(1)

1 , l
(1)
2 , . . . , l

(1)
n } respectively, associated

with λ1, λ2, . . . , λn, are given by

v
(1)
1 = v1, v

(1)
i = vi − (v∗1vi) v1, i = 2, 3, . . . , n,

l
(1)
1

∗
= l∗1 +

n
i=2

(v∗1vi) l∗i ,

l
(1)
i

∗
= l∗i , i = 2, 3, . . . , n.

 . (5)

Since vi and v1 are unit vectors, note that
v(1)
i

 ≤ 1, for i = 2, 3, . . . , n. Then, by Eq. (3) applied to the right

eigenvector v(1)
i , the corresponding eigenvalue condition numbers of A(1) satisfy

s
(1)
i =

v(1)
i

 si ≤ si, i = 2, 3, . . . , n.

It remains to prove that s(1)
1 =

l(1)
1

 = 1. The right and left eigenvectors of A(1) satisfy

⟨v(1)
i , v

(1)
1 ⟩ =


v

(1)
1

∗
v

(1)
i = 0, and

⟨v(1)
i , l

(1)
1 ⟩ =


l
(1)
1

∗
v

(1)
i =


l∗1 +

n
j=2

(v∗1vj) l∗j


(vi − (v∗1vi) v1) = 0,

for i = 2, 3, . . . , n. Then

l
(1)
1 ∈ span


v

(1)
2 , v

(1)
3 , . . . , v

(1)
n−1, v

(1)
n

⊥
= span


v

(1)
1


,

and therefore

l
(1)
1 = α v(1)

1 .

Applying Eq. (2) to the new eigenvectors we have

l
(1)
1

∗
v

(1)
1 = 1. On the other hand,

l
(1)
1

∗
v

(1)
1 =


α

v

(1)
1

∗
v

(1)
1 = α

v(1)
1

2
= α.

Then, α = 1 and

l
(1)
1 = v(1)

1 . (6)
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Using equation (3) s(1)
1 = 1, since

v(1)
1

 = 1.

Finally, by (5) we obtainv(1)
i − vi

 = |⟨vi, v1⟩| = |v∗1vi| i = 2, 3, . . . , n. �

We illustrate the results of Theorem 1 with the following example, where we have used MatLab.

Example 1. Consider the matrix

A =


−149 −50 −154 −1

537 180 546 2
−27 −9 −25 1

0 0 0 2.9999


with eigenvalues λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 2.9999, and the corresponding eigenvalue condition numbers

s1 = 619.826169515, s2 = 437.718033299,
s3 = 1006180.948310136, s4 = 1006143.406357263.

Applying Theorem 1 with the right eigenvector v1 associated with λ1 = 1 we obtain the matrix A(1) =
A+ v1q∗(1), similar to A, such that its eigenvalue condition numbers are

s
(1)
1 = 1, s

(1)
2 = 60.9478235921,

s
(1)
3 = 252507.4326370870, s

(1)
4 = 252533.6146298055.

Remark 1. Note that if we apply Theorem 1 to the matrix of Example 1 using the eigenvalue λ3 = 3 we
obtain the updated matrix A(1) = A+ v3q∗(3) with the eigenvalue condition numbers

s
(1)
1 = 155.5492761525672, s

(1)
2 = 167.7693394271733,

s
(1)
3 = 1, s

(1)
4 = 36.7972549222763.

This fact shows that the improvement of the eigenvalue condition numbers depends on the eigenvector
with we are working on. Then, to choose the eigenvector to use is a natural question. The following theorem
gives some insight on this question.

Proposition 1. Let A ∈ Cn×n be a matrix with eigenvalues λ1, λ2, . . . , λn, pairwise distinct. Let v1, v2, . . . , vn
and let l1, l2, . . . , ln be their associated right and left eigenvectors, such that, ∥vi∥ = 1, i = 1, 2, . . . , n, and
l∗i vj = δij. Let s1, s2, . . . , sn be the corresponding eigenvalue condition numbers.

Let A(1) be the matrix obtained by applying Theorem 1 to matrix A working with the right eigenvector
associated with λ1. Then the eigenvalue condition numbers of A(1) are given by

s
(1)
1 = 1, and s

(1)
i = | sin(α1i)| si, for i = 2, 3, . . . , n,

where α1i denotes the angle between the vectors v1 and vi.

Proof. Let α1i be the angle between the vectors v1 and vi, i = 2, 3, . . . , n. By definition of eigenvalue
condition number we have, for i = 2, 3, . . . , n, that

s
(1)
i =

v(1)
i

l(1)
i

l(1)
i

∗
v

(1)
i

 =
v(1)
i

 ∥li∥ =
v(1)
i

 si = | sin(α1i)| si. �
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Consequently, smaller angle between the vectors v1 and vi better eigenvalues condition number s(1)
i of A(1).

Of course an alternative method can be used for instance choosing the eigenvalue with the largest condition
number as we have done in Remark 1.

Next result gives an expression to compute q(1) by a matrix vector product. Note that this expression
uses only one eigenvalue and its right eigenvector.

Theorem 2. The unique solution of the system (4) can be obtained directly by

q∗(1) = v∗1(λ1I −A). (7)

Proof. Consider the similar matrices A and A(1) = A+v1q∗(1) of Theorem 1. Let JA = V −1AV be the Jordan
form of A, where

V = [v1 v2 . . . vn] and V −1 =


l∗1
l∗2
...
l∗n

 ,
with ∥vi∥ = 1, i = 1, 2, . . . , n. Then

JA = JA(1) =

V (1)

−1
A(1)V (1).

By Eqs. (5) and (6) we have

V (1) = [v(1)
1 v

(1)
2 . . . v(1)

n ] = [v1 v2 − (v∗1v2)v1 . . . vn − (v∗1vn)v1],


V (1)

−1
=


v∗1
l∗2
...
l∗n

 .
Therefore, A(1) =


V (1)V −1 A V V (1)−1 = T−1

1 AT1, where

T1 = [v1 v2 . . . vn]


v∗1
l∗2
...
l∗n

 = v1v∗1 + v2l∗2 + v3l∗3 + · · ·+ vnl∗n

= v1v∗1 + I − v1l∗1 = I + v1 (v∗1 − l∗1) ,
T−1

1 = I − v1 (v∗1 − l∗1) .

Then,

A(1) = A+ v1q∗(1) = T−1
1 AT1 = (I − v1 (v∗1 − l∗1)) A (I + v1 (v∗1 − l∗1))

= (I − v1 (v∗1 − l∗1)) (A+ λ1v1 (v∗1 − l∗1))
= A+ λ1v1 (v∗1 − l∗1)− v1v∗1A+ λ1v1l

∗
1 − λ1v1 (v∗1 − l∗1) v1 (v∗1 − l∗1)

= A+ λ1v1v
∗
1 − v1v∗1A

= A+ v1 (λ1v
∗
1 − v∗1A) .

Note that, the vector λ1v
∗
1 − v∗1A satisfies

(λ1v
∗
1 − v∗1A) v1 = λ1v

∗
1v1 − v∗1Av1 = λ1∥v1∥2 − λ1∥v1∥2 = 0,
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and for i = 2, 3, . . . , n,

(λ1v
∗
1 − v∗1A) vi = λ1v

∗
1vi − v∗1Avi = λ1v

∗
1vi − λiv∗1vi = (λ1 − λi)(v∗1vi).

Then, the system (4) has a unique solution

q∗(1) = λ1v
∗
1 − v∗1A = v∗1(λ1I −A). �

Remark 2. Note that this rank one updated process can be applied recursively without losing the improved
condition numbers. That is, with the matrix A(1) = A + v1q∗(1) we obtain a rank one updated matrix
A(2) = A(1) + v(1)

2 q
∗
(2), where v(1)

2 is the right eigenvector of A(1) associated with λ2 and where q(2) is
obtained by the updated expression (7)

q∗(2) =

v

(1)
2

∗ 
λ2I −A(1)


.

Now, the eigenvalue condition numbers of the eigenvalues of A(2), λ1 and λ2, are both equal to 1 and the
remaining condition numbers are less than or equal to those of the initial matrix.
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