Sergio Blanes

Sergio Blanes



 
 

Position: Profesor Titular de Universidad

Instituto de Matemática Multidisciplinar

Universidad Politécnica de Valencia

Edificio 8-G, piso 2

Camino de Vera s/n

46022-Valencia

SPAIN

Tel:  +34 963877007 (ext. 86691)

Fax: +34 963879887

e-mail: serblaza @ imm.upv.es

Personal webpage: http://personales.upv.es/serblaza

Group webpage: http://www.gicas.uji.es/

 


 


Muaz Seydaoglu

 

Recent Papers

 

ˇ         S. Blanes, F. Casas, and A. Murua, An efficient algorithm based on splitting for the time integration of the Schrödinger equation. To be submitted. (Fortran programs)

ˇ         S. Blanes, F. Casas, and M. Thalhammer, Convergence analysis of high-order commutator-free exponential integrators for non-autonomous linear evolution equations. Submitted.

ˇ         M Seydaoglu and S. Blanes, High-order splitting methods for separable non-autonomous parabolic equations. Appl. Numer. Math., 84 (2014), pp. 22-32.

ˇ         S. Blanes, High order structure preserving explicit methods for solving linear-quadratic optimal control problems. Numerical Algorithms. Accepted.

ˇ         S. Blanes, F. Casas, J.A. Oteo and J. Ros, The Fer and Magnus expansions. Encyclopedia of Applied and Computational Mathematics, Springer. To appear.

ˇ         S. Blanes, F. Casas, and A. Murua, Splitting methods. Encyclopedia of Applied and Computational Mathematics, Springer. To appear.

ˇ         S. Blanes, F. Casas and J.M. Sanz-Serna, Numerical integrators for the Hybrid Monte Carlo method. SIAM J. Sci. Comput. In Press.

ˇ         S. Blanes and E. Ponsoda, Exponential integrators for coupled self-adjoint non-autonomous partial differential equations. Appl. Math. Comput., 243 (2014), pp. 1-11.

ˇ         P. Bader, S. Blanes, and E. Ponsoda, Structure preserving integrators for solving linear quadratic optimal control problems with applications to describe the flight of a quadrotor. J. Comput. Appl. Math. , 262 (2014), pp. 223-233. arXiv:1212.0474v1

ˇ         S. Blanes, F. Casas and J.M. Sanz-Serna, Beating the Verlet integrator in Monte Carlo simulations. AIP Conf. Proceedings 1558, (2013); pp. 8-10. doi: 10.1063/1.4825407

ˇ         P. Bader, S. Blanes, and F. Casas, Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients. J. Chem. Phys. 139, 124117 (2013). arXiv:1304.6845

ˇ         A. Farrés, J. Laskar, S. Blanes, F. Casas, J. Makazaga, and A. Murua, High precision Symplectic Integrators for the Solar System. Celest. Mech. & Dyn. Astron., 116 (2013), pp. 141-174. arXiv:1208.0716v1

ˇ         S. Blanes, F. Casas, A. Farrés, J. Laskar, J. Makazaga, and A. Murua, New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68 (2013), pp. 58-72. arXiv:1208.0689v1 (Fortran programs)

ˇ         S. Blanes, F. Casas, P. Chartier, and A. Murua, Optimized high-order splitting methods for some classes of parabolic equations, Math. Comput. 82 (2013), pp. 1559-1576. arXiv:1102.1622v1



 
 
 
 
 
  Site Meter