Sergio Blanes

FAEF721B



 
 

Position: (Professor) Catedrático de Universidad

Instituto de Matemática Multidisciplinar

Universidad Politécnica de Valencia

Edificio 8-G, piso 2

Camino de Vera s/n

46022-Valencia

SPAIN

Tel:  +34 963877007 (ext. 86691)

Fax: +34 963879887

e-mail: serblaza @ imm.upv.es

Personal webpage: http://personales.upv.es/serblaza

Group webpage: http://www.gicas.uji.es/

Book: S. Blanes, F. Casas. A Concise Introduction to Geometric Numerical Integration. CRC Press, Boca Raton, 2016. ISBN: 978-1-4822-6342-8.

4A428D60



·         Publications.

·         Sofware: some fortran programs with examples.

·         Editing

·         Conferences, Workshops, etc.

·         Short CV

·         Docencia

·         PhD Students:  
Philipp Bader (June 2014)
Tittle:
Geometric Integrators for Schrödinger Equations

Muaz Seydaoglu (September 2016)

Tittle: Splitting methods for autonomous and non-autonomous perturbed equations

Nikita Kopylov (February 2019)

Tittle: Magnus-based geometric integrators for dynamical systems with time-dependent potentials

 

Selected Recent Papers

Publications in Journals

 

·         S. Blanes, On the construction of symmetric second order methods for ODEs, Applied Mathematics Letters. To appear.

·         S. Blanes, F. Casas, and M. Thalhammer, Splitting and composition methods with embedded error estimators. Submitted. arXiv:1903.05391v1 [math.NA] 13 Mar 2019

·         P. Bader, S. Blanes, F: Casas, and N. Kopylov, Symplectic propagators for the Kepler problem with time-dependent mass, Celest. Mech. & Dyn. Astron. To appear.

·         S. Blanes, F. Casas, C. González, and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear Schrödinger equations. Submitted.

·         P. Bader, S. Blanes and F. Casas, An improved algorithm to compute the exponential of a matrix. Submitted.  arXiv:1710.10989 [math.NA].

·         P. Bader, S. Blanes, F: Casas, and N. Kopylov, Novel symplectic integrators for the Klein-Gordon equation with space- and time-dependent mass. J. Comput. Appl. Math. 350 (2019), pp. 130-138.

·         P. Bader, S. Blanes, and N. Kopylov, Exponential propagators for the Schrödinger equation with a time-dependent potential. J. Chem. Phys. 148, 244109 (2018). arXiv:1804.07103 [math.NA].

·         S. Blanes, Time-average on the numerical integration of non-autonomous differential equations. SIAM J. Numer. Anal. 56 (2018), pp. 2513-2536.

·         S. Blanes, F. Casas, and M. Thalhammer, High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations. Comput. Phys. Comm. 220 (2017), 243-262.

·         P. Bader, S. Blanes, F: Casas, N. Kopylov, and E. Ponsoda, Symplectic integrators for second-order linear non-autonomous equations. J. Comput. Appl. Math. 330 (2018), pp. 909-919. arXiv: 1702.04768 [math.NA].

·         S. Blanes, F. Casas, and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type. IMA J. Numer. Anal. 38 (2018), pp. 743–778. doi: 10.1093/imanum/drx012

·         S. Blanes, F. Casas, and A. Murua, Symplectic time-average propagators for the Schödinger equation with a time-dependent Hamiltonian, J. Chem. Phys. 146, 114109 (2017).

·         S. Blanes, F. Casas, and A. Murua, An efficient algorithm based on splitting for the time integration of the Schrödinger equation. J. Comput. Phys. ., 303 (2015), pp. 396-412. (Fortran programs)

·         S. Blanes, Explicit symplectic RKN methods for perturbed non-autonomous oscillators: splitting, extended and exponentially fitting methods. Comput. Phys. Comm., 195 (2015), pp. 10-18.

·         P. Bader, S. Blanes, and M Seydaoglu, The Scaling, Splitting and Squaring Method for the Exponential of Perturbed Matrices. SIAM J. Matrix Anal. Appl., 36 (2015), pp. 549-614.

·         S. Blanes, High order structure preserving explicit methods for solving linear-quadratic optimal control problems. Numerical Algorithms, 69 (2015), pp. 271-290.

·         S. Blanes, F. Casas and J.M. Sanz-Serna, Numerical integrators for the Hybrid Monte Carlo method. SIAM J. Sci. Comput. 36 (2014), pp. A1556-A1580.

·         P. Bader, S. Blanes, and F. Casas, Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients. J. Chem. Phys. 139, 124117 (2013). arXiv:1304.6845

·         S. Blanes, F. Casas, A. Farrés, J. Laskar, J. Makazaga, and A. Murua, New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68 (2013), pp. 58-72. arXiv:1208.0689v1 (Fortran programs)

·         S. Blanes, F. Casas, P. Chartier, and A. Murua, Optimized high-order splitting methods for some classes of parabolic equations, Math. Comput. 82 (2013), pp. 1559-1576. arXiv:1102.1622v1



 
 
 
 
 
  Site Meter