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Abstract. We build high order numerical methods for solving differential equations by applying
extrapolation techniques to a Symplectic Integrator of order 2n. We show that, in general, the qualit-
ative properties are preserved at least up to order 4n + 1. This new procedure produces much more
efficient methods than those obtained using the Yoshida composition technique.
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1. Introduction

In recent years the importance of preserving geometric properties of the exact
solution when numerically solving a system of differential equations has been
repeatedly emphasized.

The aim of Geometric Integration is to provide such a type of numerical al-
gorithms, the so-called geometric integrators (GI). When qualitative properties are
at issue GI have proved to be superior to general purpose methods [6]. But, if
high precision is desired, the most efficient methods are, in general, those based on
extrapolation techniques (ET).

In ET, one starts with a basic low order integration method which is applied
with different time stepsh. Then, by an appropriate combination of the results,
one obtains a new method which approximates the exact solution to a higher order
with essentially no additional cost. Richardson’s process of deferred approach to
the limit h→ 0 is a clear and classical example.

The question naturally arises of what happens when the basic method used in
extrapolation is a geometric integrator. As a first approach to this problem we apply
conventional extrapolation to improve the efficiency of the method. We find that
exact preservation of geometric properties of the solution of a differential system
is lost.
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In spite of this situation, however, it is the aim of this paper to show that, if we
start with a GI of ordern and extrapolate it to a higher ordern′, the new method
will still preserve geometric properties up to at least order 2n + 1 and in any case
to an order higher thann′. So, the undesired effects of non-geometric schemes
will still finally show up but their appearence will be considerably delayed and
the errors they originate can be made of the same order of the round-off errors for
sufficiently highn.

In the literature, a common way to obtain higher order geometric integrators is
to use Yoshida’s composition method [9]. This technique is very important from
the theoretical point of view but produces, in general, computationally costly al-
gorithms. For this reason it is worthwhile to look for other strategies. We will see
how the use of ET originates much more efficient methods than those obtained
using the Yoshida idea while effectively preserving the qualitative features of the
solution. They may then constitute a valid alternative.

2. Extrapolation with a Basic Symplectic Method

To be definite we consider symplecticity as the geometric property to be preserved
and so from now on we restrict ourselves to the classical Hamiltonian dynamics
setting.

Given a Hamiltonian functionH(q,p), the time evolution of the corresponding
dynamical system is obtained by evaluating the action of the operator

M(t) = etLH (1)

on the initial conditions. HereLH is the Lie operator associated withH, which
acts on an arbitrary functionf (q,p) according to the ruleLHf = {f,H }, where
{f,H } stands for the Poisson bracket. Very often it is possible to split

LH ≡ X = X1+ · · · + Xs, (2)

where the action ofetXi , i = 1, . . . , s, can be exactly computed. Then a usual
procedure to evaluate the action ofM(t) is to approximate it by a composition of
the flowsetXi . For instance, the symmetric composition

82(h) = eh/2X1 · · · eh/2Xs−1ehXs eh/2Xs−1 · · · eh/2X1 (3)

produces a second order symplectic integration method for a time steph: ehX −
82(h) = O(h3). In general, if82n(h) is a symmetric 2nth order method, then

82n+2(h) = 82n(z1h)82n(z0h)82n(z1h), (4)

with z1 = 1/(2− 21/(2n+1)) andz0 = 1− 2z1, is a symplectic method of order
2n + 2. This technique for constructing symplectic integrators of arbitrarily high
orders was proposed independently by Yoshida [9, 10] and Suzuki [7], its main
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drawback being the high number of evaluations needed. Observe also thatz1 > 1
and thenz0 < −1, so that application of scheme (4) requires two steps forward
and one backward. WhenX = X1 + X2 other specific symplectic methods have
been designed which are much more efficient than scheme (4), particularly when
X2� X1 in some sense [2] or in the Runge–Kutta–Nystr¨om case [3].

Symmetric symplectic integrators are very efficient and in addition their de-
pendence onh is particularly amenable to extrapolation. Let then82n be such a
method of order 2n for the Hamiltonian vector field (2). Then, for one time steph,
it is true that

82n(h) = exp[h(X + h2nN(h))], (5)

whereN(h) =∑∞i=0 h
2iN2i, andN2i are operators belonging to the free Lie algebra

L(X1, . . . ,Xs) generated byXj , j = 1, . . . , s. This can be considered as the
vector space spanned byXj and all their independent nested Lie brackets.

If the time step is divided ink substeps and the method is appliedk times, then

8
(k)
2n (h) ≡

(
82n

(
h

k

))k
= exp

[
h

(
X +

(
h

k

)2n

N
(
h

k

))]
. (6)

Taking different values ofk we obtain different approximate solutions after one
step. In this paper we limit ourselves to polynomic extrapolation techniques which
consider a linear combination of the approximate solutions achieved with the basic
method82n,

9(h) =
m∑
i=1

αi8
(ki)

2n (h), (7)

and fix them integerski and determine the coefficientsαi so as to eliminate the
lowest order terms and thus obtain a higher order integrator. The basic method
being symplectic, we can state the following theorem.

THEOREM 1. If the basic2nth order method82n is symmetric and symplectic,
then by applying polynomic extrapolation it is possible to construct integration
methods of order2(n+ l), l = 1, . . . , n, which are symplectic up to order4n+ 1.

Proof. We can use the Baker–Campbell–Hausdorff and Zassenhaus formulae
[8] for writing the extropolation method9(h) of Equation (7) in the symmetric
form

9(h) = eh/2XYeh/2X, (8)

where

Y =
m∑
i=1

αie
h2n+1Wi , Wi = 1

k2n
i

R
(
h

ki

)
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and R(h/ki) = ∑∞
j=0(h/ki)

2jR2j , with R2j ∈ L(X1, . . . ,Xs). Now a Taylor
expansion leads to

Y = G0I + h2n+1
∞∑
j=0

h2jG2n+2jR2j + 1

2
h4n+2

∞∑
j=0

h2jG4n+2jS2j + · · ·

where

Gs =
m∑
i=1

αi

ksi
, S2s =

s∑
i=0

R2iR2s−2i, s = 0,1,2, . . . .

We then have a method of order 2(n+ l), l = 1, . . . , n, if G0 = 1 andG2n+2j = 0
for j = 0,1, . . . , l−1. This can be accomplished ifm = l+1 and the coefficients
αi satisfy the linear system of equations

1 1 · · · 1
1

k2n
1

1

k2n
2

· · · 1

k2n
m

...
...

. . .
...

1

k2n+2m−4
1

1

k2n+2m−4
2

· · · 1

k2n+2m−4
m




α1

α2
...

αm

 =


1
0
...

0

 .

Thus,

Y = I + h2(n+l)+1Z + 1

2
h4n+2

∞∑
j=0

h2jG4n+2jS2j + · · · (9)

with

Z =
∞∑
j=0

h2jG2(n+l+j)R2(l+j) (10)

containing only operators in the Lie algebraL(X1, . . . ,Xs), so that it is possible
to write

Y = eh
2(n+l)+1Z + 1

2
h4n+2(G4nS0+ h2G4n+2S2+ · · · +

+h4l(G4n+4lS4l −G2
2n+2lR

2
2l)+O(h4l+2))+ r(h), (11)

wherer(h) =O(h6n+3). It is clear thatY = eh2(n+l)+1Z + O(h4n+2) and the result-
ing method9 is of order 2(n + l) and preserves the symplectic character of the
evolution up to order 4n+ 1. 2

According to this result, if the basic method is order four, six or eight, then the
symplectic character is preserved up to orderh9, h13 or h17, respectively. In the
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TABLE I

Extrapolation methodsψ(s)
i,j

of orderi built from symplectic
j th order schemes and equations needed to solve

n l Method Equations r rmax

1 1 9
(5)
4,2 G2 = 0 0 0

9
(9)
6,4 G4 = 0 0

2 1 9
(11)
6,4 G8 = 0 1 2

9
(13)
6,4 G10 = 0 2

9
(13)
8,6 G6 = 0 0

3 1 9
(15)
8,6 G12 = 0 1 2

9
(17)
8,6 G14 = 0 2

9
(13)
10,6 G6 = G8 = 0 0

3 2 9
(17)
10,6 G12 = G14= 0 2 4

9
(21)
10,6 G16 = G18= 0 4

9
(17)
10,8 G8 = 0 0

4 1 9
(19)
10,8 G16 = 0 1 2

9
(21)
10,8 G18 = 0 2

4 2 9
(17)
12,8 G8 = G10= 0 0 4

9
(21)
12,8 G16 = G18= 0 2

The number of substeps required ism = l+1 and the meth-
ods preserve symplecticity up to orders = 4n + 1+ 2r.
Here rmax denotes the maximum value ofr a method of
order 2(n+ l) can attain.

later case, for values ofh sufficiently small, the method will be symplectic up to
round-off error.

We emphasize the use of this theorem to obtain methods of order 2(n + l),
l = 1,2, which behave in practice as symplectic schemes with better efficiency
than other strictly symplectic algorithms. In fact, it is possible to build methods of
these orders which preserve the symplectic property up to order higher than 4n+1
(in practice, 4n + 3 or 4n + 5) simply by cancelingG4n+2r for r = 0,1, . . . . We
could rise even more the order of preservation of symplecticity but then the order
of consistency of the method increases and efficiency could be lost.

In Table I we list the linear equations to be solved, besides the conditionG0 = 1,
in order to obtain different methods by extrapolation techniques. We denote by
9
(s)
i,j a method of orderi = 2(n + l), l = 1, . . . , n , which is symplectic up to
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order s = 4n + 1 + 2r, r = 0,1, . . . , rmax, obtained by extrapolating a basic
symplectic method of orderj = 2n. A detailed analysis of Equation (11) shows
thatrmax= 2l − 1 if n andl are such that 4l < 2n+ 1.

In particular, for constructing a method9(13)
6,4 we must solve the equations

G0 = 1,G4 = 0 (sixth order conditions:l = 1) andG8 = G10 = 0 to achieve pre-
servation of the symplectic character up to order 13(r = 2), whereas the method
9
(17)
12,8 requires solving the 12th order conditionsG0 = 1,G8 = G10 = 0 (l = 2,

r = 0). In this way we end up with

9
(13)
6,4 =

1

3912975
(41943048(8)

4 − 2826248(4)
4 + 12968(2)

4 +84),

9
(17)
12,8 =

1

260865
(2621448(4)

8 − 12808(2)
8 +88). (12)

The table suggests that it is convenient in practice to takel = 1 or 2 and basic
methods of high order (six or eight) to obtain extrapolation schemes effectively
symplectic up to round-off error. In this way, the particular sequence ofki values
chosen for extrapolation is not relevant.

For the sake of illustration of the results obtained, we consider next the har-
monic oscillator Hamiltonian

H = T (p)+ V (q) = 1
2p

2+ 1
2q

2.

Let MX(h) denote the exact matrix evolution associated withX = H , T andV ,
i.e.,(q(h), p(h))T = MX(h)(q(0), p(0))T . Then

MH(h) =
(

cos(h) sin(h)
− sin(h) cos(h)

)
, MT (h) =

(
1 h

0 1

)
, MV (h) =

(
1 0
−h 1

)
.

We consider as basic methods the following fourth and sixth order symplectic
symmetric schemes built by Yoshida [9]:

84(h) = 82(x1h)82(x0h)82(x1h) (13)

86(h) = 82(w1h)82(w2h)82(w3h)82(w4h)82(w3h)82(w2h)82(w1h),

where82(h) = MT (h/2)MV (h)MT (h/2) is the well-known leapfrog method and

x1 = 1

2− 21/3
, x0 = 1− 2x1,

w1 = 0.78451361047755726382, w2 = 0.23557321335935813368,

w3 = −1.17767998417887100695, w4 = 1− 2(w1+ w2+ w3).

In Table II we collect the main term in the truncation error for several methods
obtained by extrapolation from these basic methods. We check the preservation of
the symplectic character of the approximate evolution matrix simply by computing
its determinant (a 2× 2 matrixA is symplectic iff det(A) = 1). As we can ob-
serve, these results are in complete agreement with the above deduced theoretical
estimates.
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TABLE II

Error and degree of symplecticity for different9(s)
i,j

methods obtained by extrapolating the basic symplectic integrator8j

i, j, s 9
(s)
i,j 9

(s)
i,j (h)−MH(h) det

(
9
(s)
i,j (h)

)
6,4, 9

1

15

(
168(2)4 −84

) (
0 −8.6 × 10−4

−2.0× 10−3 0

)
h7 1+ 1. 8× 10−4h10

6,4, 11
1

3825

(
40968(4)4 − 2728(2)4 +84

) (
0 −1.0 × 10−5

−2.3× 10−5 0

)
h7 1+ 1. 3× 10−7h12

8,6, 13
1

26 − 1

(
268

(2)
6 −86

) (
0 6. 4× 10−6

8. 6× 10−6 0

)
h9 1+ 1. 6× 10−7h14
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3. Comparison with Composition Methods

As a criterion to estimate the error of a 2(n + l)th order method obtained from a
symplectic basic scheme82n(h) we may introduce the quantityEf = pε‖R2l

‖1/(2(n+l)), wherep counts the number of times the basic method is applied,ε

measures the error of the method and‖ · ‖ denotes some norm of the main error
term at order 2(n+ l)+ 1. In this section we make some comments on the relative
merits of composition and extrapolation methods with respect top andε.

The number of evaluations needed to increase by 2l the order of the basic
symmetric method82n(h) by applying Equation (4) isp = 3l. Instead, with
extrapolation with the sequenceki = 2i−1, i = 1, . . . , l + 1, this number is
p =∑l+1

i=1 2i−1 = 2l+1 − 1, which grows more slowly withl.
In order to analyze the behavior ofε in both types of techniques, let us consider

again82n(h) as given by Equation (5). Then the Yoshida composition (4) leads to

S2n+2(h) = exp
(
hX + h2n+3 (y2n+3N2+ v2n+3[X, [X,N0]])+O(h2n+5)

)
,

with y2n+3 = 2(x2 − 1)/(x − 2), x = 21/(2n+1), andv2n+3 < y2n+3. Here [A,B]
denotes the usual Lie bracket.

On the other hand, with extrapolation we obtain

9
(4n+1)
2n+2,2n =

1

2n − 1
(2n8(2)

2n −82n)

= exp(hX + h2n+3e2n+3N2+O(h2n+5))+ O(h4n+1),

with e2n+3 = −3/(4(22n − 1)).
A first estimate shows that|y2n+3/e2n+3| ∼ 22n, which indicates how greater

is the error in the Yoshida scheme. If we apply twice the composition to obtain
a method of order 2n + 4 then the quotient of errors will be|y2n+5/e2n+5| ∼
22n22n+2 = 24n+2. In the next section we will see that this is perfectly in accordance
with the results in the numerical examples.

4. Numerical Examples

We test numerically, in a nontrivial problem, the new methods based on the ex-
trapolation technique in comparison with standard high-order symplectic integrat-
ors. In particular, we compare with the integration methods obtained by apply-
ing Yoshida’s technique, Equation (4), and study to what extent the symplectic
character is kept in the numerical approximation.

In our experiments we consider the Kepler Hamiltonian

H(q,p) = 1

2

(
p2
x + p2

y

)− 1√
q2
x + q2

y

,
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which is a standard test bench for symplectic integrators, with initial conditions
px = 0, py = √(1+ e)/(1− e), qx = 1− e, qy = 0, and eccentricitye = 0.5.
These correspond to an orbit of period 2π and energy−1

2.
Figures 1(a) and 1(b) show, in a log-log scale, the average error in energy as

a function of time obtained along 215 = 32768 periods with different sixth-order
schemes constructed from the fourth-order symplectic method84 of Equation (13):
dotted lines correspond to the Yoshida technique, dash-dotted lines stand for the
extrapolation method9(9)

6,4 given in Table II and solid lines correspond to9(13)
6,4 ,

given in Equation (12). The step sizeh is chosen in such a way that all methods
require 900 (Figure 1(a)) and 3600 (Figure 1(b)) evaluations of the potential per
period, respectively.

In Figure 1(a), due to the big step used, the linear growth in the energy error
appears after a small number of periods for the extrapolation method. Nevertheless,
whenh is four times smaller (Figure 1(b)) it is considerably delayed for9

(9)
6,4 and

much more for9(13)
6,4 , which is effectively symplectic in the whole time interval

considered. In fact, we can easily estimate this delay: if we write the dominant
terms in the error of a method9(s)

i,j asAhi + Bhs , then the linear growth appears
when |B/A|hs−i ' 1. Whenh is divided by a factorβ the undesired effects are
delayed by a time of the orderβs−i . In our caseβ = 4, i = 6, ands = 9 or 13 so
9
(13)
6,4 will be more efficient than Yoshida’s method during 10–20 millions of peri-

ods (without considering round-off errors) while being effectively symplectic for
approximately one million periods. Observe in passing that the error in Yoshida’s
method is approximately 24 times greater, as predicted in the previous section.

Figure 1(c) shows the average error in energy and Figure 1(d) in position (as the
Euclidean norm inR4) obtained by two 12th order methods constructed by apply-
ing Yoshida’s technique (812,8, dotted lines) and extrapolation (9(17)

12,8, dash-dotted
lines) to the 17 stages symmetric symplectic eighth-order method(SS,m = 17)
designed by McLachlan [4],88. The step size chosen ish = 2π/20 for both meth-
ods, so that812,8 requires nine evaluations of88 per step, whereas only seven are
needed for9(17)

12,8. From the figure we see that9(17)
12,8 provides results which are four

orders of magnitude more accurate than812,8 while still effectively preserving the
symplectic character of the evolution. Again this is in agreement with the estimate
(218) of the previous section when the different number of evaluations is taken into
account. The 14th order schemes built from88 give still much better results.

In order to compare the efficiency of the new extrapolation methods, we show in
Figure 2 the average error in energy against the number of potential evaluations ob-
tained after 500 periods with different symplectic eighth order integrators recently
appeared in the literature:

• Yos8: The best 15 stages method given by Yoshida [9];
• CSS8: The 24 stages method given by Calvo and Sanz–Serna [6];
• McL8: The 17 stages method given by McLachlan [4];
• pm8: The 5 stages method using modified functions given in [3].
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Figure 1. (a) and (b): Average error in energy vs time for the Kepler problem obtained with the

extrapolation methods9(9)6,4 (dash-dotted lines),9(13)
6,4 (solid lines) and the sixth order integrator

built by applying Yoshida’s technique to the basic symplectic method84 of Equation (13). In (b) the
step sizeh is four times smaller than in (a). (c) and (d): Average error in energy (c) and position (d)

obtained by the extrapolation method9(17)
12,8 (dash-dotted lines) and the 12th order integrator built by

applying Yoshida’s technique to a basic eighth order symplectic method.
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Figure 2.Average error in energy vs. number of potential evaluations for the Kepler problem obtained

with the new extrapolation method9(13)
8,6 (ex6–8) in comparison with other eighth order strictly

symplectic integrators.

These well-established methods are compared with9
(13)
8,6 (ex6–8 in the figure)

obtained using the nine stages sixth-order symmetric symplectic method(SS,m =
9) of McLachlan [4] as the basic method. We observe that, when high precision
is considered, the efficiency of ex6–8 is very similar to that of CSS8. We clearly
notice how the ET can produce, in a very simple form, highly efficient methods
when applied to good basic methods.

5. Final Comments

In the last years there has been a dramatic growth in the literature on symplectic
integration of Hamiltonian dynamical systems, especially concerning the charac-
terization of existing numerical methods which preserve symplecticity and also on
the construction of new classes of symplectic methods. With respect to one-step
methods, it has been shown that the family of Runge–Kutta and Runge–Kutta–
Nyström schemes are symplectic if their coefficients satisfy certain well-known
relations [6], whereas there is no universal criterion for symplecticity of multistep
methods, although this is an active field of research [5]. By pursuing a similar
goal we address in this paper the question of the preservation of symplecticity
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by extrapolation methods obtained from a basic 2nth order symplectic scheme. In
general, the answer given by Theorem 1 is that, although the resulting method is
not symplectic, it preserves symplecticity up to order 4n + 1 and even to higher
order.

In this paper the purpose was not to construct a scheme with variable step size
and arbitrarily high order from a basic second order method, but to start with a high
order symplectic method (six or eight) and build efficient integration algorithms of
order eight, ten or twelve which behave in practice as symplectic integrators. This
is at variance with the ordinary use of extrapolation methods in solving ordinary
differential equations.

In fact, we have shown, both theoretically and in numerical experiments, that
by applying the polynomic extrapolation idea, it is possible to build integration
methods which are more efficient than those obtained by employing Yoshida’s
composition technique without losing in practice the nice properties of symplectic
methods. Even more, the efficiency of our simple eighth order scheme9

(13)
8,6 is

analogous to other standard symplectic integrators.
Recently, the construction of explicit Runge–Kutta methods of orderp which

mimic symplectic ones as far as the error propagation is concerned, has been
afforded by Aubry and Chartier [1]. They call such apth order method pseudo-
symplectic of orderq > p (in practice,q = 2p) if it preserves the symplectic form
to within O(hq)-terms. In [1] some second and third-order methods of pseudo-
symplectiness order four and six have been explicitly obtained, but the construction
of higher order schemes in this framework is cumbersome.

In this paper we have shown how to use polinomic extrapolation to obtainpth
order pseudo-symplectic explicit methods of pseudo-symplectiness orderq > n,
with p as high as desired, simply by solving a system of linear equations. We have
given methods even withq = 2p + 1, although schemes with lower values ofq
behave as strictly symplectic ones over long integration intervals when high order
basic methods are considered.

In this work we have used as the basic method for extrapolation an explicit
symmetric symplectic integrator. It is clear, however, that the same procedure can
also be applied with a basic implicit method. In fact, implicit integration schemes
require the solution of several systems of nonlinear equations per step, and this is
a serious drawback for achieving high order methods. In this case, the use of ET
could be particularly efficient. If one starts the integration with the substepsh/km,
km = 2m−1, one finds two advantages: (i) the nonlinear equations are solved with
few iterations and (ii) we have approximate solutions in 2m−1 intermediate points.
These approximate solutions can be used in order to speed up considerably the
other 2m−1 − 1 substeps corresponding to the otherki .

Extrapolation methods are also especially amenable for integrating irreversible
systems. As is well known, for this type of systems, numerical integration methods
with non-negative coefficients are commonly used. It is interesting then that the
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extrapolation methods introduced in this paper ensure this characteristic provided
the basic method fulfills it.
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