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Abstract. Processing techniques are used to approximate the exact flow of near-integrable Hamilto-
nian systems depending on a small perturbation parameter. We study the reduction of the number
of conditions for the kernel for this type of Hamiltonians and we build third, fourth and fifth or-
der methods which are shown to be more efficient than previous algorithms for the same class of
problems.
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1. Introduction

The use of symplectic algorithms has been rapidly growing in the last years for the
numerical integration of the ordinary differential equations that arise in Hamilto-
nian dynamical systems. Interesting applications to relevant problems in Dynam-
ical Astronomy can be found in [5, 6, 17, 18]. As is well known, this kind of
integrators preserve qualitative properties of the exact solution, in particular the
symplectic character of the evolution [22]. Basically, the problem of solving the
dynamics of a classical system with HamiltonianH(q,p) is equivalent to evalu-
ating the action of the operatore−(t−t0)LH , wheret0 is the initial time (henceforth
t0 = 0) andLH is the Lie operator associated withH . It acts on an arbitrary
analytic functionf (q,p, t) according toLHf = {H, f }, where{H, f } denotes
the Poisson bracket.

When the HamiltonianH can be split asH = A + B, so that the flows
corresponding toA andB can both be computed explicitly and exactly, a usual
practice is to construct a composition of these elementary flows to obtain an ap-
proximation of the true solution up to a certain given order [8, 12, 27, 28]. One
particular instance where this type of methods can be applied is afforded by an
exactly integrable HamiltonianH0 perturbed by a termH1 which originates also
an exactly computable flow [13]:

H(q,p; ε) = H0(q,p)+ εH1(q,p). (1)
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In particular, the Hamiltonian of theN-body problem can be separated in the
form of Equation (1) using Jacobi coordinates, withH0 representing the Keplerian
motion andεH1 the mutual perturbations of the bodies on one another [25].

When the parameterε is small, i.e., for the so-called near-integrable Hamiltoni-
ans, it can help to achieve methods which behave in practice as integrators of order
n with less severe restrictions concerning the order conditions, so that the number
of mappings to be composed decreases considerably. This approach has been used
by McLachlan [13] to get several families of symplectic schemes with error terms
of orderεh9 andε2h5.

One drawback of the procedure is that, very often, a transformation to action-
angle variables of the integrable HamiltonianH0 must be incorporated into the
algorithm [6, 21] with the resulting additional computational cost. Thus, if the
numerical scheme is not very efficient and/orε is not small enough, it could be
more profitable to apply a standard symplectic integrator which does not take
into account the special structure ofH(q,p; ε) [6]. The situation, then, motiv-
ates the search of methods that, while keeping the advantages of the perturbation
decomposition, perform more efficiently.

Recently, a modification of the composition technique has been proposed: the
use of processing. This idea was first introduced in the context of Runge–Kutta
methods by Butcher [3] in 1969 and used in the last years for symplectic integrat-
ors, see for example [2, 10, 15, 20]. It has also been applied to the symplectic
integration of near-integrable Hamiltonian systems by Wisdom et al. [26] and
McLachlan [14]. In order to reduce the number of evaluations per time steph =
t/N in the integration process, the following composition is considered:

e−hH(h) ≡ eP e−hKe−P . (2)

Then, afterN steps, we havee−tLH ≈ e−tH(h) = eP (e−hK)Ne−P . At first we apply
eP (the corrector or processor), thene−hK (the kernel) acts once per step, ande−P
is only evaluated when output is desired. Both the kernel and the processor are
taken as compositions of the flows associated withH0 andH1, so that the exactly
symplectic character of the integration scheme is ensured.

A general analysis of the processing technique in the context of symplectic in-
tegration has been carried out in [2]. There, the number of conditions to be satisfied
by the kernel to attain a given effective order (i.e., order of the processed method)
has been obtained in the general case. This figure turns out to be considerably
smaller than the number of order conditions required by standard methods. In
addition, it is shown that the kernel completely determines the optimal method
we can obtain by processing. As a consequence of the analysis, new symplectic
integrators have been constructed up to sixth order which have better efficiency
than alternative symplectic schemes found in recent literature. The improvement is
mainly due to the reduction in the number of evaluations of the kernel operator.

In this paper we particularize the above analysis to the near-integrable Hamilto-
nian (1). Recently this system has been considered by Liao [9] using implicit
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symplectic algorithms. Here we approach the problem from the point of view
of explicit symplectic methods. We find compositions for the kernel with as few
stages as possible. Once the kernel has been fixed, we construct the processor to
get more efficient symplectic schemes of effective order three, four and five than
others available in the literature.

2. Kernel Conditions

2.1. GENERAL CASE

LetL(A,B) be the free Lie algebra generated byA ≡ LH0 andB ≡ LH1, the Lie
operators associated with the two pieces of the Hamiltonian. We denote by [Li, Lj ]
the commutator product of the two elementsLi andLj of the Lie algebra and use
the notation [L1, L2, . . . , Ls] for the nested commutator [L1, [L2, . . . , Ls]]. Let
Lm(A,B) be the subspace ofL(A,B) generated by the independent brackets of
orderm, its dimensionc(m) being 2, 1, 2, 3, 6, 9 form = 1, . . . ,6 [11], and
denote by{Em,i}c(m)i=1 a basis ofLm(A,B). Our explicit choice of basis is given in
the appendix.

In this work we consider both the kernel and the processor as a composition
of the readily computable evolutions governed byH0 andH1 (e−hA and e−εhB ,
respectively). Thus, by repeated application of the Baker–Campbell–Hausdorff
(BCH) formula [24] the kernel and processor generatorsK andP in L(A,B) can
be written as a power series inh:

K =
∞∑
i=1

hi−1
c(i)∑
j=1

εd(i,j)ki,jEi,j

 , P =
∞∑
i=1

hi
c(i)∑
j=1

εd(i,j)pi,jEi,j

 , (3)

whered(i, j) indicates the number ofB operators contained inEi,j and, for con-
sistency, we takek1,1 = k1,2 = 1.

The basic equation (2) of the processing method will lead us to [24]

H(h) = e[P,·]K =
∞∑
i=1

hi−1
c(i)∑
j=1

εd(i,j)fi,jEi,j

 = f1,1A+ εf1,2B +

+hεf2,1 [A,B] + h2 {εf3,1 [A,A,B] + ε2f3,2 [B,A,B]
}+ · · · . (4)

In general there are a finite number of terms inH at each order inh, but an infinite
number at each order inε.

If Equations (3) are used, thefi,j coefficients are given in terms of polynomial
relations involvingki,j andpi,j [1, 2] with f1,1 = f1,2 = 1. Specificnth order
integration methods are obtained by requiring thatfi,j = 0 up to i = n. These
equations cannot be solved for an arbitrary kernel using only the processor coef-
ficients. More specifically, the kernel of anth order(n> 2) symplectic processing
method must satisfy exactlyk(n) = c(n) − 1 independent conditions [2]. In the



20 S. BLANES ET AL.

appendix, we collect the explicit form of these conditionsNi,j = 0 up to sixth
order for a general HamiltonianH = A+ B.

Concerning the near-integrable case, for most of the problems it is not necessary
to cancel all the coefficients at an orderhn, and some of the conditions for the kernel
will not apply. Usually, one is interested in designing methods such that

H(h)− LH = O(εhs1 + ε2hs2 + ε3hs3 + · · · ). (5)

Following McLachlan [13], a method which satisfies this condition will be said of
order(s1, s2, s3, . . . ). According to this notation, the terms up toεihsi are included
in the numerical scheme. Termination of the list indicates that all other terms are at
least of the same order as the last one. Thus, a method(s1, . . . , sn), si+16 si , has
ordersn, whereass1 is the order the method would have in the limitε→ 0.

If we are interested in canceling only the coefficients which multiplyεhi for
i = 1, . . . , s1, i.e., in a(s1,2) method, we will have to impose the conditions
fi,1 = 0, 1 < i6 s1. This is equivalent to consider only the nested commutator
[A, . . . , A,B] with i − 1 A operators, so the resulting subspace has dimension 1
andk(i) = 0. In other words, the kernel has not to satisfy any condition (except
the consistency condition). With the leap-frog kernel

e−hK = e−hA/2e−εhBe−hA/2, (6)

one can get such a method withs1 as high as desired, as shown by Wisdom et al.
[26].

Methods which also cancel the coefficients ofεrhi with r > 1 in (5) require to
consider some of the conditions for the kernel. These come from the simultaneous
cancellation of a number offi,j coefficients at each order [1]. More specifically,
Table I collects thefi,j coefficients to be cancelled to obtain a(s1, s2, . . . , sn)
method. Each row gives the new coefficients to be vanished besides the ones in
the preceding rows. As a result, in Table II we give the specific conditionsNi,j
to be satisfied by a kernel to generate different(s1, . . . , sn) methods of effective
ordersn.

TABLE I

Coefficients of the modified HamiltonianH to be vanished
to obtain a(s1, s2, . . . , sn)method

Method Order conditions

(s1,2) εf2,1 = εf3,1 = · · · = εfs1,1 = 0

(s1,4, 3) ε2f3,2 = ε2f4,2 = 0

(s1,4) ε3f4,3 = 0

(s1,6, 4) ε2f5,2 = ε2f5,3 = ε2f6,2 = ε2f6,3 = 0

(s1,6, 5,4) ε3f5,4 = ε3f5,5 = 0

(s1,6, 5) ε4f5,6 = 0
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TABLE II

Conditions to be satisfied by the kernel in order to produce different
(s1, . . . , sn) processing methods

Method Conditions

N3,1 = 0 N4,1 = 0 N5,1 = 0 N5,2 = 0 N5,3 = 0

(s1,2)

(s1,4, 3) ×
(s1,4) × ×
(s1,6, 4) × × ×
(s1,6, 5, 4) × × × ×
(s1,6, 5) × × × × ×

For instance, a(7,6,4) method requiresf2,1 = · · · = f7,1 = f3,2 = f4,2 =
f4,3 = f5,2 = f5,3 = f6,2 = f6,3 = 0 (Table I). Observe thatf3,1 = f3,2 = f4,1 =
f4,2 = f4,3 = f5,1 = f5,2 = 0 entail, according to the results presented in the
appendix,N3,1 = N4,1 = N5,1 = 0. So, if the kernel satisfies these conditions then
a processor that annihilatesf3,1, f4,1, f4,2 andf5,1 is chosen. On the other side,
f2,1 = f5,3 = f6,1 = f6,2 = f6,3 = f7,1 = 0 do not impose additional restrictions
to the kernel and can be satisfied by means of the processor.

Table II shows, in particular, that only(s1,2) methods can be obtained with
the leap-frog kernel (6) because nowN3,1 = 1/24, a feature already remarked by
Suzuki [23]. If, as suggested by McLachlan [14], the symmetric kernel
e−εhb1Be−hA/2 e−εh(1−2b1)B e−hA/2e−εhb1B is considered, one can obtain more
efficient processing(s1,2) methods but, as in the previous case, it cannot be used
for building up higher order schemes becauseN3,1 = 12b2

1 − 6b1 + 1 6= 0 for all
real values ofb1.

Higher order methods can be obtained by considering (a) symmetric kernels
with a larger number of composed mappings, or (b) non-symmetric kernels. In the
first case the effectiveness of the resulting method may be globally reduced due
to the increment in the number of evaluations. On the other hand, the use of non-
symmetric kernels is advantageous from the point of view of efficiency, especially
when dealing with odd effective order methods [2] (for instance, with only two
evaluations ofB in the kernel we can build(s1,4,3) methods [1]), although the
time-reversal symmetry of the system is no longer preserved.

As it is well known [22], a general(2n − 1)th order non-symmetric scheme
can be composed with its backward form to yield a 2nth order symmetric method.
If this procedure is applied only to the kernelK, however, the new symmetric
composition thus obtained does not satisfy the kernel conditions up to order 2n−1
(2n). This can be easily seen by application of the BCH formula to the composition
and taking into account the conditions verified byK.
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TABLE III

Conditions to be satisfied by the kernel of
(s1, . . . , sn) processing methods for a Hamiltonian
H = H0(q,p)+ εH1(q) with H0 quadratic inp

Method Conditions

N3,1 = 0 N5,1 = 0 N5,2 = 0

(s1,2)

(s1,4) ×
(s1,6,4) × ×
(s1,6,5) × × ×

2.2. HAMILTONIANS WITH QUADRATIC KINETIC ENERGY

Often one finds near-integrable Hamiltonian systems as in Equation (1) with the
unperturbed partH0(q,p) quadratic inp andH1 depending only onq. The most
important example is the class of Hamiltonians of the formH0(q,p) = (1/2)pT p+
V (q), although there may be other applications, such as Poisson systems [12]. In
this case it is clear that [B,A,B] only depends onq, and therefore [B,B,B,A] =
0. This property reduces the number of kernel conditions to be satisfied. In partic-
ular, Table II leads in this case to Table III.

Additionally, we can consider the modified perturbation

Cb,c = bB + εh2c[B,A,B], (7)

which is exactly evaluable. Then we can replace, both in the kernel and processor
compositions, alle−εhbB factors by the more general onese−εhCb,c , which allows us
to introduce two parameters with only one exponential. In fact, with the modified
leap-frog kernel [20]

e−hK = e−hA/2e−hεC1,1/24e−hA/2‘ (8)

we haveN3,1 = 0, so that(s1,4) methods can be constructed for an arbitrarys1,
and higher order schemes are possible with more evaluations inK.

3. The New Methods

In order to build new processing methods for near-integrable Hamiltonians, we
consider the following processor:

eP =
s∏
i=1

ehziA eεhyiB, (9)
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where the replacement exp(εhyiB) −→ exp(εhCyi,wi ) can be done when
[B,B,B,A] = 0. In any case, it is characterized by the numbers of B (or C)
evaluations.

As far as the kernel is concerned, the following types of composition can be
used:

(i) Non-symmetric kernel withm appearances of theB operator, which will be
denoted by NS-m:

(∑m
i=1 ai =

∑m
i=1 bi = 1

)
e−hK =

m∏
i=1

e−εhbiB e−haiA. (10)

(ii) Symmetric kernel,ABA-type composition:(
∑m+1

i=1 ai =
∑m

i=1 bi = 1)

e−hK = e−ha1Ae−εhb1Be−ha2A · · · e−hamAe−εhbmBe−ham+1A (11)

with am+2−i = ai , bm+1−i = bi and referred to as ABA-m.
(iii) Symmetric kernel,BAB-type composition:(

∑m
i=1 ai =

∑m+1
i=1 bi = 1)

e−hK = e−εhb1Be−ha1Ae−εhb2B · · · e−εhbmBe−hamAe−εhbm+1B (12)

with am+1−i = ai , bm+2−i = bi and denoted still by BAB-m, due to its ‘first
same as last’ (FSAL) property [22].

We designate the whole method by the label(X-m, s), in which X = NS, ABA,
BAB indicates the particular character of the kernel and, as before, we can re-
placee−εhbiB by e−εhCbi ,ci . Observe that we could also consider the non-symmetric
producte−hK = ∏i e

−hâiAe−εhb̂iB , but then the corresponding adjoint composition
is similar to (10) and thus it leads essentially to the same class of methods [22].
This is not the case of symmetric kernels because they are self-adjoint.

Once a particular (symmetric or non-symmetric) kernel is considered we pro-
ceed to the choice of a processoreP in the form of Equation (9).

We can obtain high efficient methods if we apply some optimization algorithm
to this procedure [2]. For a(s1, s2, . . . , sn) processing method of ordersn we have

H(h)− LH = hsn
c(sn+1)∑
j=1

εd(sn+1,j)fsn+1,jEsn+1,j +O(hsn+1), (13)

where some of thefsn+1,j coefficients have been cancelled by the kernel.
For standard symplectic integrators it is usual to define the errorEr of the

method as the Euclidean norm of the vectorfsn+1 = (fsn+1,1, . . . , fsn+1,c(sn+1))

and, to include somehow the computational cost of the algorithm, one also defines
the effective error asEf ≡ mE1/sn

r , wherem is proportional to the cost of one step
(basically, the number ofA andB evaluations).

For instance, for a(7,6,4) scheme we haveE1/4
r = (f 2

5,4+ f 2
5,5+ f 2

5,6)
1/8. So

the error is dominated by the coefficientsf5,4, f5,5, f5,6, but the processor can be
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chosen in such a way that the coefficientf5,5 vanishes (no additional restrictions to
the kernel are necessary). Then the remaining coefficients can be written as

ε3f5,4 = γ1N5,2, ε4f5,6 = γ2N5,3,

whereγ1 andγ2 are now constants which are independent of the kernel and the
processor. Finally, we take the kernel which minimizes the value of the coefficient
f5,4 which is multiplied by the lowest power ofε.

Thus the procedure to build a(7,6,4) method can be summarized as follows:
first, we try to solve the system of polynomial equationsN3,1 = N4,1 = N5,1 = 0
in order to determine a valid kernel. Several possibilities may occur: (i) there is
no solution; (ii) there is only one solution; (iii) there are a finite set of solutions,
and (iv) there is a continuous family of solutions. In the last two cases we take the
solution which minimizes the value of|N5,2| (or equivalently,f5,4). Then we look
for a particular processor satisfying all the required conditions. In this sense the
resulting method could be considered as optimal.

In order to determinezi, yi we apply Lie algebraic composition formulas to
(
∏
i e
hziAeεhyiB)e−hK(

∏
j e
−εhyjBe−hzjA) to obtain, with the already known values

of ki,j ,

fi,j = fi,j (z, y) = 0, (14)

where a vector notation has been used for the coefficientszi and yi . Here, as
mentioned earlier, only those values ofi andj have to be considered which

(a) do not makefi,j identically vanish because of the kernel conditions and
(b) produce the desired effective order for the whole method.

We collect in Table IV the values of the parameters and the effective errors
of some third and fourth order symplectic schemes we have obtained for the near-
integrable Hamiltonian of Equation (1). Observe that with only threeB evaluations
in a symmetric kernel we get a(7,6,4) method, whereas with one additional eval-
uation a(7,6,5,4) scheme is attained in the general case. It is worth noting that a
(7,6,4) method with aBAB-type composition has also been constructed, whereas
no (7,6,5,4) scheme withABA-type composition exists with real coefficients.

When the unperturbed part of the Hamiltonian (1) is quadratic in the momenta
andH1 = H1(q)we obtain, by following the same approach, the(6,4) and(7,6,5)
schemes collected in Table V, with effective order four and five, respectively. Both
methods are given with and without using the modified perturbationCα,β . In the
first case only oneCα,β evaluation is needed for attaining a(6,4) scheme and two
of them in a non-symmetric kernel of a(7,6,5) method. It is also worth noticing
that the(6,4,3) integrator given in Table IV is now a(6,4) scheme. The(7,6,5,4)
integrator on its side is, as a matter of fact, a(7,6) scheme because the symmetric
kernel used satisfies directly the sixth order conditions [2].

At this point we should add some comments on the convenience of using mod-
ified perturbations. One has to weigh the pros and cons. The main advantage is
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TABLE IV

Coefficients, stability limith∗ and errors of the new processing methods for

near-integrable Hamiltonian systems the effective error is given byEf = mE1/sn
r

(6, 4, 3) a1 = 1
2

(
1+

√
1+ 2√

3

)
b1 = 1

2

(
1−

√
1+ 2√

3

)
(NS-2,4) z1 = 0 y1 = −1/2

z2 = −0.4842296798457861 y2 = −0.071444491827245766

z3 = 0.3104400973059574 y3 = 0.5119423407689261

z4 = 0.9112603236884162 y4 = −0.2256471548948410

h∗ = 2
√

3

E
1/3
r = 0.2464

(7, 6, 4) a1 = 0.5600879810924619 b1 = 1.5171479707207228

(ABA-3,6) z1 = −0.3346222298730800 y1 = −1.621810118086801

z2 = 1.097567990732164 y2 = 0.0061709468110142

z3 = −1.038088746096783 y3 = 0.8348493592472594

z4 = 0.6234776317921379 y4 = −0.0511253369989315

z5 = −1.102753206303191 y5 = 0.5633782670698199

z6 = −0.0141183222088869 y6 = −1/2

h∗ = 2.3221

E
1/4
r = 0.3801

(7, 6, 5, 4) a1 = −0.6659279171311354 b1 = 0.0962499147414666

b2 = −0.0649951074268679

(BAB-4,6) z1 = −0.5682049251492933 y1 = 0.2005780724079215

z2 = 0.2817876004745961 y2 = −0.3923456667727871

z3 = 0.7168960305523042 y3 = −0.9517071967056039

z4 = 0.4332386614652446 y4 = −0.0443156930081850

z5 = −0.3552157340165512 y5 = 0.7361124293734198

z6 = −0.5825683076056897 y6 = 0.3776113804258454

h∗ = 3.1477

E
1/4
r = 0.1845

that with more parameters in each exponential we have more flexibility to ob-
tain higher order methods. On the other hand, one has to consider the increase
of the computational cost. If we denote byτi the CPU time needed to evaluate
exp(hLHi ), i = 0,1, by τc the CPU time needed to perform the change of co-
ordinates for the flows ofH0 andH1 to be exactly computable, and byτI the CPU
time needed for computing exp(hLCα,β ), then the total CPU time increases by a
factor r(τ0+ τI + 2τc)/(m(τ0+ τ1+ 2τc)), wherem andr stand for the number
of H1 andCα,β evaluations, respectively. Observe that in the splitting (1) of the
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TABLE V

Coefficients, stability limith∗ and errors of the new processing methods for a
HamiltonianH = H0(q,p)+ εH1(q) with H0 quadratic inp

(6, 4) c1 = 1/24

(ABA-1,5) z1 = 0 y1 = −0.1659120515409654

with (Cα,β) z2 = −0.9125829692505096 y2 = −0.1237659000825160

z3 = −0.3605243318856133 y3 = 0.0250397323738759

z4 = 0.7354063037876117 y4 = 0.2269372219010943

z5 = 1/2 y5 = 0

h∗ = 2
√

3

E
1/4
r = 0.1770

(6, 4) a1 = −1/10 b1 = 1
2 −

√
133
132

(NS-2,4) z1 = 0 y1 = −0.1677635606904907

no (Cα,β) z2 = −0.8166530657446426 y2 = −0.6620928448641953

z3 = −0.2644713063762618 y3 = 0.1030583772761163

z4 = 0.3962246110336624 y4 = 0.6922763403734603

h∗ = 2
√

3

E
1/4
r = 0.1891

(7, 6, 5) a1 = −1/2 b1 = 45+√1785
90

(NS-2,5) c1 = 33915+915
√

1785
1285200 c2 = 33915−915

√
1785

1285200
with (Cα,β) z1 = 0 y1 = −0.1351128250649565

z2 = −0.8727464748693424 y2 = 0.3712122429685866

z3 = −0.0934121328200023 y3 = −0.2025522965297111

z4 = 0.4938054631210707 y4 = −0.7782649705100380

z5 = −0.7876465915203159 y5 = 0

w1 = w5 = 0 w2 = 0.0375959002450306

w3 = −0.0288760437687322 w4 = −0.0024000778613867

h∗ = 3.0171

E
1/5
r = 0.2130

(7, 6, 5) a1 = 1.158378661341834 b1 = −1/2

(NS-3,6) a2 = −1.269999100723601 b2 = 0.00226820843284365

no (Cα,β) z1 = −1.306469822900446 y1 = 0.5502936143904913

z2 = −0.3604623184177194 y2 = 0.04124703295843255

z3 = 0.3004052627685708 y3 = −0.5571928644135203

z4 = 1.149353532702771 y4 = −0.5401379261370885

z5 = −0.9412099358386227 y5 = −0.9868225091585909

z6 = 0.00122059292248524 y6 = 1

h∗ = 2.7517

E
1/5
r = 0.2422
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Hamiltonian it is not true in general thatτ0 � τ1 and/orτc � τ1, as is usually the
case in the more conventional splitting in kinetic and potential energy terms.

Before concluding this section some remarks concerning the stability of the new
methods are also in order. Here we consider the stability of the processing methods
applied to the harmonic oscillatorH(q, p) = H0 + H1 = p2/2+ q2/2, (ε = 1),
but, as shown in [15], the results are valid for any problem in whichH0 andH1,
when linearized about some state, are simultaneously diagonalizable.

When a processed method is applied to the integration of the harmonic oscil-
lator the matricesMK andMH corresponding to the kernel and the whole method,
respectively, are related through a similarity transformation

MH = M−1
P MKMP,

whereMP is the symplectic matrix associated with the processor. ThusMH and
MK have the same eigenvalues and therefore, the same stability properties.

In Tables IV and V we include the stability limitsh∗ attained by the different
methods. These values are not optimal, in the sense that, in principle, one can
construct specific methods with larger stability intervals with the same number of
function evaluations [15], but in any case they are such that the resulting schemes
do not require very severe restrictions concerning the time step used for integration.

4. Numerical Examples

In this section we test the new symplectic integrators on simple Hamiltonian sys-
tems and compare their performance with some of the best unprocessed symplectic
algorithms we have found in the recent literature.

EXAMPLE 1. First we consider the time-dependent harmonic oscillator given by

H = 1
2(p

2+ q2)+ ε cos(wt) 1
2p

2q2 (15)

with H0 = (1/2)(p2 + q2) andH1 = cos(wt) p2q2/2. We takew = 2π and
determine the trajectory with initial conditionq0 = 0,p0 = 1 for 50 periods ofH0.
Then we compare the mean error in the position during the last period.

Figure 1 shows, in a log–log scale, this error as a function of the number of
eB evaluations forε = 0.05. Solid lines correspond to high efficient symplectic
schemes taken from the literature for this class of problems: the symmetric sixth-
order composition for separable Hamiltonian systems with nine stages given in
[12] (denoted by m6), the(8,4) BAB-type method obtained by McLachlan in [13]
(m84) and the processed method(8,2) specifically designed by McLachlan for
near-integrable Hamiltonians [14] (p. 82). Dashed lines denoted by p643, p764 and
p7654 correspond to the new processing methods whose coefficients are collected
in Table IV.

We observe that m84 and p643 behave as fourth order schemes, whereas p764
and p7654 perform as sixth order methods. The reason for this behaviour lies in
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Figure 1.Average distance between exact and numericalq-trajectories vs. number ofB evaluations
for the Hamiltonian (15) withε = 0.05. Solid lines correspond to symplectic integrators taken from
the literature for near-integrable Hamiltonians and dashed lines stand for the new symplectic schemes
with processing.

the fact that, for this example, the dominant term of the error is proportional toε2

and thus the accuracy greatly improves when the value ofε decreases.
Other values ofε in the range 0.0056 ε6 0.1 have been explored with essen-

tially similar relative results, the only difference being a global shift of the curves
by an amount which is proportional toε2.

On the other hand, the effective sixth order processed method given in [2] for
general Hamiltonians of the formH = A + B is about one order of magnitude
more efficient than m6 for this example.

Here it is clear the superiority of the new processed method(7,6,4) designed
specifically for near-integrable systems. We should mention that a purely theoret-
ical comparison based on the effective error defined in the previous section shows
that p643 (Ef = 0.4928) reveals more efficient than p764 (Ef = 1.1404) and
p7654 (Ef = 0.7380), against what this example shows. The reason for this
behaviour could lie in the fact that, in this case, the dominant term of the error
is proportional toε2.

EXAMPLE 2. In order to illustrate the performance of the processing schemes
collected in Table V, we consider the perturbed Kepler Hamiltonian

H = 1

2
(p2

x + p2
y)−

1

r
− ε

2r3

(
1− α3x2

r2

)
(16)
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with r = √x2+ y2. This Hamiltonian describes in first approximation the dynam-
ics of a satellite moving into the gravitational field produced by a slightly oblate
spheric planet. The motion takes place in a plane containing the symmetry axis of
the planet whenα = 1, whereasα = 0 corresponds to a plane perpendicular to
that axis [16].

We split the perturbed Hamiltonian (16) asH = H0+ εH1, with

H0 = 1

2
(p2

x + p2
y)−

1

r
, H1 = − 1

2r3

(
1− α3x2

r2

)
and it is readily verified that{

H0,
{
H0, {H0,H1}

}} = 0.

We takeε = 0.001, which approximately corresponds to a satellite moving
under the influence of the Earth [7] and initial conditionsx = 1 − e, y = 0,
px = 0, py = √(1+ e)/(1− e), with e = 0.8. These initial conditions would
produce an orbit with eccentricitye in the unperturbed Kepler problem. Notice
that for the Hamiltonian (16) the effect of the perturbation depends obviously of
the value ofε, but also of the orbit being perturbed. The trajectory considered here
with e = 0.8 is not a particularly favourable one.

We determine numerically the trajectory forα = 1 up to the final timetf =
50× 2π and compute the mean error in energy and position (measured as the
Euclidean norm inR4) achieved by each method. Observe that in the first case
the results will be largely independent oftf because the error in energy does not
increase secularly for symplectic integrators.

Here we can apply methods which incorporate modified perturbationse−hεCb,c
into the algorithm. Then the following map has to be evaluated:

e−hεCb,cpx = px + hε
(
b
A

r7 − h2εc
C

(r7)2

)
x,

e−hεCb,cpy = py + hε
(
b
B

r7 − h2εc
D

(r7)2

)
y, (17)

whereA = (3/2)(α(3x2 − 2y2) − r2), B = (3/2)(α5x2 − r2), C = 9(2r4 +
3αr2(y2−4x2)+α2(18x4+x2y2−2y4)) andD = 9(2r4−15αr2x2+5α2x2(5x2+
2y2)). Notice that the increment in the computational cost with respect to the eval-
uation ofe−hεbB (which corresponds toc = 0) is only due to a few very simple
additional operations. In other words, using the notation introduced in the previous
section,τ1 . τI .

If the Keplerian part of the Hamiltonian is solved in action-angle coordinates,
then two changes of variables are needed and the CPU time of the integration
method per step due to the use of modified perturbation increases by a factor1τ =
(τ0+ τI +2τc)/(τ0+ τ1+2τc). In this caseτ0 ∼ τ1 and the most expensive part of
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Figure 2.Relative error in energy vs. number ofB evaluations for the perturbed Kepler Hamiltonian
(16) with ε = 0.001 andα = 1. Dashed lines correspond to the(6, 4) and (7,6, 5) processing
methods of Table V, whereas dotted lines stand for the same class of methods incorporating modified
perturbations.

the process is the change of variables, so thatτ0+2τc is significantly greater thanτ1

andτI ,whereasτ1 is only slightly smaller thanτI .Alternatively, we have integrated
H0 in Cartesian coordinates using thef andg Gauss functions [4, 25], and solving
Kepler equation by Newton iteration method. Then1τ = (τ0 + τI )/(τ0 + τ1),
but nowτ0 is considerably greater thanτ1 andτI . In our numerical experiments
we have found always 1.05 < 1τ < 1.10 depending on the value of the time
steph and the number of iterations required by the Newton method. This estimate
remains also valid in the first case. To be conservative, the 10% value has been used
in drawing the figures we present.

Figures 2 and 3 show the mean error in energy and position, respectively, as
functions of the number ofeB evaluations. Solid lines correspond to: (a) the most
efficient seven-stage sixth-order symmetric Runge–Kutta–Nystr¨om (RKN) method
given in [19] (os6) applied to (16) considered asH = H0 + εH1, (b) the near-
integrable scheme m84 and (c) the processed method p82 given by McLachlan
[14]. Dashed lines denoted by p64 and p765 correspond to the(6,4) and(7,6,5)
processing methods given in Table V without modified perturbations, whereas
dotted lines labelled as p64m and p765m stand for the same class of methods
incorporatinge−hεCb,c evaluations.

From the figure it is clear the higher performance of our new processing meth-
ods with respect to both the standard symplectic integrators considered and other
processed methods designed for near-integrable Hamiltonian systems. This im-
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Figure 3.Error in position (measured as the Euclidean norm inR4) vs. number ofB evaluations for
the second example. Lines are coded as in Figure 2.

provement is particularly noticeable when the modified perturbationCb,c is incor-
porated into the schemes.

The next step should be to consider a kernel involving three evaluations of the
modified perturbationCb,c and then to design a specific processor for the near-
integrable case. In fact, such a kernel has been already presented in [2], where a
sixth order RKN processed method was proposed. This integrator, when applied
to the Hamiltonian of Equation (16), behaves essentially as a(7,6) scheme, thus
providing results which are very similar to those given by p765m, unlessε is much
smaller.

These examples show that with non-symmetric kernels involving twoB evalu-
ations it is possible to build(6,4,3) and(6,4) methods which are more efficient
than the corresponding(8,2) schemes constructed from a symmetric kernel with
the same number of evaluations.

It should be also stressed that our new processing methods not involving mod-
ified perturbations show better efficiency than other standard integrators for this
example.

5. Conclusions

We have derived new high-order symplectic integration algorithms for small per-
turbations of exactly solvable Hamiltonian systems. The schemes, referred to as
processing methods, are defined by the compositioneP e−hKe−P , in which each
exponential is an explicitly exactly computable composition of symplectic map-
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pings. In order to obtain efficient methods, (a) we have considered the minimum
number of stages ine−hK so that the kernel conditions have real solutions, and (b)
we have applied an optimization procedure to the election of the processor.

The methods of effective order four and five thus constructed work well in
practice even for values of the perturbation parameter not so small. Following this
treatment it is possible in principle to build higher order schemes and/or incor-
porate into them more correct terms inεhn. These new methods have proven to be
competitive with more traditional symplectic schemes and even with the processing
methods appearing in the recent literature for near-integrable Hamiltonian systems.

To properly appreciate the performance of the new methods proposed in this
paper one should compare their results with the ones obtained with other non-
perturbative splitting (e.g.,H(p,q) = T (p)+ V (q)). As a general trend we have
found that the last mentioned methods are not very sensitive to the effect of the
perturbation, while the new ones introduced here improve significantly when the
perturbation diminishes. It could then be very interesting to implement them to
carry out the numerical integration of different problems arising in Dynamical
Astronomy.
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Appendix

As stated in the text we denote by
{
En,i

}c(n)
i=1 a basis ofLn(A,B). In this work we

have taken:

n = 1 E1,1 = A, E1,2 = B
n = 2 E2,1 = [A,B]

n = 3 E3,1 = [A,A,B], E3,2 = [B,A,B]

n = 4 E4,1 = [A,A,A,B] , E4,2 = [B,A,A,B] , E4,3 = [B,B,B,A]

n = 5 E5,1 =
[
A,E4,1

]
, E5,2 =

[
B,E4,1

]
, E5,3 = −

[
A,E4,2

]
E5,4 =

[
B,E4,2

]
, E5,5 =

[
A,E4,3

]
, E5,6 =

[
B,E4,3

]
n = 6 E6,1 =

[
A,E5,1

]
, E6,2 =

[
B,E5,1

]
, E6,3 =

[
A,E5,2

]
E6,4 =

[
A,E5,4

]
, E6,5 =

[
B,E5,2

]
, E6,6 =

[
A,E5,5

]
E6,7 =

[
B,E5,5

]
, E6,8 =

[
A,E5,6

]
, E6,9 =

[
B,E5,6

]
n = 7 E7,2j−1 =

[
A,E6,j

]
, E7,2j =

[
B,E6,j

]
, j = 1, . . . ,9
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For a generalH = A + B, A ≡ LA, B ≡ LB and the correspondingfi,j
coefficients of Equation (4) are given in terms of polynomial relations involving
ki,j andpi,j . In particular,f1,1 = f1,2 = 1 for consistency, and

f2,1 = k2,1− p1,2+ p1,1,

f3,1 = k3,1− p2,1+ k2,1p1,1− 1
2p1,1(p1,2− p1,1), (18)

f3,2 = k3,2− p2,1+ k2,1p1,2− 1
2p1,2(p1,2− p1,1).

The second order conditionf2,1 = 0 givesp1,2− p1,1 = k2,1. To obtain a third
order processed method we must impose, in addition,f3,1 = f3,2 = 0. The first
equation leads to

p2,1 = k3,1+ k2,1p1,1− 1
2p1,1k2,1.

Then after substitution inf3,2, we get

f3,2 = k3,2− k3,1+ 1
2k

2
2,1 ≡ −N3,1,

which shows thatf3,2 depends only on the kernel coefficients. In this way we obtain
one condition to be satisfied by the kernel. This procedure can be carried out at
higher orders, thus obtaining the explicit form of the conditions collected in the
following table, where only the starred entries hold if [B,B,B,A] = 0:

Order 3 (∗) N3,1 ≡ k3,1− k3,2− 1
2k

2
2,1 = 0

Order 4 N4,1 ≡ k4,3+ k4,2− k4,1+ 1
6k

3
2,1 = 0

Order 5 (∗) N5,1 ≡ k5,2− k5,1+ k4,1k2,1− 1
2k

2
3,1 = 0

(∗) N5,2 ≡ k5,3+ k5,4+ k4,2k2,1− k3,2k3,1 = 0

N5,3 ≡ k5,5− k5,6− k4,3k2,1− 1
2k

2
3,2 = 0

Order 6 (∗) N6,1 ≡ 5(k6,1− k6,2)− 3(k6,3− k6,5)+ 2k4,1k3,1−
− (k5,3− 3k5,2+ 5k5,1)k2,1− k4,2k3,1+ 3

2k4,1k
2
2,1− k2

3,1k2,1 = 0

N6,2 ≡ 5(k6,9− k6,8)− 3(k6,7− k6,6+ 1
3k6,4)− 2k4,3k3,2+

+ (k5,4− 3k5,5+ 5k5,6)k2,1− k4,2k3,2+ 3
2k4,3k

2
2,1+ k2

3,2k2,1 = 0

N6,3 ≡ k6,1− k6,2− k6,3+ k6,4+ k6,5− k6,6+ k6,7+ k6,8−
− k6,9−

(
k5,3+ k5,4− k5,2− k5,5

)
k2,1+ 1

30k
5
2,1 = 0

In the following table we indicate explicitly which coefficients have to be sim-
ultaneously cancelled to obtain the previous kernel conditions in a given ordern,

n = 3, . . . ,6. By extending the previous analysis it can be shown that thefi,j = 0,
i = 3,4,5, conditions in each row are all but one automatically satisfied by the
processor coefficients, the remaining one being proportional to the corresponding
kernel condition.
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At sixth order all except three coefficientsf6,i can be annihilated by the pro-
cessor, whereas the remaining ones (for instancef6,5, f6,8 and f6,9) are linear
combinations ofN6,1, N6,2 andN6,3. Then, in principle, a processor for schemes
(7,6,4) and (7,6,5,4) could be designed in such a way thatf6,1 = f6,2 = f6,3 =
f6,4 = f6,6 = f6,7 = 0, and thus, provided the kernel is symmetric (which implies
N6,1 = N6,2 = N6,3 = 0), all sixth order conditions are satisfied. These new
methods could be advantageous for problems where the error coefficientsf7,2 and
f7,3 are much smaller thanf6,5, f6,6, f6,7, f6,8 andf6,9.

Order 3 εf3,1 = ε2f3,2 = 0 ⇒ N3,1 = 0

Order 4 εf4,1 = ε2f4,2 = ε3f4,3 = 0 ⇒ N4,1 = 0

Order 5 εf5,1 = ε2f5,2 = 0 ⇒ N5,1 = 0

ε2f5,3 = ε3f5,4 = 0 ⇒ N5,2 = 0

ε3f5,5 = ε4f5,6 = 0 ⇒ N5,3 = 0

Order 6 εf6,1 = ε2f6,2 = ε2f6,3 = ε3f6,5 = 0 ⇒ N6,1 = 0

ε3f6,4 = ε3f6,6 = ε4f6,7 = ε4f6,8 = ε5f6,9 = 0 ⇒ N6,2 = 0

εf6,1 = ε2f6,2 = · · · = ε5f6,9 = 0 ⇒ N6,3 = 0
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