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Abstract

Cheap and easy to implement fourth-order methods for the Schrodinger equation with time-dependent Hamiltonians are¨
introduced. The methods require evaluations of exponentials of simple unidimensional integrals, and can be considered an
averaging technique, preserving many of the qualitative properties of the exact solution. q 2000 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

In this work we present new fourth-order geomet-
ric integrators for solving the time-dependent

Ž .Schrodinger equation "s1¨

d
ˆi c x ,t sH p , x ,t c x ,t ,Ž . Ž . Ž .

dt

c x ,0 sc x 1Ž . Ž . Ž .0

Ž .where c x,t is the wave function associated with
E ˆŽ .the system, p'yi and H p, x,t is a HermitianE x

Hamiltonian operator governing the evolution of the
system. Some standard techniques are found in the

) Corresponding author. E-mail: p.c.moan@damtp.cam.ac.uk

Ž .literature for solving 1 as a linear ordinary differen-
tial equation:

Ž . ( )i Spatial discretisation of c x,t . Let us assume
w xthat the system is defined in the interval xg x , x .0 f

We can then split this interval in N parts of length
Ž . Ž .^ x s x y x rN and consider c s c x ,tf 0 n n

where x sx qn^ x, ns1, . . . , N, thus obtainingn 0

the finite dimensional linear equation

d
i c t sH t c t , c 0 sc , 2Ž . Ž . Ž . Ž . Ž .0dt

Ž .T N N=Nwhere cs c , . . . ,c gC and HgC is an1 N
ŽHermitian matrix associated to the Hamiltonian usu-

.ally it is real and symmetric .
ˆ ˆŽ .If the Hamiltonian takes the form HsT p,t q

ˆ ˆŽ .V x,t , then V is diagonal in the coordinate space
ˆand T is diagonal in momentum space. We can use

Ž .complex Fast Fourier Transforms FFTs for evaluat-
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ˆ y1Ž . Ž .ing it as Tc x ,t sFF D FFc x ,t , where D isn T n T

a diagonal operator. Also finite difference methods
produce similar finite dimensional systems, but in
this case the spatial accuracy is reduced.

Ž .ii Spectral decomposition. Let us suppose the
Ž .solution of 1 can be approximated by
N

yi tEnc x ,t , c t e c x , 3Ž . Ž . Ž . Ž .Ý n n
ns0

where E andc are the exact eigenvalues andn n

eigenfunctions of a time-independent Hamiltonian,
Ĥ , e.g. a Harmonic oscillator, and the complex0

coefficients c give the probability amplitude to findn
Ž .the system in the state c . Then, substituting 3 inton

Ž . Ž .1 we obtain a matricial equation similar to 2 for
Ž . Ž Ž ..this basis, with cs c , . . . ,c and H t s1 N i j

ˆ ˆ iŽEiyE j. t² < Ž . < :c H t y H c e , i, j s 1, . . . , N, wherei 0 j

the standard bracket notation is used.
In the following we will present new numerical

Ž .methods of fourth-order in the time-step t for
Ž .solving 2 . They will be written in terms of expo-

t Ž .nentials of linear combinations of H H t dt and0
t Ž .H t H t dt, preserving many of the qualitative prop-0

erties of the exact solution. After this averaging of
the time-dependent part of the Hamiltonian, the sys-
tem can be considered as autonomous. So standard
techniques like splitting methods can be used for
evaluating the exponentials. To avoid the need for
complex number computations, we apply the fact

Ž .that the quantum system 2 is equivalent to a 2 N
degree of freedom classical Hamiltonian system. Fi-
nally the performance of the methods is illustrated
with several examples.

2. Second and fourth-order methods

If H is a constant matrix, the Schrodinger equa-¨
tion has the solution

c t sU t ,0 c 0 sexp yitH c 0 , 4Ž . Ž . Ž . Ž . Ž . Ž .
where U is the unitary evolution operator. For this
problem, a number of methods have been developed.
The optimal method varies for each specific problem
Ždepending on the structure of H, how frequently

w x.output is desired, etc. 1 . In most cases the geomet-
ric integrators frequently used in the context of

w x Ž .classical mechanics 2 can be used to solve 4 ,

Žpreserving some qualitative properties symplectic-
. w xity, unitarity, time-symmetry, etc. 3,4 . In conclu-

sion, high-order and very efficient methods have
Ž .been developed for numerically evaluating 4 .

If the Hamiltonian is explicitly time-dependent,
the situation is different. The unitary evolution oper-

˙ Ž .ator has to satisfy the equation iUsH t U and the
exact solution can formally be written as

H
t Ž .yi s d sHž /0U t ,0 sTTe ,Ž .

whereTT is the standard time ordering operator which
gives rise to more complicated expressions to disen-
tangle. If

t
H t ,H s dss0, ; t)0,Ž . Ž .H

0

w xwhere A ,B sABIBA, the solution is given by

t
U t ,0 sexp yi H s ds .Ž . Ž .Hž /0

This is not the usual case and in general one has to
look for numerical approximate solutions.

Ž .If we split the interval 0,t into N subintervalst

then

N y1t

U t ,0 s U t qt ,t ,Ž . Ž .Ł n n
ns0

with ts trN and t snt . If t is sufficiently smallt n
Ž .and H t is a bounded matrix, each step can be

Ž .written in exponential form U t q t , t sn n

eV Ž tnqt , tn., where VsÝ` V is the Magnus se-ns1 n
w xries 5,6 . The first two terms are given by

t qtn
V syi H t dt , 5Ž . Ž .H1 1 1

tn

tt qt 1n1
V sy H t ,H t dt dt , 6Ž . Ž . Ž .H H2 1 2 2 12

t tn n

Ž .and it is well known that exp V provides a second1

order approximation. Then, if the Hamiltonian is
separable in the form

H p , x ,t sT p ,t qV x ,t , 7Ž . Ž . Ž . Ž .
where T and V are the matrices associated with
kinetic and potential energy respectively, we can
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Ž .evaluate 5 using different second order quadratures
Ž .midpoint, trapezoidal, etc. , e.g. a staggered grid

t
3V t st T q V qV qO t , 8Ž . Ž . Ž . Ž .1 1r2 0 12

tŽ . Ž .with T syiT t q and V syi V t qkt ,1r2 n k n2

ks0,1, and we can use second order splitting meth-
ods in several forms, e.g.

UseV1 qO t 3 set r2 V1 et T1r2 et r2 V0 qO t 3 ,Ž . Ž .
9Ž .

belonging to the family of standard second order
splitting methods widely analysed in the literature
Ž .known as leap-frog, Stormer or Verlet . In order to¨

Ž 3.see that the error is effectively of order O t we
can utilise the BCH formula. The first error term of
Ž . 2w x9 is proportional to t T ,V yV , but V yV1r2 1 0 1 0

Ž .sO t if we assume sufficient smoothness of
Ž . Ž . Ž .V x,t . Similar methods to 8 and 9 can be ob-

tained by interchanging T and V. If T and V share
the same time-dependent functions, it may be conve-

Žnient to evaluate both using the same quadrature in
.order to evaluate the functions at the same points .

Ž .Observe that, if no output is desired, 9 necessi-
Ž .tates only one time-dependent evaluation of V x,t

Ž . Ž .and T p,t per step a FSAL property . The matrices
Ž .exp V are diagonal in the configuration space while
Ž .exp T are diagonal in the momentum space. So

complex FFTs can be used, requiring only
Ž .O N log N floating point operations to transform

between these spaces.
These methods are cheap, easy to implement,

have good stability properties and preserve many of
the qualitative properties of the exact solution. The
main problem is low accuracy. To obtain higher
order methods while preserving these important
properties is a more complicated task than in the
case of constant Hamiltonians. Different methods

w xhave appeared for solving this problem 7–11 , but
they usually are difficult to implement, are expensive
or can be used only under very special conditions on
the Hamiltonian.

Next we will present new fourth-order numerical
methods in terms of products of exponentials of

t Ž .linear combinations of the integrals H H t dt and0
t Ž .H t H t dt, for a time-step t . These new methods0

will preserve the same qualitative properties of the
exact solution as the previous second order methods.

Ž .It is known that exp V qV gives a fourth1 2
w xorder method in the time-step t 12 , but the pres-

ence of multidimensional integrals of commutators
Ž .of H t can make it difficult to apply in some

problems. In order to obtain methods which can be
used with different quadratures, the V of the Mag-i

nus series have been written in terms of unidimen-
w xsional integrals 13 , where

w4x Ž0. w Ž0. Ž1. x 5V 'V qV sH y H , H qO t ,Ž .1 2

10Ž .

with

ki tt qtnŽk .H sy sy t q H s ds, 11Ž . Ž .H nk ž /ž /2t tn

where ks0,1. If we can not solve the integrals
Ž .analytically or it is expensive , we can do it numeri-

cally. Observe that no conditions on the points where
Ž .H t has to be evaluated is required. At the same

time, the evaluations used for approximating H Ž0.

can be reused for the calculation of H Ž1. so, we can
obtain the whole method at the cost of the evalua-

Ž .tions of only one quadrature. If H t is only known
at equidistant points it is interesting to use the Simp-
son rule but in general the use of the Gaussian
quadrature will give the most accurate scheme.

ŽIn order to avoid the presence of usually trouble-
.some commutators, we will follow the technique

used for splitting methods for separable Hamiltoni-
Ž .ans. Using the BCH formula and taking 10 for

order conditions, we can obtain, for example, the
following fourth-order approximations with two and
three exponentials,

UseV w4x
qO t 5Ž .

se1r2 H Ž0.q2 H Ž1.
e1r2 H Ž0.y2 H Ž1.

qO t 5 12Ž . Ž .

seH Ž1.
eH Ž0.

eyH Ž1.
qO t 5 , 13Ž . Ž .

Ž0. Ž .where we have used the fact that H sO t and
Ž1. Ž 2 .H sO t . It is straightforward to prove that the

new methods are time-symmetric. That is: if we
integrate the equations from 0 to t and next we
integrate from t to 0 using the numerical method

Ž .after changing the sign of the time t we will
recover the same initial conditions.
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A deeper analysis in order to look for more
sophisticated and efficient methods for special struc-

Ž .tures of H t as well as higher order methods will be
w x Ž .analysed in 17 . In most cases, the schemes 12 and

Ž .13 have similar accuracy.
If the Hamiltonian is separable in exactly solvable

Ž .parts, as is the case of 7 then, the linear combina-
Ž0. Ž1. Ž Ž0. Ž1.. Ž Ž0.tion aH qbH s aT qb T q aV q

Ž1..b V is also separable in two exactly solvable
parts, where T Žk . and V Žk . have the same structure

Žk . Ž .as H after substituting 11 into H by T and V,
respectively. Then, each exponential can be evalu-

w xated using standard splitting methods 14–16 . It is
Ž .very important to notice that if in 7 T is quadratic

in the momenta then it is possible to use Runge–
Ž .Kutta–Nystrom RKN methods, which are, in gen-¨

eral, considerably more efficient than standard Parti-
Ž . w xtioned Runge–Kutta PRK methods. In 17 we will

analyse the more efficient splitting methods we found
Ž .in the literature in the following cases: 1 T and V

Ž .have general structure; 2 T is quadratic in the
Ž . Ž .momenta RKN ; 3 both T and V are quadratic in

Žthe momenta and coordinates, respectively we will
.refer to them as RKN2 .

3. Classical approximation

Ž .In general, H t is a real symmetric time-depen-
dent matrix and it is then possible to avoid working
with complex vectors considering the following N-
dimensional real vectors: qsRe c and ps Im c. The
evolution of the system is then given by
d q q

sJmH t ,Ž .½ 5 ½ 5p pdt
with

0 H tŽ .
JmH t ' . 14Ž . Ž .ž /yH t 0Ž .
This equation is usually related to the evolution of a
classical Hamiltonian system with q and p being the
coordinates and momenta. The corresponding Hamil-

1 1T TŽ . Ž .tonian function is HHs p H t pq q H t q.2 2

Our approach is to apply the methods presented in
the previous section to this problem. Then, for ob-
taining second order methods we can define

0 0 0 H kV ' ; T ' , 15Ž .c ,k c ,kyH 0ž / ž /k 0 0

1Ž .with H sH t qkt , ks0, ,1. Then a schemek n 2

Ž . Ž .similar to 9 can be used, where exp T sIqTc,k c,k
Ž .and exp V sIqV . In this case it is morec,k c,k

1 Ž . Ž .efficient to replace T by T qT in 9 ,1r2 c,0 c,12

hence the method will require only one evaluation of
Ž .H t per step.
In the calculation of the vector-matrix multiplica-

tions Hq and H p we can consider real FFTs when
evaluating the kinetic energy. Finally, since the last
exponential can be evaluated together with the first
one in the next step, the method requires one evalua-

Ž .tion of the time-dependent matrix H t and four real
FFTs per step, which is equivalent with two complex

Ž .FFTs giving a cost similar to that of 9 .
There are, however, some qualitative differences.

Ž . Ž .Scheme 9 applied to 7 preserves unitarity because
each exponential is an unitary operator. On the other
hand in the classical case, the unitarity is preserved

Ž .only if the vector q, p evolves through an orthogo-
nal transform, which is not the case if we split the

Ž .matrix in the form 15 . The unitarity is not pre-
served exactly but, in most cases it is not seriously
perturbed due to the preservation of symplecticity
w x Ž3,4,10 symplecticity is a necessary, but not suffi-

. Ž .cient, condition for unitarity . Scheme 9 is useful
only if the Hamiltonian can be split in two exactly

Ž .solvable parts, while scheme 15 can be used inde-
pendently of the structure of H. Alternatively the

w xextrapolation technique from 18 can be utilised,
giving schemes with arbitrarily accurate unitarity
while still retaining symplecticity.

If we define now

k1 tt qtnŽk 'H Jm sy t qHc nk ž /ž /2t tn

Ž .k0 H
H s ds' , 16Ž . Ž .Ž .kž /yH 0

Ž .ks0,1, we can use the fourth-order methods 12
Ž . Žk . Žk . Žk .and 13 substituting H for H . In this case Hc c

is always separable in two exactly solvable parts,
e.g.

Ž .k0 0 0 HŽk . Žk .V ' ; T ' , 17Ž .Ž .kc c ž /ž /yH 0 0 0
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w Ž0. Ž1.x w Ž0. Ž1.xwith ks0,1. Observing that T ,T s V ,Vc c c c

s0 and
Ž0. Ž0. Ž0. Ž0.T , T , T ,Vc c c c

Ž0. Ž0. Ž0. Ž0.s V , V , V ,T s0 18Ž .c c c c

it can be shown that very efficient RKN2 methods
w xcan be used 3 .

4. Numerical experiments

In order to appreciate the efficacy of the methods
presented in this letter we will consider the Hamilto-
nian of a diatomic molecule with a linear time-de-
pendent perturbation

1 E 2

Ĥsy qV x qxf t , 19Ž . Ž . Ž .22m E x

wherem is the reduced mass of the diatomic
molecule. We will consider the Morse potential,
Ž . ya x 2V x sD 1ye , as a good approximation forŽ .

the study of the vibrational states of a diatomic
w xmolecule 19 . D being the dissociation energy and

a the length parameter. The unperturbed system has
24 bounded states with energies

2 21 1 v0
E s nq v y nq , ns0 . . . 23,n 0ž / ž /2 2 4D

'where v sa 2 Drm . In particular we will study0

the HF molecule, whose parameters are: m s
1745 a.u., Ds0.2251 a.u. and as1.1741 a.u. For
the time-dependent perturbation we will consider the
following two cases:

)1 Interaction with a laser field:

f t sAcos v t .Ž . Ž .
Ž .We will consider three cases: a As0.0011025 a.u.

Ž .and vs0.193 v the Rabi frequency according to0
w x Ž .19 , b As0.011025 a.u. and vs0.9476 v as in0
w x Ž .10 , and c vs5v with As0.011025 a.u.0

)2 Collision with an atom:

Av
f t s ,Ž . 2 'cosh B v tŽ .
where v is proportional to the energy of the colli-
sion and A, B are parameters of the system. We will
use As0.385 a.u., Bs2.5 a.u. which are consistent

w xwith the model of 20 , and we will take vs50v .0

As initial condition we take the ground state of
the Morse oscillator,

c x sRexp yb x exp yg eya x ,Ž . Ž . Ž .0

Ž .with gs2 Drv , bs gy1r2 a where R is the0

normalisation constant. The grid for the spatial coor-
dinate x ranges from y0.8 to 4.32 with Ns64
with periodic boundary conditions assumed. To gauge
accuracy, we consider the instantaneous mean energy

1 2Ž . ² Ž . <of the diatomic molecule E t s c t P q2

( )< Ž .:V X c t .
Ž .From 16 we have that

h
Ž0. 2 Ž0. Ž1. Ž1.H s P qhV X qX f ; H sX f ,( )

2
20Ž .

( )where V X and X are N=N diagonal matrices
Ž . 2with V x and x in the diagonal respectively. Pk k

is the matrix associated with the kinetic energy and
1 t qt inŽ i.f s sy t qtr2 f s ds, is0,1.Ž . Ž .Ž .H nit tn

Observe that now the matrices are time-independent
and the problem will be to evaluate the exponentials

Ž . Ž .when using the methods 12 and 13 . As mentioned
previously, there myriads of methods available for
evaluating the exponential of a matrix and the proper
choice depends on the particular Hamiltonian. Ob-

Ž .serve that the exponentials of 17 are very cheap to
evaluate through

qŽ k . qVce s ;Ž .k½ 5 ½ 5p pyH q

Ž .kŽ k . q qqH pTce s 21Ž .½ 5 ½ 5p p

requiring only one real FFTrinverse FFT for evalu-
ating the kinetic part in HŽk .q and HŽk .p. Then, we
can use splitting methods in the form

m
t Ž AqB . a t A b t B ki ie s e e qO t , 22Ž . Ž .Ł

is1

Ž .with k)4. Then, for the exponentials in 12 we can
1 1Ž0. Ž1. Ž0.consider that H "2 H sAqB with As Vc c c2 2

1 1Ž1. Ž0. Ž1. Ž0."2V and B s T "2T , where H "c c c2 2
h h 1 Ž .Ž1. 2 Ž0 1( ) .2H s P q V X qX f " 2 f . Prop-Ž .4 2 2

Ž . w xerty 18 allows us to use RKN2 methods, and in 3
� 4mwe can find solutions for a ,b for several val-i i is1

ues of m and k up to ks12. These families of
methods are very accurate, have good stability prop-
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erties and preserve unitarity up to order kq1. If we
1 Ž0. Ž1.Ž .use one of these methods for exp H q2 Hc c2

1 Ž0. Ž1.Ž .and its adjoint for exp H y2 H then, the totalc c2

number of stages is reduced by one, leaving the total
composition symmetric and in addition the unitarity
is preserved up to order kq2. In our examples we

w xwill consider the methods of 3 with msks4 and
msks6.

Ž . Ž Ž0..In case of scheme 13 , exp H can be evalu-c
Ž Ž1..ated in a similar fashion and exp H is exactly andc

easily computed because HŽ1. is a diagonal matrix.
Thus the overall cost per step will be less than for

Ž .scheme 12 . In the following we denote schemes
Ž . Ž .12 and 13 by 2EX-k and 3EX-k respectively,

w xwith ks4,6 depending which splitting method of 3
is applied to compute the exponential.

For comparison we consider the approach pre-
w x Ž .sented in 10 for problem 14 with associated

1 1T TŽ . Ž .Hamiltonian HH s p H t p q q H t q. This2 2
˜Hamiltonian can be rewritten in the form HH

1 1T Ts p H p p q p q q H q q y q ,Ž . Ž .Ž . Ž .2 t 1 t 1 t 2 t2 2

where the new coordinates q and q and their1 t 2 t

associated momenta p and p are introduced in1 t 2 t

order to obtain a time independent Hamiltonian,
which is separable in two exactly solvable parts.
Observe that HH is quadratic in the coordinates and

˜momenta, but this is not necessarily the case of HH.
Then, the number of allowed methods is consider-
able reduced, i.e. it is not possible to use RKN2
methods. We will consider the five stage fourth order
Ž . Ž .S,ms5 and the nine stage sixth order SS,ms9

w xmethods given in 16 , which are the most efficient
fourth and sixth order symmetric PRK method we
found. The methods will be referred to as McL-4 and
McL-6.

In Fig. 1 we consider the laser field perturbation
Žthrough 100 periods of the laser frequency Ts

2p .100 and display the average relative error in
v

Ženergy the average is taken over 5–10 consecutive
.solution points . The time-step used is very similar

for all three examples and is chosen such that all
methods require 16000, 4000 and 640 FFTs per
period respectively.

There are two sources of error in our methods: the
truncated Magnus approximation for the time-depen-
dent part and the splitting approximation of the
exponential. It seems clear that for smooth time-de-
pendent functions the error of Magnus is very small

Fig. 1. Average relative errors in energy through 100 periods for
.the laser field perturbation for: a As0.0011025, v s0.193v0

.with 16000 FFTrperiod b As0.011025, v s0.9476v with0
.4000 FFTrperiod and c As0.011025, v s5v with 6400

Ž .FFTsrperiod. McL-6 is in this case unstable.

and the main error comes from the splitting method.
Thus in this case one should to use the most accurate

Ž .and stable splitting methods 2EX-6 . In Fig. 1b the
system is simulated near the resonant frequency and
the contribution to the total error comes equally from
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the splitting method and the Magnus approximation,
so in this case best choice is to use the cheapest
Magnus scheme together with a good splitting method

Ž . Ž .i.e. 3EX-6 . Finally, for highly oscillating in ’t’
functions the largest errors will originate from the
Magnus expansion and thus the cheapest splitting

Ž . Ž .method 3EX-4 will be the optimal choice Fig. 1c .
The Magnus approximation integrates the time

dependent part more accurately than the standard
splitting methods with the number of time-dependent
function evaluations considerably reduced. Further-
more the accuracy improves with increase in fre-
quency.

In Table 1 we present, for the near resonant case
Ž . Žas in Fig. 1b , the stability limit time-step and

.number of FFTs , the average error in the preserva-
Ž² Ž . < Ž .: <.tion of unitarity c t c t y1 and the number of

time-dependent evaluations per period required for
each method. The new methods have better stability
limit, allowing bigger time-steps, also they preserve
unitarity more accurately. In addition, if the evalua-
tion of the time-dependent part of the potential is
expensive the efficacy is even more clear.

In Fig. 2 we present the error in energy versus the
number of FFT for the collision problem. The inte-

'w Ž .gration was carried out for t g y10r B v ,
'Ž .x10r B v with vs50 v , starting at the stability0

limit and from there on decreasing the time-steps. As
mentioned, the superiority of the new methods is
clearer if the time-dependent functions oscillates
quickly. Similar experiments for other values of v

were carried confirming this fact.

Table 1
Further results showing stability limits, unitarity and function
evaluations for experiment 1b. The columns t and FFT shows the

Ž .stability limit in terms of longest time-step in a.u. , while FFT
shows the corresponding number of fast fourier transforms. The
error in unitarity is an average error over all time-steps. The
number of function evaluations is the number of times the poten-
tial is evaluated per period.

Stability Error in Function

t FFT unitarity evaluations
y1 32EX-4 14.0 700 6.8=10 285
y1 42EX-6 11.3 1364 1.2=10 182
y1 23EX-4 5.5 1024 9.7=10 500
y1 33EX-6 6.9 1224 1.1=10 333
y9McL-4 4.7 1500 8.5=10 2000
y9McL-6 4.0 3168 1.8=10 2000

Fig. 2. Average relative errors in energy vs number of FFTs for
the collision problem, with step-sizes starting at the stability limit
and from there on decreasing. Methods 2EX-4 and 3EX-4 quickly
reach the machine accuracy before displaying the expected 4th
order accuracy.

In conclusion we can say that the methods pre-
sented provide a superior alternative to the approach

w xpresented in Ref. 10 . The approach lends itself to
high accuracy computations of Schrodinger equa-¨
tions with time-dependent potentials. The methods
retain symplecticity exactly while unitarity is con-

Ž . w xserved to high order )4 . In Ref. 17 we present
how the approach presented in this letter for linear
equations, easily can be adapted to non-linear, time-
dependent classical Hamiltonian systems, retaining
symplecticity and time-symmetry for high accuracy,
long term computation of such systems.
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