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Abstract

In this paper we build high order integrators for solving ordinary differential equations by composition of low
order methods and using the processing technique. From a basicpth-order method,Ψp, one can obtain high
order integrators in the processed form�Ψn = PKP−1 (n > p) being both the processor,P , and the kernel,K,
compositions of the basic method. The number of conditions for the kernel is drastically reduced if we compare
with a standard composition. The particular case in whichΨp is a symmetric scheme of order 2 and 4, respectively,
is analyzed, and new optimized 4th-, 6th- and 8th-order integrators are built. 2001 IMACS. Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

One of the most useful techniques for analytically solving the equation

dy

dt
= f (y), y(0)= y0 ∈ R

m, (1)

is to look for an invertible transformationz = P(y) such that the corresponding equation forz,

dz

dt
= g(z), z(0)= P(y0) ∈ R

m, (2)

is exactly solvable or it is easy to obtain analytical approximations. We will refer to this transformation
as the processing technique.

For instance, in classical mechanics, the evolution of an autonomous dynamical system is given by the
Hamiltonian equations

q̇ = ∂H(q,p)

∂p
, ṗ = −∂H(q,p)

∂q
, (3)
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where the dot indicates derivative respect tot andq,p ∈ R
D are the canonical coordinates and associated

momenta. The scalar functionH :RD ×R
D → R is the Hamiltonian of the system. A standard technique

for exactly solving (3) or to obtain analytical approximations is to look for a canonical transformation [1,
11]

Q = Q(q,p)

P = P (q,p)

 or (Q,P )=P(q,p), (4)

such thatQ,P can be considered as the coordinates and momenta of another HamiltonianK(Q,P )
which is exactly solvable (for example, if we haveK(Q) or K(P )), or it can be approximately solved
(for example, if we haveK(Q,P ) = K1(P )+ εK2(Q,P )+ O(ε2) and 0< ε 	 1). For instance, the
Hamilton–Jacobi method and the perturbative canonical theory are based in this procedure. However,
this useful technique for obtaining analytical results is not an standard procedure for building numerical
integrators.

Let us considerΨt,f the exact flow of (1) andKt,g the corresponding flow for (2). Then, if the
processing technique is used we have

Ψt,f =PKt,gP−1. (5)

In this paper we will present new one-step numerical integratorsΨ̂h for the problem (1) in the form

Ψ̂h = P̂hK̂hP̂ −1
h , (6)

whereh is the time-step and̂Kh, P̂h can be considered as numerical methods approximatingKh,g andP .
We will refer toK̂h andP̂h as the kernel and processor of the method, respectively. Then,N steps can be
written in the form(

Ψ̂h,f
)N = P̂h

(
K̂h

)N P̂ −1
h . (7)

Observe that̂Ph has to be evaluated only once at the beginning andP̂−1
h only when the output is desired

then, essentially, one can consider the cost of the method as the cost ofK̂h.
The composition (6) was originally considered by Butcher [7] (see also [12, Chapter II.12]) using

Runge–Kutta (RK) methods for̂Ph and K̂h. A general analysis in this line is presented in [8] but not
practical methods are obtained. However, this technique has shown to be very efficient in the context
of symplectic integrators for some particular cases: near-integrable systems [4,18,28], Runge–Kutta–
Nyström (RKN) methods [5,16,22] and when the system is separable in two exactly solvable parts in
general [2]. All these papers present methods for the case in which the vector field is separable in exactly
solvable parts, but this is not strictly necessary. If one has a low order method for a given problem, in
this paper we will show how to obtain high order processed methods by composition of this low order
method.

The use ofGeometric Integrators(GI) have proved very useful for solving (1) when the system has
some qualitative properties which are important to retain [23]. For example, the preservation of these
properties makes that, in most of the cases, the approximate solutions have smaller error growth than
standard integrators. Then, it will be very important thatK̂h retains these properties and it will be less
essential, but still interesting, for̂Ph to preserve them.

Let us consider now an integratorSp(h) of orderp. It is well known that with a composition of this
basic method it is possible to obtain high order methods in the form

�Sn(a)= Sp(a1h) . . .Sp(akh), (8)



S. Blanes / Applied Numerical Mathematics 37 (2001) 289–306 291

where�Sn is a new integrator of ordern > p. The vectora = (a1, . . . , ak) characterizes the method and
the ai have to solve a number of order conditions; for instance,

∑k
i=1 ai = 1 for consistency. Observe

that if Sp(h) is a GI then the composition will be a GI. In addition, ifSp(h) is a symmetric method
with p an even number, and the composition (8) is symmetric (ak+1−i = ai, i = 1,2, . . .) then�Sn will
be a symmetric integrator withn an even number. Compositions like (8) have been widely used in the
literature for building high order integrators [9,13–15,17,19,20,24–27,29].

In this paper we will show that it is possible and very efficient to follow a similar strategy but using
the processing technique. That means to consider

K̂h(b)= Sp(b1h) . . .Sp(brh), (9)

P̂h(c)= Sp(c1h) . . .Sp(csh) (10)

in such a way that̂Ψh has effective ordern. We will see that the coefficientsbi in (9) have to solve a
considerably smaller number of order conditions than the coefficientsai in (8) because some of these
conditions can be solved by theci in (10).

An alternative technique for increasing the order of a method is to use extrapolation. The qualitative
properties of the basic method are lost because the linear combinations destroy the group properties but,
that happens at higher orders than the order of the final method [3,10]. This technique shows to be very
efficient for increasing the order of GI when the basic method is of order four or higher. In this paper we
will consider, as basic, low order methods and, for simplicity, we will take symmetric integrators, but the
same idea and technique can be used for non-symmetric basic methods and different orders.

The plan of the paper is as follows. Section 2 introduces some basic concepts on Lie algebras. In
Section 3 we consider symmetric basic methods and present the kernel conditions when the kernel is itself
a symmetric composition. Explicit expressions for the kernel and processor are presented for moderate
orders. In Section 4 we show how to obtain the kernel and processor by composition in such a way
that the previous conditions are satisfied. In particular, we present new optimal processed 4th-, 6th- and
8th-order methods usingS2 andS4. Finally, in Section 5 we present some numerical examples and we
will observe that the results completely agree with the theoretically predicted.

2. Lie algebraic tools

Let us write Eq. (1) in the linear form

dy

dt
= Fy, (11)

whereF = f ·∇y =∑m
i=1fi(∂/∂yi) is the Lie operator associated tof = (f1, . . . , fm). Then, the solution

of (11) takes the formal expression [1]

y(t)= etFy(0), (12)

where etF is the Lie transformation associated tof . In general, a numerical one-step integrator,Ψ̂h, can
be considered as the exact solution of a perturbed differential equation (usually divergent)

dŷ

dt
= f (ŷ)+ hf 2(ŷ)+ h2f 3(ŷ)+ · · ·
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and formally we can write

Ψ̂h = ehF̃ , (13)

whereF̃ = F1 + hF2 + h2F3 + · · · , andFi = f i · ∇y . For consistencyF1 = F .
The operatorF can be considered as an element of a Lie algebrag and then etF is an element of the

Lie group,G associated tog. If the numerical integrator which exactly solves the perturbed equation

is built such thatFi ∈ g, i = 2,3, . . . , then ehF̃ will stay in the same Lie group as the exact solution.
In this case, many important qualitative properties of the exact solution are preserved by the numerical
integrator [23]. This will be the case if in (8)–(10) the elementary flows belong to the same Lie group
as the exact solution, being the methods referred asGeometric Integrators. For a method of orderp, the
functionsf 2, . . . ,f p vanish identically, soF2, . . . , Fp = 0, and if it is symmetric thenF2i = 0, i � 1.
For standard methods as RK, multistep, etc. we will find, in general, thatFi /∈ g. However, in some
cases [3,10] we can have a method of orderp with Fp+i ∈ g for i = 1, . . . , q, but Fp+i /∈ g for i > q
being the method referred as pseudogeometric.

2.1. Composition of symmetric methods

Let us consider as the basic method a second-order symmetric integratorS2(h). Then, it is possible to
write it as [29]

S2(h)= ehF̃ = exp
(
hF1 + h3F3 + h5F5 + · · ·), (14)

with F1 = F . At this point theFi can be considered as the elements of a graded Lie algebra with gradei.
Then compositions (8)–(10) can be formally written, making use of the Baker–Campbell–Hausdorff
(BCH) formula, in only one exponential eC with

C =
∞∑
i=1

hi
νi∑
j=1

di,jEi,j , (15)

wheredi,j are scalar functions depending on the parameters of the method. TheEi,j are the elements
of a basis of the Lie algebra generated by{F1,F3,F5, . . .}. In particular, eachEi,j will correspond
to Fi or to a nested commutator of differentFj of gradei, i.e., Ei,j = [Fk, [. . . , [Fl,Fm] . . .]], k +
· · · + l + m = i, beingνi the dimension of the subspace of the Lie algebra of degreei, and [Fi,Fj ]
is the Lie bracket for vector fields. In Table 1 we present a basis up to order 9, where the notation
[i . . . jk] ≡ [Fi, [. . . , [Fj ,Fk] . . .]] has been used.

If we consider a 4th-order symmetric integratorS4 as the basic method, then

S4(h)= ehF̃ = exp
(
hF1 + h5F5 + h7F7 + · · ·), (16)

and we have to consider the Lie algebra generated by{F1,F5,F7, . . .}. It corresponds to the previous
algebra takingF3 = 0 so, a considerably simplification happens, allowing us to analyze easily high order
methods. A basis up to order 11 is given in Table 2.

In general, the most efficient methods are obtained when some information from the vector field is
considered (e.g., it is separable or for the RKN case) or by composition of low order methods. However, it
is very difficult to obtain efficient high order methods because the large number of order conditions makes
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Table 1
Basis of the Lie algebra generated by{F1,F3,F5,F7,F9} up to order 9

n νn S2

1 1 E1,1 = F1;

3 1 E3,1 = F3;

4 1 E4,1 = [13];
5 2 E5,1 = F5; E5,2 = [113];
6 2 E6,1 = [15]; E6,2 = [1113];
7 4 E7,1 = F7; E7,2 = [115]; E7,3 = [11113]; E7,4 = [313];

E8,1 = [17]; E8,2 = [1115]; E8,3 = [111113];
8 5 E8,4 = [1313]; E8,5 = [35];

E9,1 = F9; E9,2 = [117]; E9,3 = [11115]; E9,4 = [1111113];
9 8 E9,5 = [11313]; E9,6 = [31113]; E9,7 = [135]; E9,8 = [315];

Table 2
Basis of the Lie algebra generated by{F1,F5,F7,F9,F11} up to order 11

n νn S4

1 1 E1,1 = F1;

5 1 E5,1 = F5;

6 1 E6,1 = [15];
7 2 E7,1 = F7; E7,2 = [115];
8 2 E8,1 = [17]; E8,2 = [1115];
9 3 E9,1 = F9; E9,2 = [117]; E9,3 = [1115];

10 3 E10,1 = [19]; E10,2 = [1117]; E10,3 = [11115];
E11,1 = F11; E11,2 = [119]; E11,3 = [11117];

11 5 E11,4 = [1111115]; E11,5 = [515];

the numerical search extremely difficult. On the other hand, compositions usingS4 as basic integrator can
be useful for obtaining high order methods mainly for two reasons:

(i) The reduced number of equations allows a deep analysis of the numerical solutions.
(ii) It is possible to use a large quantity of different methodsS4 specially tailored for particular

problems, i.e., RKN methods.
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3. Kernel and processor conditions

In the same way as in [2], and for simplicity, it is possible to consider forK̂h a symmetric composition,
so

K̂−1
h = K̂−h (17)

and for the processor we can take a scheme with only even powers ofh

P̂−h = P̂h. (18)

From (14) and (16) we see thatSi(−h) = S−1
i (h), i = 2,4, so, the composition (10) cannot satisfy

condition (18) exactly. However, it is possible to preserve this condition up tohk with k as high as
desired.

Formally, we can write

K̂h = exp

( ∞∑
i=1

h2i−1
ν2i−1∑
j=1

k2i−1,jE2i−1,j

)
≡ ehK, (19)

P̂h = exp

( ∞∑
i=1

h2i
ν2i∑
j=1

p2i,jE2i,j

)
≡ eP , (20)

and using the BCH formula

Ψ̂h = P̂hK̂hP̂ −1
h = ePehKe−P = ehF̂ (21)

with

hF̂ = eP hKe−P = e[adP ,·]hK = hK + [P,hK] + 1

2

[
P, [P,hK]]+ · · ·

=
∞∑
i=1

h2i−1
ν2i−1∑
j=1

f2i−1,jE2i−1,j , (22)

where thefi,j are polynomial functions ofkr,s , r � i, andpr,s, r � i − 1. Observe thathF̂ does not
contain even powers ofh. The integratorΨ̂h will be of ordern if F̂ = F + O(hn) or, equivalently, if

f1,1 = k1,1 = 1,

f2i−1,j (k,p)= 0, i = 2, . . . ,
n

2
, j = 1, . . . , ν2i−1, (23)

wherek = (k1,1, . . . , kn,νn) andp = (p1,1, . . . , pn−1,νn−1). The total number of order conditions is

Nf =
n/2∑
i=1

ν2i−1, (24)

which agree with the number of order conditions for a non-processed symmetric composition. The main
difference is that now we have a number of variablespi,j which can be used for solving some of the
conditions.

In [2] the number of kernel conditions is given for the Lie algebra generated by{A,B}. It can be
considered as a graded Lie algebra, whereA andB are of grade one and all elements of graden + 1
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can be generated from the commutator of one element of graden andA or B. The situation is now
different because the Lie algebra is generated by{F1,F3, . . .}, whereFi is an element of gradei, and not
all elements of graden+ 1 can be generated from commutators with elements of graden. However, a
similar result to [2] for the number of kernel conditions is obtained:

Theorem. Given(19) and(20) as the kernel and processor of annth order integrator(n even) then, the
number of necessary conditions to be satisfied by the kernel is given by

Nk =
n/2∑
i=1

ν2i−1 −
n/2−1∑
i=1

ν2i =
n/2−1∑
i=0

(ν2i+1 − ν2i). (25)

Proof. In a similar way to [2] it is possible to eliminate the
∑n/2−1

i=1 ν2i variablespi,j from (23) solving
the same number of equations. The otherNk conditions will only depend on the kernel coefficients, being
the kernel conditions. ✷

In Table 3 we present the number of order conditions for a non-processed composition as well as for the
kernel, both when considering as the basic methodS2 andS4. From this table it is clear the great saving
in the number of evaluations per step when the processing technique is used for high-order methods.

Observe that the variablesp2i,j , i < n/2 − 1, have been used for solving the order conditions but,
we still have theνn variablespn,j , j = 1, . . . , νn, which appear in theνn+1 error functions at order
hn+1, fn+1,j , j = 1, . . . , νn+1, and can be used for minimizing their value [2]. This optimization
procedure will be particularly simple in some cases.

Table 3
Number of order conditions up to ordern for
symmetric compositions of the basic methods
S2 andS4 for a kernel and for a non-processed
composition

S2 S4

n no-proc proc no-proc proc

2 1 1 1 1

4 2 2 – –

6 4 3 2 2

8 8 5 4 3

10 16 8 7 4

12 34 15 12 6

14 21 8
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3.1. Examples

In order to illustrate how to obtain the kernel conditions, how to get the conditions for the processor and
to minimize the error coefficients, we will apply this technique for obtaining optimal 4th- and 6th-order
integrators usingS2 as the basic method and an 8th-order integrators usingS4.

Optimal 4th- and 6th-order integrators withS2. Let us consider the kernel and processor up to order 7:

hK = hk1,1E1,1 + h3k3,1E3,1 + h5(k5,1E5,1 + k5,2E5,2)

+ h7(k7,1E7,1 + k7,2E7,2 + k7,3E7,3 + k7,4E7,4), (26)

P = h4p4,1E4,1 + h6(p6,1E6,1 + p6,2E6,2), (27)

where theEi,j correspond to the basis in Table 1. After a simple algebraic manipulation we have

hF̂ = eP hKe−P = hK + [P,hK] + O
(
h9)

= hk1,1E1,1 + h3k3,1E3,1 + h5(k5,1E5,1 + (k5,2 − p4,1)E5,2
)

+ h7(k7,1E7,1 + (k7,2 − p6,1)E7,2 + (k7,3 − p6,2)E7,3 + (k7,4 − p4,1k3,1)E7,4
)
, (28)

then, the conditions for a 6th-order method are

f1,1 = k1,1 = 1, f3,1 = k3,1 = 0, (29)

f5,1 = k5,1 = 0, f5,2 = k5,2 − p4,1 = 0, (30)

so, the three kernel conditions at order 6 we see from Table 3 correspond to:k1,1 = 1, k3,1 = 0, k5,1 = 0,
and the processor condition isp4,1 = k5,2. Substituting these results into the error functions we have

f7,1 = k7,1, f7,2 = k7,2 − p6,1, f7,3 = k7,3 − p6,2, f7,4 = k7,4,

and takingp6,1 = k7,2 andp6,2 = k7,3 we obtainf7,2 = f7,3 = 0, corresponding to the optimization with
the processor previously mentioned. Now,f7,1 andf7,4 depend only onki,j . Then, the conditionsk7,1 = 0
andk7,4 = 0 will correspond to the two new kernel conditions if we want to obtain an 8th-order integrator.
In this case, more conditions on the processor can be used for optimization.

If we are looking for a 4th-order method then conditions (29) have to be satisfied and, ifp4,1 = k5,2,
the only error function will bef5,1 = k5,1. In this case, the number of order conditions is not reduced with
respect to a non-processed composition but we can get smaller leading error terms.

Optimal 8th-order integrator withS4. Following the same procedure we can write, keeping terms up to
orderh9,

hK = hk1,1E1,1 + h5k5,1E5,1 + h7(k7,1E7,1 + k7,2E7,2)

+ h9(k9,1E9,1 + k9,2E9,2 + k9,3E9,3), (31)

P = h6p6,1E6,1 + h8(p8,1E8,1 + p8,2E8,2), (32)

where now theEi,j correspond to the basis in Table 2. From the order conditions we have the kernel and
processor conditions:

k1,1 = 1, k5,1 = k7,1 = 0, p6,1 = k7,2, (33)
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and consideringp8,1 = k9,2 andp8,2 = k9,3 we have for the error functions

f9,1 = k9,1, f9,2 = f9,3 = 0, (34)

beingk9,1 = 0 the only new kernel condition for 10th-order methods.

4. Obtaining the kernel and processor by composition

Using the analysis of the previous section we can obtain the conditions to be satisfied by the coefficients
ki,j andpi,j . From (9) and (10), and using the BCH formula we have:

Sp(b1h) . . .Sp(brh)= ehK(b), (35)

Sp(c1h) . . .Sp(csh)= eP(c), (36)

with b = (b1, . . . , br) andc = (c1, . . . , cs) being the unknowns. Theki,j andpi,j are polynomial functions
of bk andck , respectively. Here, we have to evaluateb such that theki,j satisfy the kernel conditions. Once
the kernel is chosen we have to evaluatec in such a way that thepi,j satisfy the required conditions for
this particular kernel.

Observe that the computational cost of the method as well as the leading error term will depend
exclusively onb. At the same time, we can find many solutions for (35). Among all these solutions
we will choose the one which minimize the error terms. There is a problem at this point. The leading
error term of annth-order method is given by

E(n)r =
νn+1∑
j=1

fn+1,jEn+1,j , (37)

where (after the optimization with the processor parameters) thefn+1,j depend only on the kernel
coefficients. We are interested in a solution which minimizes‖E(n)r ‖ for a given norm but, the relative
value of the different elements‖En+1,j‖ is strongly dependent on the basic method used. For instance,
the error of the 6th-order method presented in the last section is given by

E(6)r = k7,1(b)F7 + k7,4(b)
[
F3, [F1,F3]], (38)

where k7,1 and k7,4 depend on the particular solutionb for the kernel conditions and‖F7‖, ‖[F3,

[F1,F3]]‖ depend on the basic method chosen. On the other hand, for the processor we only need a
solution which satisfy the required conditions.

From Table 3 it is clear that the processing technique will be very useful for obtaining high order
methods because the reduction on the number of conditions. However, in order to illustrate this procedure
we will consider 4th- and 6th-order methods usingS2 and 8th-order methods usingS4 as in the previous
section, where the saving versus non-processed methods is minimum. We will show explicitly how to get
an optimal kernel and how to obtain a processor for this particular kernel.

As mentioned, the polynomial functionski,j (b) andpi,j (c) can be obtained using the BCH formula.
If the kernel is a symmetric composition usingS2, we can take the recurrence formulae presented in [29]
based on the symmetric BCH formula or, alternatively, to consider the expressions presented in [26]. IfS4

is used, small modifications on the previous expressions are necessary.
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For the processor we will consider the BCH formula

eXeY = exp
(
X+ Y + 1

2[X,Y ] + 1
12

([X, [X,Y ]] + [Y, [Y,X]])+ 1
24[X, [Y, [Y,X]]] + · · · ). (39)

Considering the general term

Q
(
α(k)

)= exp

( ∞∑
i=1

hi
νi∑
j=1

α
(k)
i,j Ei,j

)
(40)

we are interested in the recurrence expression

Q
(
α(k+1))= Sp(xh)Q

(
α(k)

)
(41)

for p= 2,4. Using (39) andS2, and after some algebra we have, up to order 6,

α
(k+1)
1,1 = α

(k)
1,1 + x,

α
(k+1)
3,1 = α

(k)
3,1 + x3,

α
(k+1)
4,1 = α

(k)
4,1 + 1

2

(
xα

(k)
3,1 − x3α

(k)
1,1

)
,

α
(k+1)
5,1 = α

(k)
5,1 + x5, (42)

α
(k+1)
5,2 = α

(k)
5,2 + 1

2xα
(k)
4,1 + 1

12

(
x2α

(k)
3,1 − x4α

(k)
1,1 + x3(α

(k)
1,1)

2 − xα
(k)
1,1α

(k)
3,1

)
,

α
(k+1)
6,1 = α

(k)
6,1 + 1

2

(
xα

(k)
5,1 − x5α

(k)
1,1

)
,

α
(k+1)
6,2 = α

(k)
6,2 + 1

2xα
(k)
5,2 + 1

12

(
x2α

(k)
4,1 − xα

(k)
1,1α

(k)
4,1

)+ 1
24

(
x4(α

(k)
1,1)

2 − x2α
(k)
1,1α

(k)
3,1

)
.

If we takeS4 then

α
(k+1)
1,1 = α

(k)
1,1 + x,

α
(k+1)
5,1 = α

(k)
5,1 + x5,

α
(k+1)
6,1 = α

(k)
6,1 + 1

2

(
xα

(k)
5,1 − x5α

(k)
1,1

)
,

α
(k+1)
7,1 = α

(k)
7,1 + x7, (43)

α
(k+1)
7,2 = α

(k)
7,2 + 1

2xα
(k)
6,1 + 1

12

(
x2α

(k)
5,1 − x6α

(k)
1,1 + x5(α

(k)
1,1)

2 − xα
(k)
1,1α

(k)
5,1

)
,

α
(k+1)
8,1 = α

(k)
8,1 + 1

2

(
xα

(k)
7,1 − x7α

(k)
1,1

)
,

α
(k+1)
8,2 = α

(k)
8,2 + 1

2xα
(k)
7,2 + 1

12

(
x2α

(k)
6,1 − xα

(k)
1,1α

(k)
6,1

)+ 1
24

(
x6(α

(k)
1,1)

2 − x2α
(k)
1,1α

(k)
5,1

)
.

Considering (36) and takingα(0)i,j = 0 as initial conditions we will have thatpi,j (c)= α
(s)
i,j .

4th-order,S2. It is necessary to use a 4th-order method for solving the two kernel conditions. Special
care has to be taken to the error termf5,1 = k5,1. If we use the well known three stages 4th-order
composition [29]b = (b2, b1, b2) with b2 = (2− 21/3)−1, b1 = 1− 2b2 thenk5,1 takes a very large value.
With the kernelb = (b3, b2, b1, b2, b3) it is possible to getf5,1 = k5,1 = 0 and a higher order method is
allowed but, as we will see, the big coefficients of the method makes it useless. On the other hand, taking
b3 as a free parameter we can find a minimum fork5,1 with small values for thebi . This minimum happens
for b3 = b2 = (4 − 41/3)−1, b1 = 1 − 2(b2 + b3) and corresponds to the 4th-order method obtained by
Suzuki [24,25]. If we take the processorc = (c1, c2, c3,−c1,−c2,−c3), we will have many solutions
such thatp4,1 = k5,2, and one of them isc3 = −0.3, c2 = −0.0322132492397077, c1 = −(c2 + c3).
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The best 4th-order methods we know corresponds to the symmetric five-stages of Suzuki [24,25] and
of McLachlan [17]. If the leapfrog method is used asS2 in a separable problem then both have very
similar error terms but, using the previous processor the leading error terms are reduced by a factor
two. As expected, the processed 4th-order method has only a marginal improvement with respect to the
non-processed algorithms.

6th-order,S2. Let us considerb = (b3, b2, b1, b2, b3) for the five-stages kernel of a 6th-order integrator.
The kernel conditions are

k1,1 = b1 + 2(b2 + b3)= 1, k3,1 = b3
1 + 2

(
b3

2 + b3
3

)= 0, k5,1 = b5
1 + 2

(
b5

2 + b5
3

)= 0.

As mentioned, the two real solutions have large error functions:f7,1 = 56.03 in both cases and
f7,4 = 2.112, −51.99. These error functions can be considerably reduced considering a seven-stages
composition,b = (b4, b3, b2, b1, b2, b3, b4), with b4 as a free parameter. The computational cost increases
from five to seven stages so, it will be interesting only if the error functions are reduced at least by a factor
(7/5)6 = 7.529. . . .

In Fig. 1 we present the values of|f7,1| and|f7,4| versusb4. We observe that the value of|f7,1| at the
minimum is more than two orders of magnitude smaller than its value forb4 = 0. On the other hand, the
two different solutions for|f7,4| can be canceled at several points. Observe that one of the zeros of|f7,4|
is very close to the minimum of|f7,1|. Then, we will chose the closest value ofb4 to the minimum of
|f7,1| such thatf7,4 = 0. The solution is given in Table 4.

Finally, we have to find a processor which satisfy all the the required conditions. For example, we
will take c = (c1, c2, c3, c4, c5,−c1,−c2,−c3,−c4,−c5), where a solution is given in Table 4. For this
solution, the processor has not odd powers ofh up to order 9. That means for the whole method we have
hF̂ = hF + h7k7,1E7,1 + O(h9) and it will work in practice as a symmetric integrator.

Fig. 1. Error functions|f7,1| and|f7,4| versusb4, for the seven-stages processed method usingS2.
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Table 4
Coefficients for the new processed 6th- and 8th-order methods with
kernel b = (b4, b3, b2, b1, b2, b3, b4) and processorc = (c1, c2, c3, c4,

c5,−c1,−c2,−c3,−c4,−c5), usingS2 andS4, respectively

6th-order:S2

c5 = 0.375012038697862

b4 = 0.513910778424374 c4 = 0.384998538774070

b3 = 0.364193022833858 c3 = −0.074332422810238

b2 = −0.867423280969274 c2 = −0.461165940466494

b1 = 1− 2(b2 + b3 + b4) c1 = −(c2 + c3 + c4 + c5)

8th-order:S4

c5 = 0.1

b4 = 0.3836 c4 = 0.153884390967272

b3 = 0.38378409898601552832 c3 = 0.295715027608753

b2 = −0.58571608011635309034 c2 = −0.182295174329697

b1 = 1− 2(b2 + b3 + b4) c1 = −(c2 + c3 + c4 + c5)

Table 5
Error terms for the non-processed and processed methods. The numer-
ical values correspond tof ∗

7,i = (m/7)6f7,i , wherem is the number of
stages per step for each method

Method-stages f ∗
7,1 f ∗

7,2 f ∗
7,3 f ∗

7,4

Yos-7 0.88839 0.02987 0.0001961 −0.01798

McL-9 0.40799 0.01254 0.0001012 −0.02451

Proc-5 7.44179 0 0 0.28046

Proc-7 0.14135 0 0 0

In order to better appreciate the efficiency of the new method, we present in Table 5 the error terms of
the most efficient 6th-order methods we found in the literature which take (8) usingS2. These coefficients
are normalized in order to take into account the different number of stages. The methods are: the best
7-stages of [29] and the optimized 9-stages of [17]. We must say that in spite of the small values of
f7,i , i = 2,3,4, their corresponding‖E7,i‖ usually take greater values than‖E7,1‖. This is the case, for
instance, if we consider the well known leapfrog method asS2 in a separable problem. From the results
of this table we already appreciate the benefits of using the processing technique.
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Fig. 2. Absolute value of the coefficientsw and error functions|f9,1| and|f11,1| versusb4. In order to appreciate
the position of the minimum for the coefficients of the method we displayw = (µ2/20)4 with µ=∑i |bi |.

8th-order,S4. In the same way, for an 8th-order integrator we can considerb = (b3, b2, b1, b2, b3) andS4

as the basic method. Now, we have only one error term,f9,1. The two real solutions givef9,1 = 8.22. . . .
This large value can be considerably reduced considering, as previously,b = (b4, b3, b2, b1, b2, b3, b4)

which has one free parameter. It seems interesting to minimizef9,1 as well asµ =∑
i |bi | in order the

higher order terms do not take extremely large values. In Fig. 2 we represent|f9,1| andµ versusb4 as
well as|f11,1| as representative of higher order error terms. All of them have the minimum at the same
point. Observe that the value of the error functions is reduced around four orders of magnitude at the
minimum if we compare with their values atb4 = 0.

A solution for b4 near the minimum is given in Table 4. For the processor we can takec =
(c1, c2, c3, c4, c5,−c1,−c2,−c3,−c4,−c5) and one solution is given in Table 4. Again, with this
processor we have thathF̂ = hF + h9k9,1E9,1 + O(h11) and the method is, for practical purposes
equivalent to a symmetric integrator.

In order to appreciate the improvement obtained using the processing technique, let us consider a non-
processed 8th-order composition. It requires at least seven stages, i.e.,a = (a4, a3, a2, a1, a2, a3, a4). We
found several solutions and the one with smaller error coefficients is

a4 = 0.846121147469682, a3 = 0.158012845800852,

a2 = −1.09020666054393, a1 = 1− 2(a2 + a3 + a4),

where the error terms are given in Table 6. This method has exactly the same computational cost as the
seven-stages processed method but, the error coefficients are more than two orders of magnitude greater.

From the results of this section and Table 3 we expect that higher order processed methods will be
considerably more efficient than the corresponding non-processed integrators. However, higher order
methods are technically more involved both for getting the kernel and optimal processor conditions
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Table 6
Error terms for the non-processed and processed methods. The numerical
values correspond tof ∗

9,i = (m/7)8f9,i , wherem is the number of stages

per step for each method, andf ∗
11,1 = (m/7)10f11,1

Method-stages f ∗
9,1 f ∗

9,2 f ∗
9,3 f ∗

11,1

no-proc-7 0.270047 0.0100179 0.0000904 0.88511

Proc-5 0.556848 0 0 1.99022

Proc-7 0.0016815 0 0 0.001506

as well as due to the numerical implementation for obtaining the best solution. This problem is under
consideration and the results will be published elsewhere.

5. Numerical experiments

In order to illustrate the efficiency of the new processed methods we will compare their performances
versus standard integrators (of the same family) on the following two examples:

Example 1 (Volterra–Lotka problem). Let us consider the simple differential equations

u̇= u(v − 2), v̇ = v(1− u) (44)

which correspond to (1) withy = (u, v) and f (y) = (u(v − 2), v(1 − u)). The system has the first
integral: I (u, v) = ln(u) − u + 2 ln(v) − v = Const. Several second order symmetric methods can be
used as the basic schemeS2. The following two methods will be considered:

(i) Implicit midpoint rule:

yk+1 = S2yk = yk + hf

(
yk + yk+1

2

)
, (45)

whereyk is an approximation to the exact solutiony(kh).
(ii) Leapfrog method. The vector field is separable in two exactly solvable partsf = f A + f B with

f A = (u(v−2),0) andf B = (0, v(1−u)). If we denote by etA and etB the exact flows oḟyA = f A

andẏB = f B , respectively, we have that

S2 = e(h/2)A ehB e(h/2)A (46)

corresponds to the second-order leapfrog method, and it is symmetric.

The 6th-order numerical integrators considered are: the best seven-stages of [29] (NP-7) and the
new seven-stages processed method (P-7). The result of the numerical experiments is shown in Fig. 3
considering as basic methods (45) and (46). As initial values we choose(u0, v0)= (1,1) at t = 0, and we
integrated up tot = 100. The figures show the average error in the first integral|(I (u, v)− I (u0, v0))|,
versus the number of evaluations in the Newton iteration which was used in the implementation of the
midpoint rule, Fig. 3(a), and versus the number ofS2 evaluations in the leapfrog case, Fig. 3(b), for
different time-steps. The figures agree with the results presented in Table 5. The nine-stages McL-9 stays
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Fig. 3. Average error for the non-processed (NP-7) and processed (P-7) seven stages 6th-order methods: (a) vs. the
number of iterations when the implicit midpoint rule is used, and (b) vs. number ofS2 evaluations, whereS2 is the
leap-frog.

between the two previous methods, again in agreement with the error terms in Table 5. We must say that
with nine stages it could be possible to get a high order processed method or a method with smaller error
coefficients. On the other hand, the improvement of the fourth-order processed method is only marginal,
as predicted.

Example 2 (Kepler problem). Let us consider the Hamilton equations (3) associated to the Hamiltonian

H(q,p)= 1

2

(
p2
x + p2

y

)− 1√
q2
x + q2

y

, (47)

whereq = (qx, qy) andp = (px,py). We take as initial conditionspx = 0, py = √
(1+ e)/(1− e), qx =

1− e, qy = 0, and eccentricitye = 0.5. These correspond to an orbit of period 2π and energy−1
2. The

Hamiltonian is separable in the kinetic and potential energy. For this particular problem it is possible to
use symplectic RKN methods and the most efficient we know (up to order 8) are given in [5]. However,
the goal of this test is to present an example where different symmetric methods,S4, can be used and
to show that the method obtained with processing is considerably better than using a non-processed
composition. ForS4 we will consider the three-stages method of [29]. Many symmetric fourth-order
methods, specially tailored for RKN problems, can be used asS4 [6]. The relative efficiency between the
8th-order methods has to be nearly independent ofS4 but, using more efficient RKN algorithms we reach
machine accuracy before clearly appreciate this result. The 8th-order numerical integrators considered
correspond to the seven-stages processed (P-7) and non-processed (NP-7).
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Fig. 4. Average error in position of the non-processed (NP-7) and processed (P-7) seven stages 8th-order methods
vs. number ofS4 evaluations.

We integrated the system along 10 periods and measured the average error in position versus the
number of evaluations ofS4. Fig. 4 shows the results obtained which perfectly agree with the values of
the error terms presented in Table 6. Similar results are obtained when applying the methods to (44) using
asS4 a symmetric composition ofS2 with three or five stages as in [17,24,29]. Observe that now it is not
possible to use RKN methods as in the Kepler problem.

6. Conclusions

We have shown that it is possible and very efficient to increase the order of a basic method using both
the composition and the processing techniques. This efficiency comes because the kernel has to satisfy a
considerable smaller number of conditions than a non-processed composition. The processor is used for
solving some of the order conditions as well as for minimizing the leading error terms.

If the basic method is symmetric and a symmetric compositions for the kernel is used, the number of
kernel conditions is given. In this case, the whole method will be equivalent to a symmetric integrator up
to a given order if the processor is chosen properly.

From the analysis of the paper it seems clear that the relative efficiency of the processed technique
versus the standard composition increases with the order. For 4th-, 6th- and 8th-order methods usingS2

andS4 we show explicitly that the improvement is already considerable so, higher order methods are very
promising. These methods are technically more involved and are, at this moment, under consideration.
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