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Abstract

In this paper we build high order integrators for solving ordinary differential equations by composition of low
order methods and using the processing technique. From a ptisiorder methody,,, one can obtain high
order integrators in the processed fop = PXP~1 (n > p) being both the processdP, and the kerneliC,
compositions of the basic method. The number of conditions for the kernel is drastically reduced if we compare
with a standard composition. The particular case in wiighs a symmetric scheme of order 2 and 4, respectively,
is analyzed, and new optimized 4th-, 6th- and 8th-order integrators areb2@l01 IMACS. Published by Elsevier
Science B.V. All rights reserved.

Keywords:Differential equations; Initial value problems; Composition methods; Processing

1. Introduction

One of the most useful techniques for analytically solving the equation

d

d—f = [, y(0) =y, eR", (1)
is to look for an invertible transformatian= P(y) such that the corresponding equation for

dz

ar =g(2), z(0) =P(yp e R™, 2)

is exactly solvable or it is easy to obtain analytical approximations. We will refer to this transformation
as the processing technique.
For instance, in classical mechanics, the evolution of an autonomous dynamical system is given by the
Hamiltonian equations
q_BH(q,p) _ _0H(q.p)

2p 2 ®)
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where the dot indicates derivative respeat émdq, p € R? are the canonical coordinates and associated
momenta. The scalar functidi : R” x R”? — R is the Hamiltonian of the system. A standard technique
for exactly solving (3) or to obtain analytical approximations is to look for a canonical transformation [1,
11]

0=0@4.,p)
P=P(q,p)

such thatQ, P can be considered as the coordinates and momenta of another Hamilko{anP)
which is exactly solvable (for example, if we haig Q) or K (P)), or it can be approximately solved
(for example, if we havek (Q, P) = K1(P) + ¢K»(Q, P) + O(¢?) and O< ¢ « 1). For instance, the
Hamilton—Jacobi method and the perturbative canonical theory are based in this procedure. However,
this useful technique for obtaining analytical results is not an standard procedure for building numerical
integrators.

Let us consider, ; the exact flow of (1) andC, , the corresponding flow for (2). Then, if the
processing technique is used we have

} or (Q,P)="P(q,p), 4)

W, ;= PK, P, (5)
In this paper we will present new one-step numerical integrakpir the problem (1) in the form
v, = 73h/€h73h_1, (6)

wherer is the time-step anil,, P, can be considered as numerical methods approximatingand?.

We will refer to X, andP, as the kernel and processor of the method, respectively. Theteps can be
written in the form

(@h.p)" =Pu(K)" P )
Observe thaP, has to be evaluated only once at the beginningﬁpbl only when the output is desired
then, essentially, one can consider the cost of the method as the (bﬁst of

The composition (6) was originally considered by Butcher [7] (see also [12, Chapter 11.12]) using
Runge—Kutta (RK) methods faP, and K. A general analysis in this line is presented in [8] but not
practical methods are obtained. However, this technique has shown to be very efficient in the context
of symplectic integrators for some particular cases: near-integrable systems [4,18,28], Runge—Kutta—
Nystrém (RKN) methods [5,16,22] and when the system is separable in two exactly solvable parts in
general [2]. All these papers present methods for the case in which the vector field is separable in exactly
solvable parts, but this is not strictly necessary. If one has a low order method for a given problem, in
this paper we will show how to obtain high order processed methods by composition of this low order
method.

The use ofGeometric IntegratorgGl) have proved very useful for solving (1) when the system has
some qualitative properties which are important to retain [23]. For example, the preservation of these
properties makes that, in most of the cases, the approximate solutions have smaller error growth thar
standard integrators. Then, it will be very important thigtretains these properties and it will be less
essential, but still interesting, f@, to preserve them.

Let us consider now an integratsy, () of order p. It is well known that with a composition of this
basic method it is possible to obtain high order methods in the form

Su(@) = Sy(arh) ... S,y(ah), (8)



S. Blanes / Applied Numerical Mathematics 37 (2001) 289-306 291

wheres, is a new integrator of order > p. The vectora = (a1, ..., a;) characterizes the method and
the ¢; have to solve a number of order conditions; for insta@éil a; = 1 for consistency. Observe
that if S, (k) is a Gl then the composition will be a Gl. In addition,Sf (k) is a symmetric method
with p an even number, and the composition (8) is symmetii¢i(; = a;, i = 1,2,...) then'S, will
be a symmetric integrator withh an even number. Compositions like (8) have been widely used in the
literature for building high order integrators [9,13-15,17,19,20,24-27,29].

In this paper we will show that it is possible and very efficient to follow a similar strategy but using
the processing technique. That means to consider

Kn(b) = S,(b1h) ... S, (bh), )
Pa(e) = S,(cih) ... S,(csh) (10)

in such a way that, has effective ordern. We will see that the coefficients in (9) have to solve a
considerably smaller number of order conditions than the coefficigrits (8) because some of these
conditions can be solved by tlagin (10).

An alternative technique for increasing the order of a method is to use extrapolation. The qualitative
properties of the basic method are lost because the linear combinations destroy the group properties bu
that happens at higher orders than the order of the final method [3,10]. This technique shows to be very
efficient for increasing the order of Gl when the basic method is of order four or higher. In this paper we
will consider, as basic, low order methods and, for simplicity, we will take symmetric integrators, but the
same idea and technique can be used for non-symmetric basic methods and different orders.

The plan of the paper is as follows. Section 2 introduces some basic concepts on Lie algebras. In
Section 3 we consider symmetric basic methods and present the kernel conditions when the kernel is itsel
a symmetric composition. Explicit expressions for the kernel and processor are presented for moderate
orders. In Section 4 we show how to obtain the kernel and processor by composition in such a way
that the previous conditions are satisfied. In particular, we present new optimal processed 4th-, 6th- and
8th-order methods usingy and S4. Finally, in Section 5 we present some numerical examples and we
will observe that the results completely agree with the theoretically predicted.

2. Liealgebraic tools

Let us write Eq. (1) in the linear form

dy
—=F 11
dr Y (11)

whereF = f-V, =", f;(3/dy;) is the Lie operator associated fo= (fi. ..., f,»). Then, the solution
of (11) takes the formal expression [1]

y(t) =€7y(0), (12)
where é” is the Lie transformation associated foln general, a numerical one-step integraty, can
be considered as the exact solution of a perturbed differential equation (usually divergent)

d—f = £G) + 12 + R + -
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and formally we can write
o, = (13)

whereF = Fi+hF,+h?F3+---,andF, = fi-V,. Forconsistency"; = F.
The operatorF can be considered as an element of a Lie alggtaad then € is an element of the
Lie group, ® associated tg. If the numerical integrator which exactly solves the perturbed equation

is built such thatF; e g, i = 2,3, ..., then &7 will stay in the same Lie group as the exact solution.

In this case, many important qualitative properties of the exact solution are preserved by the numerical
integrator [23]. This will be the case if in (8)—(10) the elementary flows belong to the same Lie group
as the exact solution, being the methods referre@exametric IntegratorsFor a method of ordep, the
functions f, ..., f, vanish identically, sa, ..., F, =0, and if it is symmetric therf; =0, i > 1.

For standard methods as RK, multistep, etc. we will find, in general, Ehdtg. However, in some

cases [3,10] we can have a method of orglewith F,,; egfori=1,...,q, butF,; ¢ gfori >gq

being the method referred as pseudogeometric.

2.1. Composition of symmetric methods

Let us consider as the basic method a second-order symmetric integy@iprThen, it is possible to
write it as [29]

So(h) = &F = exp(h Fy + h®Fs + h®Fs + - ), (14)

with F; = F. At this point theF; can be considered as the elements of a graded Lie algebra withigrade
Then compositions (8)—(10) can be formally written, making use of the Baker—Campbell-Hausdorff
(BCH) formula, in only one exponentiaf avith

o) Vi
C=> h> d,E, (15)

i=1 j=1
whered; ; are scalar functions depending on the parameters of the methodt; Thare the elements
of a basis of the Lie algebra generated {%, Fs, Fs, ...}. In particular, eachZ; ; will correspond
to F; or to a nested commutator of differed; of gradei, i.e., E; ; = [Fi,[...,[F, Ful.. 1], k +
-+ 1+ m =i, beingv; the dimension of the subspace of the Lie algebra of degread[F;, F|]
is the Lie bracket for vector fields. In Table 1 we present a basis up to order 9, where the notation
[i...jkl=[F;,[...,[Fj, F]...]] has been used.

If we consider a 4th-order symmetric integrafaras the basic method, then

Sa(h) = €' = exp(h Fy + h®Fs + h"F + - --), (16)

and we have to consider the Lie algebra generate¢lFpyFs, F7, ...}. It corresponds to the previous
algebra takingFs = 0 so, a considerably simplification happens, allowing us to analyze easily high order
methods. A basis up to order 11 is given in Table 2.

In general, the most efficient methods are obtained when some information from the vector field is
considered (e.qg., itis separable or for the RKN case) or by composition of low order methods. However, it
is very difficult to obtain efficient high order methods because the large number of order conditions makes
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-El;izlii (1)f the Lie algebra generated{#, F3, Fs, F7, Fo} up to order 9
n v So
1 1 E11=F1;
3 1 E3 1= F3;
4 1 Eq1=1[13];
5 2 Es 1= F5; Es2=[113];
6 2 Eg1=[15]; Eeo=[1113;
7 4 E71=F7; E72=[115]; E73=[11113; E74=1[313];
Eg1=[17]; Eg2=[111Y; Eg3=[111113;
8 5 Eg4=[1313; Egs5=I[35];
Eg1 = Fy; Eg2=[117]; Eg3=[11115; [E94=[1111113
9 8 E95=1[11313; Egs=[31113; Eg7=[135]; Eg9g=1[319];
Table 2
Basis of the Lie algebra generated{#t, Fs, F7, Fo, F11} up to order 11
n Vn Sa
1 1 Ei11=Fy;
5 1 Es 1= Fs;
6 1 Ee1=1[19];
7 2 E71=F7; E72=[115];
8 2 Eg1=[17]; Ego=[1115;
9 3 Eg9 1= Fy; Eg o =[117]; Eq3=[1115;
10 3 E101=1[19]; E102=[1117; E103=[11115;
E111= F11; E112=[119; E113=[1111%;
11 5 E114=[1111115; E115=[519;

the numerical search extremely difficult. On the other hand, compositions Sisaspasic integrator can
be useful for obtaining high order methods mainly for two reasons:
(i) The reduced number of equations allows a deep analysis of the numerical solutions.
(i) It is possible to use a large quantity of different methdtisspecially tailored for particular
problems, i.e., RKN methods.
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3. Kernel and processor conditions

In the same way as in [2], and for simplicity, it is possible to consideidpa symmetric composition,
o}

K=K, (17
and for the processor we can take a scheme with only even powkrs of
P_ =P (18)

From (14) and (16) we see that(—h) = Sl.‘l(h), i = 2,4, so, the composition (10) cannot satisfy
condition (18) exactly. However, it is possible to preserve this condition ujf tvith k& as high as
desired.

Formally, we can write

[e%e) V2i—1
K, = exp(z h? ™S ko1 Eaicy, j> =gk (19)
i=1 j=1

00 v2i
P = eXp(Z th Z P2i,j E2i,j> = eP, (20)

i=1  j=1
and using the BCH formula
'f/h = 73;1/3;173[1 =eleke? = ef’f (21)
with

~

1
hF = e’hKe " =d*“"IhK =hK + [P, hK] + > [P,[P,hK]] +---

00 ) V2i-1
= thzfl Z Jai-1,jE2i-1,), (22)
i=1 j=1

where thef; ; are polynomial functions of, ,, » <i, andp,,, r <i — 1. Observe that F does not
contain even powers @f. The integrator, will be of orderrn if F = F + O(h") or, equivalently, if

fii=ki1=1,
n
fZi—l,j(k’p)=Oa i=2,---,§’ j=1a'~~sU2i—1’ (23)
wherek = (k1.1,...,kn,,) andp = (p1.1, ..., Pn—1.v,_,)- 1he total number of order conditions is
n/2
Ny = Z Voi_1, (24)
i=1

which agree with the number of order conditions for a non-processed symmetric composition. The main
difference is that now we have a number of variabes which can be used for solving some of the
conditions.

In [2] the number of kernel conditions is given for the Lie algebra generatefdby}. It can be
considered as a graded Lie algebra, whérand B are of grade one and all elements of grade 1
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can be generated from the commutator of one element of graated A or B. The situation is now
different because the Lie algebra is generatedifyy F3, . . .}, whereF; is an element of grade and not
all elements of grade + 1 can be generated from commutators with elements of grattowever, a
similar result to [2] for the number of kernel conditions is obtained:

Theorem. Given(19)and(20)as the kernel and processor of ath order integrator(n ever) then, the
number of necessary conditions to be satisfied by the kernel is given by

n/2 n/2—1 n/2—1

Ne=> vaica— > vai= > (Vaip1—va). (25)
i=1 i=1 i=0

Proof. In a similar way to [2] it is possible to eliminate t@fﬁ_l vp; variablesp; ; from (23) solving
the same number of equations. The otNgiconditions will only depend on the kernel coefficients, being
the kernel conditions. O

In Table 3 we present the number of order conditions for a non-processed composition as well as for the
kernel, both when considering as the basic metsiodnd S,. From this table it is clear the great saving
in the number of evaluations per step when the processing technique is used for high-order methods.
Observe that the variables; ;, i <n/2— 1, have been used for solving the order conditions but,
we still have thev, variablesp, ;, j =1,...,v,, which appear in the, ., error functions at order
Y furajs j=1,...,v,41, and can be used for minimizing their value [2]. This optimization
procedure will be particularly simple in some cases.

Table 3

Number of order conditions up to orderfor
symmetric compositions of the basic methods
S> and S, for a kernel and for a non-processed

composition
S Sa

n no-proc  proc no-proc  proc
2 1 1 1 1
4 2 2 - -
6 4 3 2 2
8 8 5 4 3
10 16 8 7 4
12 34 15 12 6
14 21 8
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3.1. Examples

In order to illustrate how to obtain the kernel conditions, how to get the conditions for the processor and
to minimize the error coefficients, we will apply this technique for obtaining optimal 4th- and 6th-order
integrators using, as the basic method and an 8th-order integrators using
Optimal 4th- and 6th-order integrators wit$p. Let us consider the kernel and processor up to order 7:

hK = hky1E11+ h%kg31E31 + h°(ks1Es 1 + ks 2Es,2)
+h'(k7.1E71 + k72E72 + k13E73+ k7.4E7 4), (26)
P=h"ps1Es1+h®pe1Ee1+ pe2Es2), (27)
where theE; ; correspond to the basis in Table 1. After a simple algebraic manipulation we have
hF = e’hKe" =hK 4 [P, hK]+ O(h°)
= hky1E11+ hks1Es1+ h°(ks1Es 1+ (ks2 — pa1)Es2)

+h'(k71E71+ (k7.2 — pe1)E72+ (k73— pe2) E73+ (k7.4 — paiks1)E7.4), (28)

then, the conditions for a 6th-order method are
fii=ki1=1, fa1=ks1=0, (29)
fs1=ks1=0, fo2=ks2— pa1=0, (30)

so, the three kernel conditions at order 6 we see from Table 3 correspond te:l, k31 =0, k51 =0,
and the processor condition jg 1 = ks ». Substituting these results into the error functions we have

fr1=kz1, fr2=k72— ps1, f13=k73— ps2, fra=kqa,

and takingps 1 = k7.2 and ps » = k7.3 we obtainf7 , = f7.3 =0, corresponding to the optimization with
the processor previously mentioned. Ngw; and f7 » depend only or; ;. Then, the conditions; ; =0
andkz 4 = O will correspond to the two new kernel conditions if we want to obtain an 8th-order integrator.
In this case, more conditions on the processor can be used for optimization.

If we are looking for a 4th-order method then conditions (29) have to be satisfied gnd, # ks 2,
the only error function will befs ; = ks 1. In this case, the number of order conditions is not reduced with
respect to a non-processed composition but we can get smaller leading error terms.

Optimal 8th-order integrator witts,. Following the same procedure we can write, keeping terms up to
orderh®,
hK = hky1E11+ h°ks1Es1+h'(kz1E71 + k72E72)
+ h®(kg 1Eq 1 + ko 2E9 2 + ko 3Eg33), (31)
P =h%pg1Ee1+h®(ps1Es1+ ps2Es>), (32)

where now theE; ; correspond to the basis in Table 2. From the order conditions we have the kernel and
processor conditions:

ki1=1, ks1=k71=0, P61 =k72, (33)
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and consideringg 1 = kg 2 and ps » = kg 3 We have for the error functions

fo1=ko1, fo2= fo3=0, (34)

beingkg 1 = 0 the only new kernel condition for 10th-order methods.

4. Obtaining the kernel and processor by composition

Using the analysis of the previous section we can obtain the conditions to be satisfied by the coefficients
ki ; andp; ;. From (9) and (10), and using the BCH formula we have:

S,(b1h)...S,(bh) =e*®, (35)
S,(c1h)...S,(csh) =€, (36)

With b = (b4, ..., b,) ande = (cy, ..., ¢;) being the unknowns. The ; andp; ; are polynomial functions
of b, andcy, respectively. Here, we have to evaluatsuch that the; ; satisfy the kernel conditions. Once
the kernel is chosen we have to evaluaia such a way that the; ; satisfy the required conditions for
this particular kernel.

Observe that the computational cost of the method as well as the leading error term will depend
exclusively onb. At the same time, we can find many solutions for (35). Among all these solutions
we will choose the one which minimize the error terms. There is a problem at this point. The leading
error term of amth-order method is given by

Vn+1

E'En) = Z fn+l,jEn+l,jv (37)
j=1
where (after the optimization with the processor parameters)fthe; depend only on the kernel
coefficients. We are interested in a solution which minimigz&$? | for a given norm but, the relative
value of the different elementgE, 1 ;|| is strongly dependent on the basic method used. For instance,
the error of the 6th-order method presented in the last section is given by

E® =kq1(b) F; + k7.4(b) [Fs, [ F1, F3]], (38)

where k71 and k74 depend on the particular solutidn for the kernel conditions andl F7||, ||[F3,
[F1, F3]]|| depend on the basic method chosen. On the other hand, for the processor we only need a
solution which satisfy the required conditions.

From Table 3 it is clear that the processing technique will be very useful for obtaining high order
methods because the reduction on the number of conditions. However, in order to illustrate this procedure
we will consider 4th- and 6th-order methods us§igand 8th-order methods usirsg as in the previous
section, where the saving versus non-processed methods is minimum. We will show explicitly how to get
an optimal kernel and how to obtain a processor for this particular kernel.

As mentioned, the polynomial functiorts ; (b) and p; ;(c) can be obtained using the BCH formula.

If the kernel is a symmetric composition usifg we can take the recurrence formulae presented in [29]
based on the symmetric BCH formula or, alternatively, to consider the expressions presented i$}26]. If
is used, small modifications on the previous expressions are necessary.
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For the processor we will consider the BCH formula
e’ =exp(X +Y + 3[X, Y1+ (X, [X, Y1+ [V, [Y, X]]) + [ X, [Y, [V, X1 +---).  (39)
Considering the general term

0(a®) = exp(Z WS o Ei,j> (40)

i=1 j=1
we are interested in the recurrence expression
0 (a* ) =5,(xh)0(a®) (41)
for p =2, 4. Using (39) ands,, and after some algebra we have, up to order 6,
k+1 k
a7V = i +x,
(k+1) (k) 3
03y = azqtx7,
it = ol + blraf — xal)
, - 3 2 5 .1/
k+1 k
agq ) = agq +x°, (42)
(k+1) k) [ 1. () | 1.2 (k) a_ (k) 3, (k)2 k) (k)
Ugp = A+ 5x0gq + 15 (X 0z — X7y 4+ x7 (a1 1) — xag 1031),
alf" = al + (rad] — sl
s - s 2 s .1/
(k+1) k) ;1. 1.2 (k) *) (k) 14, (02 2 (k) (k)
Ugp = U+ 5x05 o+ 15(X 01 — Xy 10 7) + 55 (X (e 1) — X701 3 7).
If we take S, then
(k+1) (k)
al,l = 0(1’1 + x,
(k+1) (k) 5
055,1 = 0(5’1+x )
0l = al + (rad] — sl
s - s 2 s .1/
k+1 k
ag,f ) = a§,i+x7, (43)
(k+1) k) ;1. (K, 1,2 (k) 6 (k) 5, (k)\2 k) k)
075 = a7+ sx0q + 55 (X a5 — X"y +x7(ag )" — xag a5 1),
o = o+ blvaf — xa)
5 - 5 2 s .1/
kD) _ ) 1. (), 1.2 (K k) (k) 1 (.6, 002 2 (k) (K
Ogy = gy sx0g, + 55 (X g — xorg j0g 1) + 55 (X7 (g 1) — X%y jarg ).

Considering (36) and taking, = 0 as initial conditions we will have that; ; (¢) = &)
4th-order, S,. It is necessary to use a 4th-order method for solving the two kernel conditions. Special
care has to be taken to the error terfyy, = ks ;. If we use the well known three stages 4th-order
composition [29]p = (b2, b1, by) With by = (2—2Y/3)~1, by = 1— 2b, thenks ; takes a very large value.
With the kernelb = (b3, by, b1, b2, b3) it is possible to getfs 1 = k5.1 = 0 and a higher order method is
allowed but, as we will see, the big coefficients of the method makes it useless. On the other hand, taking
b3 as a free parameter we can find a minimumtpy with small values for thé;. This minimum happens
for by = b, = (4 — 413~ by =1 — 2(b, + b3) and corresponds to the 4th-order method obtained by
Suzuki [24,25]. If we take the processoe= (¢, ¢z, c3, —c1, —c2, —c3), We Will have many solutions
such thatps; = ks 2, and one of them is3 = —0.3, ¢, = —0.0322132492397077¢; = —(c2 + ¢3).
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The best 4th-order methods we know corresponds to the symmetric five-stages of Suzuki [24,25] and
of McLachlan [17]. If the leapfrog method is used &sin a separable problem then both have very
similar error terms but, using the previous processor the leading error terms are reduced by a factor
two. As expected, the processed 4th-order method has only a marginal improvement with respect to the
non-processed algorithms.

6th-order,S,. Let us consideb = (b3, by, by, by, b3) for the five-stages kernel of a 6th-order integrator.
The kernel conditions are

ki1= b1+ 2(by+ b3) =1, ka1 = b3+ 2(b3 +b3) =0, ks1 = b3+ 2(b5 +b3) =0.

As mentioned, the two real solutions have large error functiofys: = 56.03 in both cases and
fr4=2.112 —51.99. These error functions can be considerably reduced considering a seven-stages
compositionp = (ba, bz, by, b1, b, bz, bs), With by as a free parameter. The computational cost increases
from five to seven stages so, it will be interesting only if the error functions are reduced at least by a factor
(7/5)°=7529....

In Fig. 1 we present the values pf; 1| and| f7.4| versusb,. We observe that the value pf; 1| at the
minimum is more than two orders of magnitude smaller than its valubsfer0. On the other hand, the
two different solutions fof f7 4| can be canceled at several points. Observe that one of the zdfys, of
is very close to the minimum dff7.1|. Then, we will chose the closest value ffto the minimum of
| f7.1] such thatf7 4 = 0. The solution is given in Table 4.

Finally, we have to find a processor which satisfy all the the required conditions. For example, we
will take ¢ = (cy, ¢, ¢3, ¢4, ¢5, —C1, —C2, —C3, —C4, —c5), Where a solution is given in Table 4. For this
solution, the processor has not odd powers ap to order 9. That means for the whole method we have
hF =hF + h'ks 1E71 + O(h®% and it will work in practice as a symmetric integrator.

Fig. 1. Error functions f7 1| and| f7,4| versusba, for the seven-stages processed method uging
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Table 4

Coefficients for the new processed 6th- and 8th-order methods with
kernel b = (b4, b3, b2, b1, b2, b3, by) and processot = (c1, ¢2, ¢3, ¢4,

¢5, —C1, —C2, —C3, —C4, —C5), USINGS2 and Sy, respectively

6th-order:S»
¢5=0.375012038697862

b4 =0.513910778424374 c4 =0.384998538774070
b3 =0.364193022833858 c3=—0.074332422810238
by = —0.867423280969274 c2 =—0.461165940466494
b1 =1—2(b2+ b3+ bs) c1=—(c2+c3+ca+cs)

8th-order:Sy
c5=0.1
b4 =0.3836 ¢4 =0.153884390967272
b3 =0.38378409898601552832 ¢3=0.295715027608753
by = —0.58571608011635309034 ¢o = —0.182295174329697
b1 =1—2(b2+ b3+ bs) c1=—(c2+c3+ca+cs)

Table 5

Error terms for the non-processed and processed methods. The numer-
ical values correspond tg;; = (m/7)8 f7.;, wherem is the number of
stages per step for each method

Method-stages 7 172 173 174
Yos-7 0.88839  0.02987 0.0001961 —0.01798
McL-9 0.40799 0.01254 0.0001012 —0.02451
Proc-5 7.44179 0 0 .28046
Proc-7 0.14135 0 0 0

In order to better appreciate the efficiency of the new method, we present in Table 5 the error terms of
the most efficient 6th-order methods we found in the literature which take (8) Ssififnese coefficients
are normalized in order to take into account the different number of stages. The methods are: the bes
7-stages of [29] and the optimized 9-stages of [17]. We must say that in spite of the small values of
f7.i, 1 =2,3, 4, their corresponding E7 ;|| usually take greater values thf 1||. This is the case, for
instance, if we consider the well known leapfrog methodam a separable problem. From the results
of this table we already appreciate the benefits of using the processing technique.
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Fig. 2. Absolute value of the coefficienisand error function$fg 1| and| f11.1| versusba. In order to appreciate
the position of the minimum for the coefficients of the method we display (12/20)* with 1 = > i 1bil.

8th-order,S4. Inthe same way, for an 8th-order integrator we can con#idelbs, b,, by, bo, b3) andS,
as the basic method. Now, we have only one error tggm, The two real solutions givgg 1 = 8.22. ...
This large value can be considerably reduced considering, as previbuslyb,, bz, by, b1, by, bs, bs)
which has one free parameter. It seems interesting to minirfiizeas well asu = >, |b;| in order the
higher order terms do not take extremely large values. In Fig. 2 we reprigghand . versusb, as
well as| f11.1| as representative of higher order error terms. All of them have the minimum at the same
point. Observe that the value of the error functions is reduced around four orders of magnitude at the
minimum if we compare with their values b = 0.

A solution for b, near the minimum is given in Table 4. For the processor we can ¢ake
(c1, €2, €3, €4, €5, —C1, —C2, —C3, —C4, —C5) and one solution is given in Table 4. Again, with this
processor we have thatF = hF + h%gq1Eq1 + O(h'Y) and the method is, for practical purposes
equivalent to a symmetric integrator.

In order to appreciate the improvement obtained using the processing technique, let us consider a non:
processed 8th-order composition. It requires at least seven stages=.€u, as, az, a1, dz, as, as). We
found several solutions and the one with smaller error coefficients is

as=0.846121147469682 a3 =0.158012845800852
a; = —1.09020666054393 a1 =1—2(az + az + aa),

where the error terms are given in Table 6. This method has exactly the same computational cost as the
seven-stages processed method but, the error coefficients are more than two orders of magnitude greate
From the results of this section and Table 3 we expect that higher order processed methods will be
considerably more efficient than the corresponding non-processed integrators. However, higher order
methods are technically more involved both for getting the kernel and optimal processor conditions
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Table 6
Error terms for the non-processed and processed methods. The numerical
values correspond thy, = (m/?)sfg,i, wherem is the number of stages

per step for each method, arf¢h | = (m/7)*0f111

Method-stages 91 192 /93 11
no-proc-7 0.270047  0.0100179 0.0000904 0.88511
Proc-5 0.556848 0 0 1.99022
Proc-7 0.0016815 0 0 0.001506

as well as due to the numerical implementation for obtaining the best solution. This problem is under
consideration and the results will be published elsewhere.

5. Numerical experiments

In order to illustrate the efficiency of the new processed methods we will compare their performances
versus standard integrators (of the same family) on the following two examples:

Example 1 (Volterra—Lotka problem). Let us consider the simple differential equations
u=ul—2), v=v(1l—un) (44)

which correspond to (1) witly = (u, v) and f(y) = (u(v — 2), v(1 — u)). The system has the first
integral: I (u, v) = In(u) — u 4+ 2In(v) — v = Const. Several second order symmetric methods can be
used as the basic schersie The following two methods will be considered:

(i) Implicit midpoint rule

Yty
Y1 =Sy =y +hf <%>, (45)

wherey, is an approximation to the exact solutigk/).

(i) Leapfrog methodThe vector field is separable in two exactly solvable pgrts f , + f with
fa=@ww—2),0) andf; = (0,v(1—u)). If we denote by & and é? the exact flows of , = f 4
andy, = f,, respectively, we have that

Sy = gh/2A chB o(h/2)A (46)

corresponds to the second-order leapfrog method, and it is symmetric.

The 6th-order numerical integrators considered are: the best seven-stages of [29] (NP-7) and the
new seven-stages processed method (P-7). The result of the numerical experiments is shown in Fig. ¢
considering as basic methods (45) and (46). As initial values we clisgs®) = (1, 1) atr =0, and we
integrated up te = 100. The figures show the average error in the first inte@fdl:, v) — I (ug, vo))l,
versus the number of evaluations in the Newton iteration which was used in the implementation of the
midpoint rule, Fig. 3(a), and versus the numberSefevaluations in the leapfrog case, Fig. 3(b), for
different time-steps. The figures agree with the results presented in Table 5. The nine-stages McL-9 stays
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Fig. 3. Average error for the non-processed (NP-7) and processed (P-7) seven stages 6th-order methods: (a) vs. t
number of iterations when the implicit midpoint rule is used, and (b) vs. number@faluations, whers; is the
leap-frog.

between the two previous methods, again in agreement with the error terms in Table 5. We must say that
with nine stages it could be possible to get a high order processed method or a method with smaller error
coefficients. On the other hand, the improvement of the fourth-order processed method is only marginal,
as predicted.

Example 2 (Kepler problem). Let us consider the Hamilton equations (3) associated to the Hamiltonian
1

1
H(q,p)=>(p*+ p?) — —,
2 Y 2 2
Jaz + 42

whereq = (¢., ¢,) andp = (p., p,). We take as initial conditiong, =0, p, = /(T +e)/(X—e), g, =

1—e, g, =0, and eccentricity = 0.5. These correspond to an orbit of periad and energy—%. The
Hamiltonian is separable in the kinetic and potential energy. For this particular problem it is possible to
use symplectic RKN methods and the most efficient we know (up to order 8) are given in [5]. However,
the goal of this test is to present an example where different symmetric metfiodsn be used and

to show that the method obtained with processing is considerably better than using a non-processec
composition. ForS, we will consider the three-stages method of [29]. Many symmetric fourth-order
methods, specially tailored for RKN problems, can be uses}, §]. The relative efficiency between the
8th-order methods has to be nearly independeist, biut, using more efficient RKN algorithms we reach
machine accuracy before clearly appreciate this result. The 8th-order numerical integrators considered
correspond to the seven-stages processed (P-7) and non-processed (NP-7).

(47)
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Fig. 4. Average error in position of the non-processed (NP-7) and processed (P-7) seven stages 8th-order method
vs. number ofS, evaluations.

We integrated the system along 10 periods and measured the average error in position versus the
number of evaluations of,. Fig. 4 shows the results obtained which perfectly agree with the values of
the error terms presented in Table 6. Similar results are obtained when applying the methods to (44) using
asS, a symmetric composition df, with three or five stages as in [17,24,29]. Observe that now it is not
possible to use RKN methods as in the Kepler problem.

6. Conclusions

We have shown that it is possible and very efficient to increase the order of a basic method using both
the composition and the processing techniques. This efficiency comes because the kernel has to satisfy
considerable smaller number of conditions than a non-processed composition. The processor is used fo
solving some of the order conditions as well as for minimizing the leading error terms.

If the basic method is symmetric and a symmetric compositions for the kernel is used, the number of
kernel conditions is given. In this case, the whole method will be equivalent to a symmetric integrator up
to a given order if the processor is chosen properly.

From the analysis of the paper it seems clear that the relative efficiency of the processed technique
versus the standard composition increases with the order. For 4th-, 6th- and 8th-order methofis using
andS,; we show explicitly that the improvement is already considerable so, higher order methods are very
promising. These methods are technically more involved and are, at this moment, under consideration.
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