
Applied Numerical Mathematics 39 (2001) 245–259
www.elsevier.com/locate/apnum

High-order Runge–Kutta–Nyström geometric methods with
processing

S. Blanesa,∗, F. Casasb, J. Rosc
a Department of Applied Mathematics and Theoretical Physics, Cambridge, CB3 9EW, UK

b Departament de Matemàtiques, Universitat Jaume I, 12071-Castellón, Spain
c Departament de Física Teòrica and IFIC, Universitat de València, 46100-Burjassot, Valencia, Spain

Abstract

We present new families of sixth- and eighth-order Runge–Kutta–Nyström geometric integrators with processing
for ordinary differential equations. Both the processor and the kernel are composed of explicitly computable flows
associated with non trivial elements belonging to the Lie algebra involved in the problem. Their efficiency is
found to be superior to other previously known algorithms of equivalent order, in some case up to four orders of
magnitude. 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most used techniques in geometric integration of ordinary differential equations is to com-
pose one or more low-order basic methods with appropriately chosen weights in order to achieve a higher-
order scheme. The resulting composition algorithm preserves the favorable geometric property the basic
method shares with the exact solution. Often one has a differential equationẋ =X(x) such that the func-
tion X can be written as a sum of two contributionsX =X1 +X2 and the systemṡx = Xi(x), i = 1,2,
can both be solved analytically. Then the exact flows corresponding toXi are taken as the basic methods.

When this approach is applied to second-order systems of ODE of the special form

ẍ = f (x), (1)

wherex ∈ R
l andf :Rl → R

l , the numerical algorithms are usually termed as Runge–Kutta–Nyström
(RKN) methods. More specifically, introducing the new variablesz = (x,v)T, with v = ẋ, and the
functionsf A = (v,0) andf B = (0,f (x)), Eq. (1) can be written as

ż = f A + f B, (2)
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and the systemṡz = f A andż = f B can be integrated in closed form with exact flow

zA(t) = etAzA(0)= (x0 + tv0,v0)
T,

zB(t) = etBzB(0)= (
x0,v0 + tf (x0)

)T
.

(3)

Here x0, v0 denote initial conditions (att = 0) andA ≡ f A · ∇, B ≡ f B · ∇ are the Lie operators
associated withf A and f B , respectively (∇ = (∇x,∇v)). If we write the exact solution asz(t) =
et (A+B)z0, the evolution operator et (A+B) for one time steph= t/N may be approximated, for example,
by

eh(A+B) 
 ehHa ≡
s∏
i=1

ehaiAehbiB (4)

or

eh(A+B) 
 ehHs ≡
r∏
i=1

S(wih), (5)

where

S(h)= exp
(
h

2
A

)
exp(B)exp

(
h

2
A

)

is the leapfrog method. The corresponding approximate solutionzα(t)= etHαz0, α = a, s, evolves then
according to the Lie group whose Lie algebraL(A,B) is generated byA andB with the usual Lie
bracket of vector fields [1]. IfA andB are Hamiltonian vector fields, it lies in a subgroup of the group of
symplectic maps and the method is called a symplectic integrator; ifA andB are skew-Hermitian, then
the approximation is unitary, etc.

The coefficientsai , bi orwi of this kind of method are determined by imposing that

Ha =A+B + O
(
hn

)
(6)

and similarly forHs . This allows us to obtain annth-order approximation to the exact solution. Observe
that the efficiency of the compositions (4) or (5) is highly dependent of the number of flows involved
and the coefficients appearing in the term O(hn). In practice, methods like (4) are obtained by means
of the Baker–Campbell–Hausdorff (BCH) formula, which makes it necessary to solve a system of
polynomial equations in the coefficients. The solution of this system can be extraordinarily involved
even for moderate values ofn, so that various symmetries are imposed on (4) and (5) to reduce the
number of determining equations, especially for high-order methods. For instance, if the composition
is palindromic (also called left–right symmetric or self-adjoint) thenHa has not odd powers ofh. The
price to be paid is an increment in the number of flows to be composed in each step. Note that in (5) the
individual stagesS(t) are themselves symmetric.

For the special decomposition (2) one can check that the Lie bracket[B, [B, [B,A]]] is identically
zero, and additional simplifications in the analysis occur. One of the most important examples is the class
of Hamiltonian systems of the formH = T (p)+ V (q) whereT (p) is quadratic inp. Then the function
f in (1) is the gradient of the potential−V (q). The case of a Hamiltonian

H(q,p)= A(q,p)+ B(q), (7)

with A quadratic inp, is also included.
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The recent literature has devoted much attention to the integration of Eq. (1) by means of high-
order structure-preserving composition schemes. Okunbor and Skeel [13] have constructed explicit
symplectic RKN formulae of the type (4) with five stages and seven stages of orders 5 and 6, respectively.
Yoshida [17] derived explicit, symplectic methods of orders 6 and 8 requiring seven and fifteen function
evaluations per step as a composition of leapfrog steps (5). Calvo and Sanz-Serna [6] designed an
optimized symmetric eighth-order scheme with 24 evaluations which they found to be superior to
Yoshida’s methods in tests. Finally, McLachlan [9], after a thorough analysis, did not find more efficient
sixth-order schemes than the one obtained by Okunbor and Skeel, and built a symmetric composition of
order 8 with seventeen function evaluations more efficient than the previous ones. Interestingly, all these
eighth-order methods are not properly RKN algorithms: they work for all splittingsX = X1 + X2, not
just for those of the form (2), and the question of the existence of symmetric high-order Runge–Kutta–
Nyström integrators more efficient than those composed of symmetric steps has been raised [11].

Some steps along this way have been taken recently: the use of the processing technique has allowed
the present authors to develop highly efficient schemes of orders 4 and 6 [2], the improvement with
respect to other algorithms being mainly due to the reduction in the number of evaluations. It has been
suggested [16] that the use of processing is the most economical path to high order, because the number
of determining equations diminishes.

The idea of processing was first introduced in the context of Runge–Kutta methods by Butcher [5]
in 1969 and applied to the symplectic integration of Hamiltonian systems, among others, by Wisdom
et al. [16], McLachlan [10] and López-Marcos et al. [8]. In order to reduce the number of evaluations per
time steph the following composition is considered:

ehH(h) = ePehKe−P . (8)

Then, afterN steps, we have et (A+B) ≈ etH(h) = eP (ehK)Ne−P . At first we apply eP (the corrector or
processor), then ehK (the kernel) acts once per step, and e−P is evaluated only when output is needed.
Both the kernel and the processor are taken as compositions of the flows associated withA andB.

A general analysis of the processing technique in connection with symplectic integration has been
done in [2]. There, the number of conditions to be satisfied by the kernel to attain a given order has
been obtained. It has also been shown that the kernel completely determines the optimal method one can
obtain by processing.

In this paper we apply the above analysis to the RKN case. By combining the processing technique
with the use of several exactly computable flows generated by different elements belonging to the Lie
algebraL(A,B) we obtain a family of optimal sixth-order RKN methods more efficient than others
previously published and some processed eighth-order schemes with less function evaluations per step.
Although only autonomous systems have been mentioned so far, also time-dependent systems can be
included by adding an extra variable.

These new methods are particularly effective when the functionf in (1) can be written as

f (x, t)=
s∑
i=1

gi(t)f i(x), (9)

where an explicit time dependence has been introduced through the functionsgi . This case embraces the
physically important class of time-dependent non-linear oscillators [12].
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2. General analysis

In the Lie algebraL(A,B) generated by the vector fieldsA andB, we denote by[L1,L2, . . . ,Ls]
the nested Lie bracket product[L1, [L2, . . . ,Ls]]. Let d(m) be the dimension of the space spanned
by brackets of orderm of A andB when [B,B,B,A] = 0, its first 8 values being 2,1,2,2,4,5,10,
and 15 [9] and denote by{Em,i}d(m)i=1 a basis of this subspace. Our explicit choice of basis is given in
Appendix A.

In addition toA andB there are other elements inL(A,B) whose flow is explicitly and exactly
computable. For instance, the operator[B,A,B] can be written as

V3,1 ≡ [B,A,B] = 2
l∑

i,j=1

fi
∂fj

∂xi

∂

∂vj
≡ g(3)(x) · ∇v (10)

and the corresponding flow is given by an expression similar to the second equation of (3) by replacing
f with g(3). In general, letCi denote eitherA or B operators, and let us assign toCi an indexri with
values−1 and 1, respectively. Then one can see that[C1,C2, . . . ,Cs] has the form of Eq. (10) with an
appropriate functiong(s)(x) as soon as, starting from the right, the sum ofri adds up to 1. This only takes
place when there is one moreB thanA operators, so that the total numbers has to be odd.

Whens = 5 there is only one independent element inL(A,B) with the required structure, namely

V5,1 ≡ [B,B,A,A,B], (11)

whereas fors = 7 we have

V7,1 ≡ [B,A,B,B,A,A,B], V7,2 ≡ [B,B,B,A,A,A,B]. (12)

The expression of the corresponding functionsg(s) are collected in Appendix A. Observe that the
operators given in Eqs. (10)–(12) correspond respectively to the basis elementsE3,2, E5,4, E7,8, and
E7,10. For easier reading we use a different notation in the text.

Then it is also possible to evaluate exactly exp(hCb,c,d,e,f ), with

Cb,c,d,e,f = bB + h2cV3,1 + h4d V5,1 + h6(eV7,1 + fV7,2), (13)

b, c, d, e, andf being free parameters. Therefore, by replacing in the compositions (4), (5) or (8) all ehbiB

factors by the more general ones ehCbi ,ci ,di ,ei ,fi , we introduce several parameters with only one exponential
and reduce the number of evaluations of the overall scheme. Its efficiency is then improved if the
calculation of successive derivatives off in (11) and (12) is not very expensive in terms of computational
cost.

The operatorCb,c,d,e,f can be considered a generalization of the so-called modified potential used
frequently in the recent literature [8,14,16]. In the rest of the paper it will be referred to as modified
function.

This technique, when combined with processing, constitutes a new way to achieve high order methods
deferring the explosion in the number of stages, which is typical of standard composition schemes. With
this goal in perspective, let us return now to the composition (8).

By repeated application of the BCH formula the kernel and processor generatorsK andP can be
written as a power series inh:

K =A+B +
∞∑
i=2

{
hi−1

d(i)∑
j=1

ki,jEi,j

}
, P =

∞∑
i=1

{
hi

d(i)∑
j=1

pi,jEi,j

}
, (14)
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and therefore

H(h)= ePKe−P =A+B +
∞∑
i=2

{
hi−1

d(i)∑
j=1

fi,jEi,j

}
, (15)

where thefi,j coefficients are given in terms of polynomial relations involvingki,j andpi,j [2]. Particular
nth-order integration methods require thatfi,j = 0 up toi = n. These equations cannot be solved for an
arbitrary kernel using only the processor coefficients. More specifically, the kernel of annth-order(n� 2)
method for Eq. (2) must satisfy exactlyk(n)= d(n)− 1 independent conditions [2]. If, in addition, the
kernel is symmetric, then the number of conditions is considerably reduced:k(2n)= k(2n−1). In Table 1
we collect the explicit form, in the basis we are using, of these conditionsNi,j = 0 up to eighth-order.

In this case the processorP(h) can be chosen as an even function ofh and the corresponding
coefficients take very simple forms in terms ofki,j [2]: the only non-zero values are, for methods up
to sixth-order,

p2,1 = k3,1, p4,1 = k5,1, p4,2 = k5,4 − 1
2k

2
3,1, (16)

whereas for order 8 we have, in addition,

p6,1 = 1
2(k71 + k72)− 1

2k31k51,

p6,2 = 1
2(k73 + k74)+ 1

6k
3
31 + k31k51 − 1

2k31k53,

p6,3 = 1
2(k75 + k76)− 5

12k
3
31 − k31k51 + k31k53,

p6,4 = 1
2(k77 + k78)− 1

6k
3
31,

p6,5 = 1
2(k79 + k710)+ 2

9k
3
31 + 1

2k31k51 − 1
3k31k53.

(17)

Table 1
Conditions to be satisfied by a symmetric kernel of a RKN processing method up
to order 8

Order 3 N3,1 ≡ k3,1 − k3,2 = 0

Order 5 N5,1 ≡ k5,2 − k5,1 − 1
2k

2
3,1 = 0

N5,2 ≡ k5,3 + k5,4 − k3,2k3,1 = 0

Order 7 N7,1 ≡ k7,1 − k7,2 + k5,1k3,1 = 0

N7,2 ≡ k7,4 − k7,3 + 1
3k

3
3,1 − k5,1k3,1 − k5,3k3,1 = 0

N7,3 ≡ k7,5 − k7,6 + 5
6k

3
3,1 + k5,1k3,1 − 2k5,3k3,1 = 0

N7,4 ≡ k7,7 − k7,8 + k3
3,1 − 2k5,3k3,1 = 0

N7,5 ≡ k7,9 − k7,10 + 5
18k

3
3,1 + k5,1k3,1 − 1

3k5,3k3,1 = 0



250 S. Blanes et al. / Applied Numerical Mathematics 39 (2001) 245–259

It is traditional to compare different integration methods by means of an effective error constantEf :
some measure of the first term in the local truncation errorEr adjusted for the complexity of the scheme.
In our caseEr can be defined as

Er =
√√√√√d(n+1)∑

j=1

|fn+1,j |2 (18)

and the effective error can be taken asEf =mE1/n
r , wherem is the number ofB (or C) evaluations per

time step. Interestingly, it has been shown [2] that the values offn+1,j which minimize the value ofEr

can be written as linear combinations of the functionsNn+1,j which would determine the conditions for
the kernel at ordern+ 1. Whenn= 6 these optimal values read

|f7,2i−1| = |f7,2i| = 1
2|N7,i|, i = 1, . . . ,5. (19)

We see, then, that the kernel itself determines the minimum error one can achieve by processing. In the
following we design a complete family of sixth-order optimal processing methods just by considering
different symmetric kernels. The eighth-order case is also considered.

3. The new RKN processing methods

The two basic ingredients of an integrator with processing are the processor eP and the kernel ehK .
From a practical point of view it is generally not necessary to use an element of the Lie group associated
with L(A,B) as a processor because its effects are not propagated by the numerical integrator [8].
Nevertheless, to be fully consistent with the demand of geometric integration, we take as processor the
explicitly computable non-symmetric composition

eP =
r∏
i=1

ehziAehyiB, (20)

where the replacement exp(hyiB) �→ exp(hCyi,vi ,wi ) can be done when necessary. In any case, it is
characterized by the numberr of B (or C) evaluations needed to guarantee that the

∑n−1
i=1 d(i) equations

pi,j = pi,j (zk, yk)

have real solutions for the coefficients.
As far as the kernel is concerned, due to the qualitatively different character of the operatorsA andB,

we have to consider the following two types of composition:
(i) ABA-type composition:(

∑s+1
i=1 ai =

∑s
i=1 bi = 1):

ehK = eha1Aehb1Beha2A · · ·ehasAehbsBehas+1A (21)

with as+2−i = ai andbs+1−i = bi .
(ii) BAB-type composition(

∑s
i=1ai =

∑s+1
i=1 bi = 1):

ehK = ehb1Beha1Aehb2B · · ·ehbsBehasAehbs+1B (22)

with as+1−i = ai andbs+2−i = bi .
We designate the whole method of ordern by the label

(n :X-s, r; l)
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whereX = ABA,BAB indicates the particular character of the kernel and, as before, we can replace
ehbiB by the exact flow corresponding toCbi,ci ,..., in which case we add a numberl to indicate the
highest order of the nested Lie brackets included. Observe, then, that the criterion for estimating the
computational effort needs to be reformulated. Although the cost of the evaluation ofCb,c,d,e,f depends
both on the problem being integrated and the number of non-zero coefficients inC, it turns out that,
at least whenl = 3 (i.e., d = e = f = 0), one evaluation ofCb,c can be done at the cost of at most
two independentB evaluations and typically much less because of reuse of certain calculations in the
computer [2,8]. This happens also for a number of problems even ifd, e andf are nonvanishing, as is
the case for polynomialf i in Eq. (9) or when the potential depends only on‖x‖.

3.1. Sixth-order methods

The kernel has to satisfy the three first conditions in Table 1. We look for different solutions of the
equationsN3,1 = N5,1 = N5,2 = 0 and take the coefficients which produce the smallest value for the
functionsN7,j (and thus the minimum error). The efficiency of these new methods should be compared
with the valueEf = 7E1/6

r = 1.0345 achieved by the best RKN scheme with sevenB evaluations,
designed by Okunbor and Skeel [9,13]. Table 2 collects the coefficients (with the lastai andbi omitted)
and effective errors achieved by the new schemes.

(i) l = 0. The minimum number ofB operators needed to solve the kernel conditions is four. We have
not found real solutions with anABA-type composition, whereas the optimal effective error achieved
by a BAB composition isEf = 1.0355, which is similar to the best unprocessed algorithm. With five
B evaluations there exist anABA kernel withEf = 0.7329. If one moreB evaluation is considered we
have obtained the(6 : BAB-6,9;0) scheme given in Table 2 with effective errorEf = 0.64. Obviously,
with seven evaluations we could get a better method because then there are three free parameters. On the
other hand, because a sixth order method satisfy all the conditions for a kernel, we can consider the most
efficient sixth order method given by Okunbor and Skeel. With this kernel we can build a method with
effective errorEf = 0.61685.

(ii) l = 3. ThreeCbi,ci evaluations in the kernel are required to have real solutions and there is still a free
parameter (any of theci). Both types of composition produce exactly the same optimal errorE1/6

r = 0.15.
By fixing c1 = 0 we have the(6 :ABA-3,6;3)method which only requires oneC and twoB evaluations,
giving errorE1/6

r = 0.1551 and efficiency 0.4653<Ef < 0.6204, depending of the estimated cost of aC
evaluation.

(iii) l = 5. The three free parameters needed to solve the equations can also be obtained with twoCb,c,d
operators. There are no real solutions withBAB schemes, whereas the resultingABA composition admits
two sets of real solutions, one of which is used to construct the(6 :ABA-2,6;5) scheme of Table 2, with
errorE1/6

r = 0.2719 and efficiency 0.5438<Ef < 1.0876.
(iv) l = 7. We can use the complete expressionCbi,ci ,di,ei ,fi to reduce significantly the errors attained

by the preceding kernels. More specifically, as the coefficientsei andfi appear linearly in the functions
N7,4 andN7,5, they can be chosen to cancel these functions. This is especially useful whenN7,4 andN7,5

provide the highest contribution to the error term. For instance, if we replaceCb1,c1,d1 by Cb1,c1,d1,e1 in
the kernel of the(6 : ABA-2,6;5) scheme, withe1 = (215+ 56

√
15)/1612800, we obtain a method

with errorE1/6
r = 0.2281. When the replacementCb2,c2 �→ Cb2,c2,0,e2,f2 is done in the(6 : ABA-3,6;3)

scheme, i.e., when the kernel

ehK = eha1Aehb1Beha2AehCb2,c2,0,e2,f2 eha2Aehb1Beha1A (23)
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Table 2
Coefficients and effective errors of the new sixth-order RKN geometric integrators with processing

(6 : BAB-6,9;0) Ef = 0.64

b1 = 0.15 a1 = 0.316

b2 = 0.3297455985640361 a2 = 0.4312992634164797

b3 = −0.049363257050623707

z1 = −0.2079110832137436 z2 = 0.4089657710426152 z3 = 0.5630192496347863

z4 = 0.009121373956442832 z5 = −0.5602966606303723 z6 = 0.7988679375711318

z7 = −0.8711855319991359 z8 = 0.8594189436382758 z9 = −∑8
i=1 zi

y1 = −0.015428952113728616 y2 = 0.4245395527376832 y3 = 0.1686944980146086

y4 = −0.1611964864865696 y5 = −0.4258477789489911 y6 = −0.008262586834473168

y7 = 0.008521397729269797 y8 = 0.008980355902201032 y9 = −∑8
i=1 yi

(6 :ABA-3,6;3) Ef ∈ (0.4653,0.6204)

a1 = −0.0682610383918630 b1 = 0.2621129352517028

c1 = 0 c2 = 0.0164011128160783

z1 = 0.07943288242455420 z2 = 0.02974829169467665 z3 = −0.7057074964815896

z4 = 0.3190423451260838 z5 = −0.2869147334299646 z6 = −∑5
i=1 zi

y1 = 1.3599424487455264 y2 = −0.6505973747535132 y3 = −0.033542814598338416

y4 = −0.040129915275115030 y5 = 0.044579729809902803 y6 = −∑5
i=1 yi

v1 = −0.034841228074994859 v2 = 0.031675672097525204 v3 = −0.005661054677711889

v4 = 0.004262222269023640 v5 = 0.005 v6 = −0.005

(6 :ABA-2,6;5) Ef ∈ (0.5438,1.0876)

a1 = 1
4(1+

√
1+ 4√

15
) c1 = 5+√

15
240 d1 = 4+√

15
2880

z1 = −0.029784067651958936 z2 = 0.9445943038246405 z3 = −1.908119437387469

z4 = 1.651876569139561 z5 = −0.2328222691635203 z6 = −∑5
i=1 zi

y1 = 0.1478939879876102 y2 = −0.042209655271038353 y3 = −0.000873366842778911

y4 = 0.2180721303705606 y5 = −0.3228830962443535 y6 = −∑5
i=1 yi

v1 = 0.007282272774510424 v2 = −0.003668108110223575 v3 = −0.000225427508528040

v4 = 0.02 v5 = −0.02 v6 = 0

w1 = 0.000384554838931473 w2 = 0.000258018664435799 w3 = 0

w4 = 0 w5 = 0 w6 = 0

(6 :ABA-3,6;7) Ef ∈ (0.2238,0.2984)

a1 = −0.0682610383918630 b1 = 0.2621129352517028

c1 = 0 c2 = 0.0164011128160783

d2 = 0 e2 = 0.0000186194612413481 f2 = −0.0000063155794861591

z1 = 0.1604630501234888 z2 = −0.1222126706298830 z3 = 0.1916801124727711

z4 = 0.5630722377955035 z5 = −0.7612758792358986 z6 = −∑5
i=1 zi

y1 = −0.012334538446142270 y2 = −0.6610294848488182 y3 = −0.023112349678219939

y4 = 0.000181521815949959 y5 = 2.3768244683666757 y6 = −∑5
i=1 yi

v1 = 0.013816178183636998 v2 = −0.050288359617427786 v3 = −0.013462400168471472
v4 = 0.000603819193361427 v5 = −0.01 v6 = 0.01
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Table 3
Kernel coefficients of eighth-order RKN geometric integrators with processing. Coeffi-
cients of a processor are also included for one kernel

(ABA-9;0)

a1 = 0.00004683745923348969 b1 = 0.3730012196073597

a2 = −0.7458919296558489 b2 = 0.039270822365231689

a3 = −0.027911335134073806 b3 = −0.032798861516437888

a4 = 0.5888685556487076 b4 = −0.1021725211468956

(ABA-4;7)

a1 = 0.7129508732570782 b1 = 0.5974070023507730

c1 = −0.052876668399475798 a2 = −0.4094021154865992

c2 = 0.012122201874074444 d2 = 0.003162537736573353

e2 = 0.000516635479956932 f2 = −0.000025513037513292

(8 : BAB-5,14;7)

b1 = 0.2585691647446146 c1 = 0.007587869772563802

d1 = 0.0001219127419188233 e1 = 0.000005741889879702246

f1 = −0.000002271708973531348 a1 = 0.6954511641703808

b2 = −0.1945897221635392 c2 = 0.0005222572249380952

a2 = −0.05

z1 = 0 y1 = 0.3644761259072299

z2 = −0.004624860718237988 y2 = −0.2849544383272169

z3 = 0.3423219445639433 y3 = 0.2023898776842639

z4 = 0.1760176996772205 y4 = −0.2743578195701579

z5 = 0.3625045293826689 y5 = −0.00475975395524748

z6 = −0.2729727321466362 y6 = 0.1455974775779454

z7 = −∑6
i=1 zi y7 = −∑6

i=1 yi

v1 = 0.016298916362212911 v2 = −0.019769812343547362

v3 = 0.004608026684270971 v4 = v5 = v6 = v7 = 0

is considered, the corresponding(6 : ABA-3,6;7) method, given in Table 2, attains an errorE1/6
r =

0.0746. Observe that, in this case, only one modified functionC has to be evaluated per time step and
then 0.2238<Ef < 0.2984 for a number of problems.
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3.2. Eighth-order methods

A symmetric kernel must satisfy the eight equations in Table 1. In order to have as many parameters
as necessary to fulfill these conditions we may consider anABA or BAB composition with at least nine
B operators or include modified functions in the scheme: for instance, the minimum number of flows
is achieved with only twoCb,c andCb,c,d,e,f evaluations. In any case, the number of possibilities (and
solutions) increases considerably with respect ton= 6.

In principle, a similar analysis can be carried out to obtain new families of optimal eighth-order
methods with processing. This requires considering the space spanned by nested brackets of order 9 and
the number of equations involved becomes prohibitively large(d(9) = 26). Some alternative approach
for characterizing the accuracy of these methods should then be considered, such as some measure of the
magnitude of the coefficients [9].

Concerning the processorP , the coefficientszk, yk in Eq. (20) have to satisfy 26 equations. This
unpractical number of conditions can be reduced by determining the coefficients of the composition
eQ = ∏

i e
hziAehyiB such that

Q(h)= 1
2P(h)+ O

(
h7). (24)

In this way only 16 equations are involved, but it follows that

eQ(h)eQ(−h) = eP(h) + O
(
h8) (25)

becauseP(h) is an even function ofh. Observe that the same composition that definesQ(h) but reversing
the sign ofh allows us to obtainQ(−h).

Table 3 collects the coefficients of some compositions we have found for kernels of eighth-order
methods. These include anABA composition without modified functions,(ABA-9;0), a kernel involving
the minimum number of exponentials,(ABA-4;7), and aBAB composition with twoB, two Cb,c and
oneCb,c,d,e,f evaluations. For this case we have also written the coefficients of a possible processor. The
method thus obtained,(8 : BAB-5,2r;7), with r = 7, should be considered only as a preliminary result
of a more complete analysis which is being carried out at present [3].

4. Numerical examples

In order to test the efficiency of the new methods presented above, they are applied to some test-
bench examples. Comparison is done with other schemes of similar asymptotic consistency. For order
six, these are the most efficient seven-stage method designed by Okunbor and Skeel, OS6 [13], and the
non-symplectic variable step embedded RKN method, DP6, presented in [4] such as is implemented
in the subroutine D02LAF of the NAG library. Concerning the eighth-order, the methods we use are a
symplectic integrator due to Yoshida [17] (Yos8), with 15 function evaluations, the 17 stages composition
method obtained by McLachlan [9] (McL8) and the optimized symmetric scheme designed by Calvo and
Sanz-Serna [6], with 24 evaluations per step (CSS8).

Example 1. The methods are applied first to the time-dependent Hamiltonian

H = 1
2

(
p2

1 + q2
1

) + ε cos(q1)g1(t)+ ε sin(q1)g2(t) (26)
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with g1(t) = ∑m
k=1 cos(wkt), g2(t) = ∑m

k=1 sin(wkt). It describes the motion of a charged particle in a
constant magnetic field perturbed bym electrostatic plane waves (propagating along the perpendicular
direction of the motion), each with the same wavenumber and amplitude, but with differing temporal
frequenciesωk [7].

This Hamiltonian can be treated as an autonomous system by considering the additional coordinate
q2 = t and the corresponding conjugate canonical momentump2 [1]. Then it has the form (7) with

A = p2 + 1
2

(
p2

1 + q2
1

)
,

B = ε cos(q1)g1(q2)+ ε sin(q1)g2(q2).
(27)

Then, in terms of the variablesx ≡ (q1, t), v ≡ (p1,p2), the equations of motion can be written as Eq. (2)
with

f A = (p1,1,−q1,0)
T, f B = (0,−∇xB)T (28)

and the systemṡz = f A, ż = f B have the exact flows

ehAzA(0) = (q10 cosh+ p10 sinh,h,−q10 sinh+ p10 cosh,p20),

ehBzB(0) = (
x0,v0 − h∇xB(x0)

)
.

(29)

Observe that, for this example, the additional computational cost of evaluating the modified functions
g(s) is almost negligible, in particular the most expensive∂tB is not needed for computing the trajectory.

In order to ensure resonance we chooseωk = kω0, with ω0 an integer. We take as initial conditions
q10 = 1,p10 = 0 and parametersε= 0.1, w0 = 7 andm= 10, so that both parts of the Hamiltonian have
a similar contribution. The numerical integration is carried out for 100 periods of the linear oscillator
(up to a final timetf = 100· 2π) and the average error in distance with respect to the “exact” solution
is evaluated during the last period. Here “exact” means obtained by integrating with a much shorter step
size.

Fig. 1 shows, in a log-log scale, this error as a function of the number of eB evaluations. Dash-dotted
line corresponds to the non-symplectic method DP6, whereas dotted line (OS6) stands for the method
of Okunbor and Skeel. The optimal processed schemes used are(6 : BAB-6,9;0) (broken line, P6)
and (6 : ABA-3,6;7) (solid lines, PM6), with coefficients given in Table 2. Solid lines are obtained
considering that the cost of the evaluation of eCb,c,d,e,f is one and two times the cost of eB , respectively.

Observe the high superiority achieved by the new processed methods, in particular when modified
functions are used regardless the increase of the cost of evaluating these functions, and how the theoretical
efficiency obtained in the last section exhibits in practice.

The rest of the new sixth-order methods have, for this example, performances between the two
processed methods given in the figure.

Example 2. As a second example we consider the two-body gravitational problem, for which the
equations may be written

ẍi = − xi

(x2
1 + x2

2)
3/2
, i = 1,2, (30)

and take as initial conditions

x1(0)= 1− e, x2(0)= ẋ1(0)= 0, ẋ2(0)=
(

1+ e

1− e

)1/2

, (31)
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Fig. 1. Average distance between exact and numerical trajectories vs. number of function evaluations for the first
example obtained with the new methods(6 :ABA-3,6;7) (solid lines) and(6 : BAB-6,9;0) (broken line). Results
attained with standard symplectic (OS6) and variable-step (DP6) sixth-order integrators are also included.

which produce an orbit with eccentricitye. With the valuee = 0.5, this orbit is determined numerically
for 500 periods and the mean error in energy is computed during the last period. It should be remarked that
the results achieved by the new schemes (as well as all symplectic integrators) are largely independent
of the final timetf , because the error in energy does not increase secularly, but this is not the case for the
variable-step method DP6.

When modified functionsCb,c,d,e,f are used into the algorithm, the following map has to be evaluated:

ehCb,c,d,e,f ẋi = ẋi − xiR, (32)

whereR = G(b + F(4c + F(28d + F(280e + 360f )))), andG = h/(x2
1 + x2

2)
3/2, F = hG. Notice

that the increment in the computational cost with respect to the evaluation of ehbB (which corresponds
to c = d = e = f = 0) is only due to a few additional floating-point operations. In fact, by comparing
CPU times of the same algorithm with and without using modified functions, we conclude that, for this
example, the cost of eCb,c,d,e,f is approximately4

3 times the cost of eB . We will consider this figure when
counting the number of evaluations.

Fig. 2 shows the mean error as a function of the number of eB evaluations for the same methods
as that in the previous example. From the figure it is clear the higher performance of our new optimal
processing methods with respect to the standard symplectic and non-symplectic integrators considered.
This improvement is particularly noticeable when the modified functionCb,c,d,e,f is incorporated into the
schemes.

In Fig. 3 we compare the results achieved for this problem by the new eighth-order integrator whose
coefficients are given in Table 3 (solid line denoted by pm8) with standard composition schemes. Observe
that, whereas CSS8 and McL8 have been optimized in order to reduce the truncation error, this is not the
case of pm8, and nevertheless it provides better results. This fact gives further momentum to the analysis
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Fig. 2. Error in energy vs. number of function evaluations for the two-body problem with eccentricitye = 0.5
obtained with the methods of Fig. 1. In this case one evaluation ofC is approximately equivalent to43 evaluations
of B.

Fig. 3. Error in energy vs. number of function evaluations for the two-body problem obtained with the new method
(8 : BAB-5,14;7) (solid line, pm8) in comparison with other standard symplectic eighth-order algorithms.

and construction of more efficient eighth-order integrators by the combined use of modified functions
and the processing technique.
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Appendix A

As stated in the text we denote by{En,i}d(n)i=1 a basis of the space spanned by nested brackets of ordern

of A andB when[B,B,B,A] = 0. In this work we have taken:

n= 1 E1,1 =A, E1,2 = B

n= 2 E2,1 = [A,B]
n= 3 E3,1 = [A,A,B], E3,2 = [B,A,B]
n= 4 E4,1 = [A,A,A,B], E4,2 = [B,A,A,B]
n= 5 E5,1 = [A,E4,1], E5,2 = [B,E4,1]

E5,3 = −[A,E4,2], E5,4 = [B,E4,2]
n= 6 E6,1 = [A,E5,1], E6,2 = [B,E5,1], E6,3 = [A,E5,2]

E6,4 = [A,E5,4], E6,5 = [B,E5,2],
n= 7 E7,2j−1 = [A,E6,j ], E7,2j = [B,E6,j ], j = 1, . . . ,5

Next we collect the functionsg(s)(x) appearing in the operatorsVs,j , s = 5,7, for autonomous systems,
which are incorporated into the modified functionCb,c,d,e,f . The sum on repeated indices convention is
adopted here:

(
g(5)

)
j
(x)= 2fk

(
fl
∂2fj

∂xl∂xk
+ 2

∂fl

∂xk

∂fj

∂xl

)
, (A.1)

(
g
(7)
1

)
j
(x)

= 2fm

(
4fk

∂fl

∂xm

∂2fj

∂xl∂xk
+ fkfl ∂3fj

∂xm∂xl∂xk
+ 4

∂fk

∂xm

∂fl

∂xk

∂fj

∂xl
+ 3fk

∂2fl

∂xm∂xk

∂fj

∂xl

)
, (A.2)

(
g
(7)
2

)
j
(x)= 6fkfl

(
fm

∂3fj

∂xm∂xl∂xk
+ 3

∂2fm

∂xl∂xk

∂fj

∂xm

)
. (A.3)

It should be stressed that these expressions are also valid for the more general case

ẍ =Aẋ + h(x)+ f (x), (A.4)

whereA is a constant matrix and the systemẍ =Aẋ + h(x) is exactly solvable.
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