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We study how to approximate polynomial Hamiltonian systems by composition of symplectic maps. Re-
cently, a number of methods preserving the symplectic character have appeared. However, they are not com-
pletely satisfactory because, in general, they are computationally expensive, very difficult to obtain or their
accuracy is relatively low. The efficiency of a numerical method depends on both its computational cost and its
accuracy. Polynomial Hamiltonians are separable in exactly solvable parts, and this can be done in many
different ways. Here we study how to find a separation for the Hamiltonian in a small number of cheaply
computed terms. Since the proposed methods depend on some free parameters, we also indicate how to choose
these parameters in order to improve the accuracy without increasing the computational cost.
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I. INTRODUCTION

Polynomial Hamiltonian systems appear frequently in ac-
celerator physics �1–7� and it is important to build good
integrators for numerical simulations. For the experiments in
accelerator physics the particles are stored for a long time.
During this time the particles give a huge number of turns
around the storage ring, and it is very important to study the
stability of the trajectories in order to avoid disappearance of
too many of these particles in the walls of the ring.

Provided that the synchrotron radiation is neglected, the
system can be considered as a Hamiltonian. Each part of the
accelerator has associated a Hamiltonian and, by composi-
tion, it is possible to consider only one Hamiltonian for ap-
proximating a complete turn to the ring. If z�(q ,p) are the
coordinates and momenta of a particle and z0 are the initial
conditions, we have, after one turn, z(1)�MHz0, where
MH is the map associated to the Hamiltonian. Considering
that the system is periodic, for N turns we have z(N)
�M H

Nz0.
In general, it is not possible to find analytical expressions

for z(N), so numerical methods are required. Methods pre-
serving the qualitative properties of the exact solution are
essential in order to have a good picture of the stability re-
gions. Therefore, we only consider symplectic integrators,
that is, numerical methods that, when applied to a classical
Hamiltonian system, preserve its symplectic character. The
approach we propose belongs to this family of methods and
it is usually referred to as symplectification of maps in the
accelerator physics community.

One of the most important methods is the truncated Taylor
map

z (T)�M Tz0�R� �
m�1

MT

�
i1 , . . . ,im

Ri1 , . . . ,im
zi1

0 •••zim

0 , �1�

where z (T) is an approximation to z(1), R is a vector, and zi
0

is the ith component of z0 �being z0�z0). Here, M T has to

be high enough to preserve symplecticity up to a round-off
error. In general, the dynamics of the system is mainly de-
termined by the low order polynomials, m�1, . . . ,M�1
and the values m�M ,M�1, . . . ,M T are introduced solely
to preserve symplecticity up to round-off. Since the compu-
tational cost grows extraordinarily with m, it means that most
of the work is done just to preserve symplecticity. For this
reason, it seems logical to look directly for methods that
exactly preserve symplecticity. It is well known that any
transformation defined implicitly by a mixed variable ca-
nonical generator gives a symplectic map. Thus, in order to
produce a symplectic map accurate up to order M, it is re-
quired that the map produced from the generating function
agrees with it to that order. Unfortunately, the equations to
solve are implicit and they have to be solved up to round-off
to preserve symplecticity. If the generating function is cheap
to compute �for example, a polynomial function� and a good
starting point for the iteration algorithm is known, efficient
methods can be obtained �8–12�.

However, in general, explicit methods are faster and
easier to implement, and in this paper we only consider ex-
plicit methods. Most of these algorithms are compositions of
maps like

do i�1,k1

zi�Mi�zi�1� �2�

enddo

where Mi are symplectic maps such that zk1�z(1)�rM ,
with rM representing a polynomial of degree M and higher.
There is a number of such methods �5,7,13� that are rela-
tively simple but, the maps Mi usually involve the compu-
tation of roots and exponentials, k1 can be relatively large,
and the accuracy of the algorithms is frequently not very
good. So, we are still paying a high price for preserving
symplecticity.

A much cheaper but sophisticated approach was intro-
duced by Irwin �14�. It can be considered as a particular case
of Eq. �2�, and looks like*Email address: sblanes@mat.uji.es
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do i�1,k2

z̄ i�Ri���zi�1

qi� q̄ i �3�

pi� p̄ i�Gi�qi,b�

enddo

where z̄ i�( q̄ i, p̄ i), Ri are symplectic linear transformations,
��(�1, . . . ,� jk2

), b�(b1 , . . . ,blk2
) are parameters to be

fixed, Gi are polynomial functions depending only on the
coordinates, and are such that zk2�(qk2,pk2)�z(1)�rM .
This algorithm can be very cheap �usually with similar cost
to the Taylor series map up to order M then, much cheaper to
compute than Eq. �1� for M�M T�. Irwin proposed to fix the
values of � and to obtain b from a linear system of equation.
He also proposed an optimization criterion in case we had
more bi variables than equations. Nevertheless, when this
technique was implemented on some problems, its accuracy
was rather poor, and it was abandoned. A deeper analysis,
following Irwin’s idea, for reducing the number of maps, k2,
was carried out in �15� using group properties for the linear
maps but, as we mention later in more detail, the cost is not
much reduced and still is not useful enough to make this
technique competitive. However, Abell and Dragt �16,4� re-
alized that the optimization of Eq. �3� should be done on the
set of � coefficients. An impressive analysis was conducted
and they found, for example, that in the two-dimensional
phase space ‘‘almost all sets are bad, good sets are rare, and
very good sets are exceptional.’’ However, the complexity
was so high that, even recently, some experts in symplectifi-
cation of maps using generating functions �11� said that ‘‘the
approximation theory of that technique is difficult to manage,
and the prospects of a practical advantage are still uncer-
tain.’’ After the submission of the present paper, Ref. �17�
appeared showing that, in spite of its complexity, it is still
possible to find efficient methods for practical problems.

In �16,4�, for given values of M and of the dimension of
the phase space, sensitive vectors and Gram matrices were
defined, and a set of � coefficients that maximized the mini-
mum of their eigenvalues was sought. As the authors noticed,
the results are very sensitive to � , and the optimal value is
independent of the studied problem �16� �Chap. 16�. The
sensitivity of the results with � seems logical because in a
perturbation technique, such as this, the linear part gives the
main contribution to the error, so small changes in the �
coefficients can affect seriously the accuracy of the method.
This indicates that, for most particular cases, the optimal
method obtained will be a good one, but still not the optimal
for each problem. Here, we propose a simple procedure to
obtain the optimal solution for each particular problem.

In this paper we use kicks instead of the general linear
transformation Ri �without loosing much generality�, simpli-
fying considerably the algorithm �3�. For this particular case,
we explicitly obtain the minimum value of k2 in terms of the
dimension of the phase space and M. Moreover, we reduce

the number of � i parameters just by introducing into the
algorithm some simple and cheap �but not necessarily poly-
nomial� maps. Then, instead of looking for optimal values
for the � i in a j k2

-dimensional space, we will do it in a
lower-dimensional space, reducing significantly the numeri-
cal search for their optimal values. In addition, we indicate
how to introduce more terms �and more parameters� into the
algorithm, in case a further optimization is desired. The
whole procedure of optimization takes into account the co-
efficients of the Hamiltonian. The algorithm we propose
looks like

do i�1,k3�

zi�Mi�zi�1�

enddo

do i�k3��1,k3 �4�

qi�qi�Gi ,1�pi�1,��

pi�pi�Gi ,2�qi,b�

enddo

where Mi are some cheap symplectic maps �polynomials or
quotient of polynomials�, the Gi ,1 are linear functions but, if
desired, nonlinear terms can be included easily, and the Gi ,2
are analogous to the Gi in Eq. �3�. The bi coefficients are the
solution of linear systems, depending on the � j and the co-
efficients of the particular problem considered. Finally, we
indicate how to make numerical searches to find the optimal
set of � for each particular problem. In order to illustrate the
benefits of this proposed technique, we explicitly show how
to implement it on simple examples.

II. MATHEMATICAL BACKGROUND

Let us denote by z�(q ,p)�(q1 , . . . ,qn ,p1 , . . . ,pn) a
vector in a 2n-dimensional phase space, and f (z), g(z) two
analytical functions. We denote the Poisson bracket of f and
g by

� f ,g	��
i , j


 f


zi
Ji j


g


z j
with J�� 0 I

�I 0 � . �5�

Here I and 0 are the n�n identity and zero matrices, respec-
tively. Following �1� we denote by : f (z): the Lie operator
associated to f (z). It acts on a function g(z) as

: f �z �:g�z ��� f �z �,g�z �	. �6�

We define the Lie transformation associated to f by

e : f :� �
k�0

�
: f :k

k!
, �7�
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where : f :0g�g and : f :kg�� f , : f :k�1g	. In order to make
the paper self-contained, in the following we collect some
properties of Lie operators and Lie transformations that are
used later. We highly recommend Refs. �1,2� for more details
and proofs.

Given an analytical function g(z), an important property
of Lie transformations is

e : f (z):g�z ��g�e : f (z):z �, �8�

where by e : f (z):z we must understand that the Lie transfor-
mation acts on each component of z. The relation

� : f : ,:g:��: f ::g:�:g:: f :�:� f ,g	: �9�

indicates that the Lie algebra of functions, with the Poisson
bracket as the product, is intimately related to the Lie algebra
of Lie operators associated to functions, with the commutator
as the product. Using the Baker-Campbell-Hausdorff �BCH�
formula and Eq. �9�, we have that

e : f :e :g:�e :h:, �10�

where

h� f �g� 1
2 � f ,g	� 1

12 �ˆf ,� f ,g	‰�ˆg ,�g , f 	‰��••• ,
�11�

and the inverse of e : f (z): is e�: f (z):. Another useful property
is

e : f (z)::g�z �:e�: f (z):�:e : f (z):g�z �:�:g�e : f (z):z �: �12�

and then

e : f (z):e :g(z):e�: f (z):�exp� :g�e : f (z):z �:� . �13�

For the particular cases f (q) and g(p), the Taylor series
expansion of their associated Lie transformations �7� termi-
nates when acting on (q ,p) ,

e : f (q):� q

p� �� q

p�“q f �q �
� ; e :g(p):� q

p� �� q�“pg�p �

p � .

�14�

Given a Hamiltonian function, H(z):R2n→R, the Hamil-
ton equations are given by

ż��z ,H�z �	��:H�z �:z ,

where the dot indicates derivative respect to t. The solution is

zt�e�t:H(z0):z0 , �15�

which can be considered as a change of coordinates from z0
to zt so, the Poisson bracket, :H(z0):z0��H(z0),z0	 �it has
to be read as the Poisson bracket of H(z0) with each com-
ponent of z0� is well defined. If the Hamiltonian is time
independent, then H(z) is a constant of the motion because
(d/dt)H(z)���H(z),H(z)	�0, and then

zt�e�t:H(z0):z0 ⇒ z0�et:H(zt):zt , �16�

since H(zt)�H(z0). Finally, the action of a Lie transforma-
tion e : f (z):z can be considered as the time-1 flow of the
Hamiltonian H(z)�� f (z).

III. SPLITTING THE MAP IN SOLVABLE PARTS

Suppose H(z) is the Hamiltonian containing all elements
of the ring. In accelerator physics one is interested in the
motion around the design orbit, so �z� �for an unspecified
norm� will be small. For this reason, it makes sense to write
H�� iHi , where Hi are homogeneous polynomials of de-
gree i, and to consider only terms up to a given order, say M,

H��
i�1

M

Hi . �17�

Since H1 and H2 are exactly solvable, we can formally
write

exp��:H: ��exp� : f 1 : �exp� : f 2 : �N �18�

with

N�exp� :�
i�2

f i : � , �19�

and where f i are homogeneous polynomials of degree i. Usu-
ally it is only known the Taylor series expansion of e�:H:z0

up to order M , T H
(M )(z0), which, in general, does not pre-

serve symplecticity. However, following �18� it is possible to
write

e :g1 :e :g2 :•••e :gM :z0�T H
(M )�z0��rM�z0�, �20�

where rM is a polynomial with terms of degree M and/or
higher and the gi are homogeneous polynomials of degree i.
In the following, any letter with a subindex, i.e., gk , will
denote a generic and unspecified polynomial with terms of
degree k or higher. We will indicate explicitly if the polyno-
mial is homogeneous. Occurrences of the symbol gk in dif-
ferent places do not necessarily refer to the same polynomial.
Finally, from Eq. �20� and using the BCH formula, Eqs. �18�
and �19� are easily obtained.

In this paper we are interested in approximating

e : f 3� . . . � f M :z , �21�

but, this transformation usually cannot be solved analytically.
Given the homogeneous polynomial in a two-dimensional

phase space

f m��
i�0

m

aiq
m�ipi, �22�

it is possible to write it as a sum of exactly solvable parts
�5,7,19,20,13�. For example, each monomial aqnpm is ex-
actly solvable

� q̄

p̄
� �ea:q0

np0
m :� q0

p0
� �� Amq0

p0 /An� �23�
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with A��1�(n�m)aq0
n�1p0

m�1�1/(m�n) if mn . For m
�n ,

� q̄

p̄
� �ea:q0

mp0
m :� q0

p0
� �� Eq0

p0 /E� , �24�

with E�exp(�amq0
m�1p0

m�1). Observe that the evaluation of
each map involves the computation of an exponential or a
root �unless n/(n�m) and m/(n�m) were both integers�.
Here ( q̄ , p̄) are written in terms of a summable infinite series
on (q0 ,p0). Notice also that Eq. �23� has singularities.

Another inconvenience is that, when considering the poly-
nomial f 3�•••� f M , the number of monomials increases
considerably. However, the number of solvable terms can be
reduced by grouping monomials that still have exact solu-
tion. The procedure is relatively simple, one has to find those
Hamiltonians whose Hamilton equations

q̇�

H


p
, ṗ��


H


q
�25�

are exactly solvable. For example, in Eq. �24�, if we take the
Hamiltonian H��aqmpm, the system to solve is

q̇��maqmpm�1 ⇒ q̇��ma�q0
m�1p0

m�1�q ,

ṗ�maqm�1pm ⇒ ṗ�ma�q0
m�1p0

m�1�p , �26�

where we have considered the known fact that H0�
�aq0

mp0
m is a constant of the motion so qp�q0p0, and inte-

grating Eq. �26� from t�0 to 1, the solution �24� is obtained.
Similarly, we can prove Eq. �23� �see �19��. On the other
hand, if we consider H��(aqm�bqm�1p), m�2, we have
�6�

q̇��bqm�1 ⇒ q̄�q0�1��m�2 �bq0
m�2�1/(2�m),

ṗ�amqm�1�b�m�1 �qm�2p

⇒ p̄��H0�aq̄m�/�bq̄m�1�. �27�

There are several works looking for different groups of mo-
nomials with exact solution, for splitting a polynomial in as
few number of solvable terms as possible �6,7,13�. However,
we must say that there is no unique way to separate a Hamil-
tonian in solvable parts, and in the following section we
present a different way to split the Hamiltonian that usually
gives more efficient methods. For higher-dimensional sys-
tems, it is interesting to remember the following properties.

�1� Given the 2r-dimensional Hamiltonian

H��
i�1

r

H (i)�qi ,pi�, �28�

then each H (i)(qi ,pi), i�1, . . . ,r is a constant of the mo-
tion. In order to compute the flow for (qs ,ps) the Hamil-

tonian �H (s)(qs ,ps) may be considered with �
�� i�” sH

(i)(qi ,pi) being a constant.
�2� Given the 2r-dimensional Hamiltonian

H��
i�1

r

H (i)�qi ,pi� �29�

then each H (i)(qi ,pi), i�1, . . . ,r is a constant of the mo-
tion. In order to compute the flow for (qs ,ps) only the
Hamiltonian H (s)(qs ,ps) has to be considered.

In many problems the Hamiltonian is separable in two
parts, i.e., H�A(p)�B(q) then, e :�A��B: has to be approxi-
mated up to a given order in � �usually the time step� where
e :�A: and e :�B: are exactly solvable. In Refs. �21–28� the
following approximations are proposed

e :�A��B:��
i�1

k

e :�aiA:e :�biB:�O��M�1�, �30�

where k is fixed but sufficiently large, and the coefficients
�ai ,bi	 i�1

k have to solve a system of nonlinear equations.
For some of these problems, other members of the Lie

algebra generated by A and B are also solvable. This is the
case when A�p2, where �B(q),�B(q),A(p)		�C(q). Then,
if the e :�biB: maps are replaced by the more general
exp(:�biB��3ciC:) maps �with ci constants to be deter-
mined�, the resulting methods are, in general, more efficient
�21,29,26�. We observe that an efficient way to build an in-
tegrator is to consider all maps that can be cheaply evaluated
and to try to reproduce the original problem up to a given
order by composition of these maps, and this is the procedure
we propose in the following sections.

IV. USING CHEAP SOLVABLE MAPS

Let us consider the Hamiltonian H� 1
2 (p4�6p2q2

�q4). The fourth-order Taylor map, associated to the time-1
flow of H, is given by

q�q0�2p0�p0
2�3q0

2�,

p�p0�2q0�q0
2�3p0

2�,

which can be computed with eight multiplications and four
additions. If we use the fourth-order factorization e�:H:

�e�:(1/2)p4:e�:(1/2)q4:e�:3p2q2:, the algorithm we obtain is

q1�q0�2p0
3 ,

p1�p0�2q1
3 ,

��exp�6q1p1�,

q��q1 ,

p�p1 /� ,
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which agrees with the Taylor map up to the fourth order. It
requires ten multiplications, two additions and one exponen-
tial, being clearly more expensive. However, a different sym-
plectification is given by

q1�q0�p0 ,

p1�p0�q1
3 ,

q2�q1�2p0 ,

p�p1�q2
3 ,

q�q2�p ,

which needs only five multiplications and five additions. The
algorithm has been obtained using the approximation e�:H:

�e�:(1/2)p2:e�:(1/4)q4:e :p2:e�:(1/4)q4:e�:(1/2)p2:. This can be
seen as a symplectification of the truncated Taylor map by
adding new polynomial terms to the series. This is a clear
example showing that different symplectification techniques
can produce algorithms with significantly different cost. In
addition, we observe that it is possible to build a symplecti-
fication with similar cost to the Taylor map, or even cheaper.

Encouraged by the significant cost reduction that the
method showed in examples like the above one, we studied
how, given a general Hamiltonian, to build a factorization
that preserves symplecticity and agrees with the Taylor series
map up to a given order, having similar computational cost.
We have seen from Eq. �14� that the computation of e : f (q):

and e :g(p): is trivial. Therefore, we are interested in looking
for integrators, which can be written as

exp� : f 3�•••� f M : ���
i�1

k

e :Q(i)(q): e :P(i)(p):�O�RM�1�,

�31�

where O(RM�1) contains operators associated to polynomi-
als with terms of degree M�1 or higher and Q (i)(q),
P (i)(p) are polynomial functions depending only on the co-
ordinates and momenta, respectively.

Definition. A Cremona map is a symplectic map whose
Taylor series expansion terminates.

Observe that

z1��
i�1

k

e :Q(i):e :P(i):z0�F�z0� �32�

is a polynomial function of z0, and this approximation can be
considered as a Cremona map �4,16,14�.

In the following we show in a simple way that this kind of
factorization is always possible, and we present how to ob-
tain some of them. Obviously, the optimal integrator �the
best choice for k and the polynomials Q (i) and P (i)) depends
on each particular problem. This is what happens in symplec-
tic integrators for Eq. �30� where the best choice of k and the
coefficients �ai , bi	 depend on the structure of A and B �if
�B ,ˆB ,�B ,A	‰	�0, or if �B���A� , etc.� as well as the de-
sired accuracy.

A. Two-dimensional system

For simplicity, we start with the two-dimensional system,
z�(q ,p)�R2, and we consider the homogeneous polyno-
mial of degree m, Eq. �22�. We have the following theorem.

Theorem 1. Given � i�R, i�0, . . . ,m , such that � i
� j , i j then we can write

�
i�0

m

aiq
m�ipi��

j�0

m

b j�q�� jp �m. �33�

Proof. We prove the theorem by giving the solution for
the coefficients b j . We have

�q�� jp �m��
i�0

m

Cm
i � j

i qm�ipi, �34�

where Cm
i ªm!/i!(m�i)!. Then, from Eq. �33� we have

ai��
j�0

m

Cm
i � j

i b j , i�0, . . . ,m , �35�

which can be written in matrix form

�36�
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Observe that V (m)(�) is a Vandermonde matrix having in-
verse provided that � i� j for i j , as is the case. Then, the
solution is given by

� b0

�

bm

� ��V (m)��1� a0 /Cm
0

�

am /Cm
m
� . �37�

�

This theorem can be considered equivalent to the Theo-
rem 5 given in �30�, but here we give the explicit relation
between the coefficients bi and � i , ai . In �31� a similar
separation was done where the � j coefficients correspond to
the Gaussian points and then the b j can be written in terms of
the Gaussian weights and Legendre polynomials of the � j
that minimize a given norm. However, for the purpose of this
work, we prefer not to fix the values of the � j coefficients at
this point.

We can think of �qm�ipi	 i�0
m and �(q�� ip)m	 i�0

m as two
different bases for homogeneous polynomials of degree m,
and the linear relation �37� corresponds to a change of coor-
dinates. For a general polynomial we have the following.

Corollary 1. Given a general polynomial of degree M in
two dimensions and � i�R, i�0, . . . ,M , such that � i� j
for i j then we can write

�
m�1

M

�
i�0

m

ai
(m)qm�ipi� �

m�1

M � �
j�0

m

b j
(m)�q�� jp �m�

��
j�0

M � �
m� j

M

b j
(m)�q�� jp �m� �38�

with b0
(0)�0.

Theorem 2. The Lie transformation associated to the poly-
nomial

�
m� j

M

b j
(m)�q�� jp �m �39�

has a finite Taylor series expansion, being a Cremona map.
Proof. From Eq. �14� we have

e��
1
2 :p2:q�q��p , �40�

and from Eq. �13� we have

exp��� 1
2 :p2: �exp� :bqm: �exp�� 1

2 :p2: �

�exp� :b�e��(1/2):p2:q �m:��exp� :b�q��p �m:� .

Similarly

exp� �� j

1

2
:p2: � exp� : �

m� j

M

b j
(m)qm: � exp� � j

1

2
:p2: �

�exp� : �
m� j

M

b j
(m)�q�� jp �m: � . �41�

Considering that the three exponentials on the left hand side
of Eq. �41� are exactly solvable in a finite Taylor series ex-
pansion, then it is the whole map. �

Using the result of Theorem 2 and Corollary 1 we have
that the polynomial we are interested, f 3�•••� f M , is sepa-
rable in M�1 solvable parts.

Finally, we have the following theorem.
Theorem 3. Under conditions of Corollary 1 and given the

polynomial

f 3� . . . � f M� �
m�3

M

�
i�0

m

ai
(m)qm�ipi, �42�

it is possible to write

e : f 3� . . . � f M :��
j�0

M

exp� : �
m� j

M

d j
(m)�q�� jp �m: � �43�

��
j�0

M

exp� :�� j

1

2
p2: � exp� : �

m� j

M

d j
(m)qm: �

�exp� :� j

1

2
p2: �

�exp� :��0

1

2
p2: � �

j�0

M

exp� :Q ( j)�q �: �

�exp� :P ( j)�p �:� , �44�

where Q ( j)��m� j
M d j

(m)qm, P ( j)�(� j�� j�1) 1
2 p2, with

�M�1�0, d j
(m)�0 for m�3 and j�m , and where d j

(m) are
functions depending on a j

(m) and � j .
Proof. Using the BCH formula, equating terms and pro-

ceeding order by order �starting with m�3� we get recur-
sively �see �4,15� for more details on this kind of procedure�
the coefficients d j

(m) in terms of the a j
(m)’s and � j’s. �

Example 4.1. Let us consider the following functions:

f 4��
i�0

4

ai
(4)q4�ipi, f 6��

i�0

6

ai
(6)q6�ipi. �45�

These functions appear, for example, when considering the
Hamiltonian associated to the pendulum (H�p2/2�cos q),
after taking the factorization

e :H:�M̂e : f 4� f 6 :�O�R8�, �46�

M̂ being a linear transformation �32�. In the approximation
to e : f 4� f 6 : we compare the cost of the methods following the
separation in groups of monomials and the new separation
previously proposed. According to �13� it is possible to sepa-
rate f 3�•••� f 6 in 12 terms. If f 3� f 5�0 only eight of
them are different from 0, and we can write

e : f 4� f 6 :��
i�1

8

e :g(i):�O�R8�, �47�

where
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g (1)�c1q4�c2q3p , g (4)�c6q4p2, g (7)�c10q
3p3,

g (2)�c3q2p2, g (5)�c7q2p4, g (8)�c11qp5�c12p6,

g (3)�c4qp3�c5p4, g (6)�c8q6�c9q5p .

The coefficients ci can be evaluated in terms of the ai
(n)

using the BCH formula and equating terms �13�. Observe
that the evaluation of g (1), g (3), g (6), and g (8) involve the
computation of a root and for g (2) and g (7) an exponential,
being g (4) and g (5) the cheapest to compute. On the other
hand, from Theorem 3 we have

exp� : f 4� f 6 : � �48�

�exp� �:�0

1

2
p2: ��

i�0

6

exp� :di
(4)q4�di

(6)q6: �

�exp� :�� i�� i�1�
1

2
p2:	�O�R8�

with �7�0 and d5
(4)�d6

(4)�0. Observe that the number of
Lie transformations is very similar to Eq. �47� but now each
one involves only few multiplications and additions. We
have computed Eqs. �47� and �48� repeatedly on different
initial conditions and values of ai

(n) , and we found that Eq.
�48� is approximately four times faster. In addition, the algo-
rithm has still seven free parameters, �0 , . . . ,�6, to improve
the accuracy of the method.

V. GENERALIZATION TO MORE VARIABLES

Let us consider the system with six variables, z
�(q1 ,q2 ,q3 ,p1 ,p2 ,p3), where a homogeneous polynomial
of degree m can be written as

f m� �
i(6)�m

ai1 , . . . ,i6
q1

i1p1
i2q2

i3p2
i4q3

i5p3
i6 , �49�

with i (6)�i1�•••�i6, which contains Cm�5
m monomials.

Grouping terms we can rewrite Eq. �49� in the form

f m� �
m(3)�m

gm1m2m3
, �50�

with m (3)�m1�m2�m3 and

gm1m2m3
� �

i1�0

m1

�
i2�0

m2

�
i3�0

m3

ai1i2i3

(m1m2m3)q1
m1�i1p1

i1q2
m2�i2

�p2
i2q3

m3�i3p3
i3 , �51�

with ai1i2i3

(m1m2m3)
�am1�i1 ,i1 ,m2�i2 ,i2 ,m3�i3 ,i3

. Each polynomial

gm1m2m3
contains Rm1m2m3

�(m1�1)(m2�1)(m3�1) mo-
nomials, and these monomials are the same that appear when
expanding the product

�q1��1p1�m1�q2��2p2�m2�q3��3p3�m3

� �
i1�0

m1

�
i2�0

m2

�
i3�0

m3

Cm1

i1 Cm2

i2 Cm3

i3 �1
i1�2

i2�3
i3q1

m1�i1

�p1
i1q2

m2�i2p2
i2q3

m3�i3p3
i3 . �52�

There is a problem in the generalization of Theorem 1 to
more variables. The matrices with elements �1

i1�2
i2�3

i3, for
different values of �1 ,�2 ,�3, are not necessarily Vander-
monde matrices, and their inverse is not guaranteed. Keeping
this in mind, we proceed as follows.

Let us denote S (m)�max�Rm1m2m3
:m1�m2�m3�m	. We

define the ceiling function Ce:R→Z such that given a real
number it rounds up to the next integer. Then, it is easy to
prove that

S (m)�

� m

3
�1 � 3

if
m

3
�Ce� m

3 � ,

� m�1

3
�1 � 2� m�2

3
�1 � if

m�1

3
�Ce� m�1

3 � ,

� m�2

3
�1 � � m�1

3
�1 � 2

if
m�2

3
�Ce� m�2

3 � ,

�53�

and in a four-dimensional space (m3�0)

S (m)�� � m

2
�1 � 2

if
m

2
�Ce� m

2 � ,

� m�1

2
�1 � � m�1

2
�1 � if

m�1

2
�Ce� m�1

2 � .

�54�
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Theorem 4. Given � j�(� j ,1 ,� j ,2 ,� j ,3)�R3, j
�1, . . . ,S (m)�r , with r�0 chosen such that the matrices
V (m1m2m3) with components

Vu ,s
(m1m2m3)

�� js,1
i1 � js,2

i2 � js,3
i3 , �55�

with u�(m3�1)(m2�1)i1�(m3�1)i2�i3�1, ik
�0, . . . ,mk , k�1,2,3, m1�m2�m3�m , s�1, . . . ,

Rm1m2m3
are nonsingular for at least one subset � j i	 i�1

Rm1m2m3 of

�1,2, . . . ,S (m)�r	, then each polynomial gm1m2m3

in Eq. �50� can be written as

gm1m2m3
� �

s�1

Rm1m2m3

b js

(m1m2m3)
�q1�� js,1p1�m1

��q2�� js,2p2�m2�q3�� js,3p3�m3 �56�

for different subsets � j i	 i�1

Rm1m2m3 .
Proof. Similarly to the proof of Theorem 1, there exist at

least one subset � j i	 i�1

Rm1m2m3 of �1,2, . . . ,S (m)�r	 such that
the matrix with elements given in Eq. �55� is nonsingular.
Then, after expanding Eq. �56� we see that

� b j1

(m1m2m3)

�

b jRm1m2m3

(m1m2m3)� ��V (m1m2m3)��1� A1
(m1m2m3)

�

ARm1m2m3

(m1m2m3)� �57�

with

A (m3�1)(m2�1)i1�(m3�1)i2�i3�1
(m1m2m3)

�am1�i1 ,i1 ,m2�i2 ,i2 ,m3�i3 ,i3
/�Cm1

i1 Cm2

i2 Cm3

i3 �.

Here, b (m1m2m3)�RN with N�S (m)�r but, only the previous
Rm1m2m3

components of the vector are different from 0.
Corollary 2. It is possible to write

f m� �
s�1

S(m)�r � �
m(3)�m

bs
(m1m2m3)

�q1��s ,1p1�m1

��q2��s ,2p2�m2�q3��s ,3p3�m3� , �58�

where one possible solution for the vectors b (m1m2m3)�RN

can be obtained taking only the Rm1m2m3
components of each

vector different from 0 according to Theorem 4.
Theorem 5. The Lie transformation associated to the poly-

nomial

�
m(3)�m

bs
(m1m2m3)

�q1��s ,1p1�m1�q2��s ,2p2�m2

��q3��s ,3p3�m3 �59�

has a finite Taylor expansion, being a Cremona map.
Theorem 6. Under conditions of Theorem 4 and given a

general polynomial f 3�•••� f M in the six-dimensional
phase space, it is possible to write

e : f 3� . . . � f M :�e :P(0): �
j�1

S(m)�r

e :Q( j):e :P( j): �60�

with

Q ( j)� �
m�3

M

�
m(3)�m

d j
(m1m2m3)q1

m1q2
m2q3

m3 , �61�

P ( j)�
1

2 �
i�1

3

�� j ,i�� j�1,i�pi
2 , j�0, . . . ,S (m)�r ,

with Q (0)��0,i��S(m)�r�1,i�0 and where the coefficients
d j

(m1m2m3) depend on the coefficients
am1�i1 ,i1 ,m2�i2 ,i2 ,m3�i3 ,i3

and � j ,i .

Using the notation q�(q1 ,q2 ,q3), p�(p1 ,p2 ,p3) and

“qQ (i)�� 
Q (i)


q1
,

Q (i)


q2
,

Q (i)


q3
� ,

“pP (i)�� 
P (i)


p1
,

P (i)


p2
,

P (i)


p3
� ,

the algorithm for computing Eq. �60� is given by

q1�q0�“pP (0)�p0�

do j�1,S (m)�r

pj�pj�1�“qQ ( j)�qj�

qj�1�qj�“pP ( j)�pj�

enddo

where q0 and p0 correspond to the initial conditions. Here,
qi , pi correspond to the value of the vectors at the interme-
diate stages. Considering that the Lie transformation acts on
initial conditions, the computation has to be done from left to
right.

Observe that each evaluation is very cheap, where many
of the coefficients of d j

(m1m2m3) can be taken identically 0. In
general, if the polynomial f 3�•••� f M contains all mono-
mials (�m�3

M Cm�5
m ), it is possible to consider the same num-

ber of coefficients d j
(m1m2m3) different from 0.

A. Generalization of the linear transformations

In this paper we have considered as linear maps the Lie

transformations associated to � j� j
1
2 p j

2 but, more general
transformations depending only on the momenta can be con-
sidered
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P��
i j

� i jpip j��
i jk

� i jkpip jpk�••• , �62�

where the � i jk , . . . can easily be used for reducing the num-
ber of d j

(m1m2m3) coefficients, or just to have more free pa-
rameters for optimizing the algorithm. Another possibility is
to consider the most general linear transformation,
� i , jSi , jz iz j , with S a symmetric matrix. In the two-

dimensional phase space we have K�a 1
2 p2�bpq�c 1

2 q2,
and

e�:K:q��Aq�Bp ��A� q�
B

A
p ��Ae�(B/2A):p2:q ,

if A0, where A�cosh(�)�(b/�)sinh(�),B�(a/�)sinh(�)
and ���b2�ac . Then, with the exception of the trivial case
A�0, to use the linear transformations depending only on p
is equivalent to the most general linear transformation. How-
ever, this is not the case for higher dimensions since all qi
and pi are mixed by the linear transformations. It increases
considerably the number of parameters of the method at the
price of a higher computational cost but, allows to write the
algorithm with less that S (m)�r transformations
�16,4,14,15�. However, the number of coefficients d j

(m1m2m3)

different from 0 is essentially the same. Since we will be
interested in using these parameters for optimizing the algo-
rithm, we think that to work with such a number of free
parameters can increase the error of the method �instead of
reducing it� unless an extremely delicate analysis is carried
out. For this reason, we decided just to use the previous
cheap and simple maps, depending only on the momenta.

For our scheme, the coefficients � i , j have to satisfy very
few constraints and the coefficients d j

(m1m2m3) are relatively
easy to obtain. In addition, in most cases it is possible to take
r�0. This is the case, for example, in the four dimensional
space (m3�0). All matrices that have to be nonsingular,
according to Theorem 4, are submatrices of a matrix with
elements � j ,1

i1 � j ,2
i2 , i1�0, . . . ,m1 ,i2�0, . . . ,m2 , 0�i1�i2

�m which is of dimension Ru�u with u�� i�0
m (i�1)

��(m�1)(m�2)�/2. According to Eq. �54� we have that
u�2S (m) and we can choose 2S (m) values of � j ,1 , � j ,2 such
that all previous matrices are invertible. However, in the six-
dimensional space we have that u�� i�0

m �(i�1)(i�2)�/2
��6�11m�6m2�m3�/6, which is higher than 3S (m) for
m�4. However, as mentioned, this fact does not make the
algorithm much more costly.

Example 5.1. In order to illustrate how to obtain one pos-
sible method in a high-dimensional system, we consider the
example in four dimensions presented in �15� for a static
storage ring represented by the symplectic map

M4�M̂e : f 3 :e : f 4 :, �63�

where M̂ is a 4�4 symplectic matrix and f 3 , f 4 can be
written in the following form:

f 3�a1,1
(3)q1

3�a1,2
(3)q1

2p1�a1,3
(3)q1p1

2�a1,4
(3)p1

3�a2,1
(3)q1q2

2

�a2,2
(3)q1q2p2�a2,3

(3)q1p2
2�a2,4

(3)p1q2
2�a2,5

(3)p1q2p2

�a2,6
(3)p1p2

2 ,

f 4�a1,1
(4)q1

4�a1,2
(4)q1

3p1�a1,3
(4)q1

2p1
2�a1,4

(4)q1p1
3�a1,5

(4)p1
4

�a2,1
(4)q2

4�a2,2
(4)q2

3p2�a2,3
(4)q2

2p2
2�a2,4

(4)q2p2
3�a2,5

(4)p2
4

�a3,1
(4)q1

2q2
2�a3,2

(4)q1
2q2p2�a3,3

(4)q1
2p2

2�a3,4
(4)q1p1q2

2

�a3,5
(4)q1p1q2p2�a3,6

(4)q1p1p2
2�a3,7

(4)p1
2q2

2�a3,8
(4)p1

2q2p2

�a3,9
(4)p1

2p2
2 .

Observe that f 3 and f 4 only contain 29 from amongst the
C6

3�C7
4�54 monomials. If we define ui

(n)�(q1

��p1)n�i(q2��p2) i we observe that all monomials ap-
pearing in f 3 , f 4 are the monomials contained in u0

(3) , u2
(3) ,

u0
(4) , u2

(4) , and u4
(4) . Since S (4)�9 and this number corre-

sponds to the number of monomials in u2
(4) then we can take

e : f 3 :e : f 4 :�e :P(0)(p):�
j�1

9

e :Q( j)(q):e :P( j)(p):�O�R5� �64�

with

Q ( j)�d1,j
(3)q1

3�d2,j
(3)q1q2

2�d1,j
(4)q1

4�d2,j
(4)q2

4�d3,j
(4)q1

2q2
2 ,

�65�

P ( j)� 1
2 �� j ,1�� j�1,1�p1

2� 1
2 �� j ,2�� j�1,2�p2

2 , j�0, . . . ,9,

and Q (0)��0,1��0,2��10,1��10,2�0.
We can choose nine pairs � j ,1 ,� j ,2 , j�1, . . . ,9 such that

all matrices originating from the previous products are non-
singular. We have d (3),d (4)�R9 but, only d3,j

(4) has to have all
components different from 0. However, if desired, we can
take all components of the vectors different from 0 and an
optimization procedure can be used. This reduces, in general,
the absolute value of the coefficients d j ,k

(i) , producing a
method with smaller errors �14,15�. In the following we
show how to simplify even more the procedure for both
choosing the � i , j and obtaining the coefficients di , j

(k) .
Finally, we must mention that the approximation to M4

using Eq. �64� is several times faster than using a factoriza-
tion in monomials �5� or different groups of monomials
�13,7�.

VI. CHOOSING AN ALTERNATIVE BASIS

In the preceding sections we observed that the computa-
tional cost of a given splitting method is clearly dependent
on how the Hamiltonian has been split. In the two-
dimensional phase space we have considered two bases for
writing an homogeneous polynomial of degree m,

f m��
i�0

m

� i
(1,2)Pm ,i

(1,2) �66�
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with Pm ,i
(1) �qm�ipi and Pm ,i

(2) �(q�� ip)m, i�0, . . . ,m . The
drawback of using Pm ,i

(1) is that the Lie transformations asso-
ciated to some elements of the basis are relatively costly. The
problem of using Pm ,i

(2) could be that, for large m, many � i are
necessary. This may be uncomfortable to work with, spe-
cially when a higher-dimensional space is considered, and
when looking for a good set of values for these � i .

On the other hand, the Lie transformation associated
to some elements of Pm ,i

(1) are very cheap to compute.
Suppose that Pm ,i

(1) , i�0, . . . ,r are the cheap terms,
then we can consider the new basis �Pm ,i

(3) 	 i�0
m

��Pm ,0
(1) , . . . ,Pm ,r

(1) ,Pm ,r�1
(2) , . . . ,Pm ,m

(2) 	 where all terms are
cheap to compute and a smaller number of � i are necessary.

Example 6.1. In f 6 we have �P6,i
(1)	 i�0

6

��q6,q5p ,q4p2,q3p3,q2p4,qp5,p6	 but, the Lie transfor-
mations associated to q6, q4p2, q2p4, and p6 only involve
multiplications and additions. Then, an interesting basis
could be �P6,i

(3)	 i�0
6 ��q6,q4p2,q2p4,p6,(q��1p)6,(q

��2p)6,(q��3p)6	. If f 4 also appears in the Hamiltonian,
the natural choice for the basis would be �P4,i

(3)	 i�0
4

��q4,p4,(q��1p)4,(q��2p)4,(q��3p)4	, which allows
to group them with the elements of P6,i

(3) without needing
additional Lie transformations. Finally, e : f 4� f 6 : can be writ-
ten as the product of seven simple Lie transformations. Ob-
serve that this is not a Cremona map since the terms q4p2

and q2p4 are now present. These terms have a singularity
and one has to decide if it is or it is not worth to use them for
a given problem.

Example 6.2. The polynomial f 3� f 4 in the four-
dimensional phase space has 55 independent monomials, and
28 among them can be grouped in four cheaply and exactly
solvable polynomials,

g1��
i�1

3

biq1
3�iq2

i ��
i�0

4

b4�iq1
4�iq2

i ,

g3��
i�1

3

p1
i �b15�2iq2

3�i�b16�2iq2
4�i�,

g2��
i�1

3

b8�ip1
3�ip2

i ��
i�0

4

b12�ip1
4�ip2

i ,

g4��
i�1

3

q1
i �b21�2ip2

3�i�b22�2ip2
4�i�.

The polynomials ui
(n)�(q1��p1)n�i(q2��p2) i contain

(n�i�1)(i�1) different monomials. Then, among all ui
(n) ,

we have to consider more carefully u1
(4) , u2

(4) , and u3
(4) ,

since they have 8, 9 and 8 different monomials, respectively.
But, observe that each gi contains an element of u1

(4) , u2
(4) ,

and u3
(4) so, only five more terms are necessary to reproduce

all monomials, and this can be achieved with

e : f 3� f 4 :�� �
i�1

4

e :gi :� e :P(0)(p):�
i�1

5

e :Q(i)(q):e :P(i)(p):�O�R5�.

�67�

We can choose five pairs � j ,1 ,� j ,2 , j�1, . . . ,5 such that
all matrices originating from the previous products are non-
singular, and we have to invert matrices of dimension 5�5
or smaller. We have now d (3),d (4)�R5, having most of them
several components identically 0.

VII. OPTIMIZING THE ALGORITHMS

In previous sections we only considered the computa-
tional cost of the algorithms. It is possible to use the free
parameters � i in order to slightly reduce the number of maps
in the factorization at the extraordinary price of needing to
solve very complicated nonlinear systems of equations. On
the other hand, to consider algorithms with free parameters
for optimization purposes usually produces more efficient
methods �28�. Then, we can use these � i in order to get
�without increasing the cost� more accurate results. From
Theorem 3 we have, in the two-dimensional phase space,

exp� : f 3�•••� f M : ��� e :��0(1/2)p2:�
i�0

M

e :Q(i)(q):e :P(i)(p):	
�e :RM�1 :�O�RM�2�, �68�

where RM�1 is a homogeneous polynomial of degree M
�1, containing the leading error terms

RM�1� �
i�0

M�1

� iq
M�1�ipi �69�

and � i , i�0, . . . ,M�1, depend on the coefficients � i , i
�0, . . . ,M we have chosen, and the coefficients of the prob-
lem. If we define the error of a method by E1�(� i� i

2)1/2,
then we can look for the coefficients � i that minimize E1.
Since E1 also depends on the coefficients ai

(m) , the optimal
choice for the � i will depend on each particular problem. A
simpler procedure to choose the best set of coefficients � i is
to consider that F(z)� f 3�•••� f M is a constant of the mo-
tion. Then, we can take a number of different initial condi-
tions in the region of interest. For each initial condition z0,
we evaluate the relative error ��F(z1)�F(z0)�/F(z0)�,
where z1 is the one map approximation, and finally we take
its average value, say E2(�). Next, we have to repeat the
same process for different values of ��(�0 , . . . ,�M) and
to look for the value that minimizes E2(�). In general,
E1(�) and E2(�) have their minimum very close to each
other, and it is enough to compute only E2 since it is easier
to do it. Observe that E1 , E2 :RM�1→R are positive definite
functions, and their minimums can be obtained numerically
in a relatively easy way. If the problem is simple enough, we
can take random values for the � i , to compute E1 and/or E2,
and to make a finer search around the best results. Alterna-
tively, we can choose a randomized approach as initial guess,
and to apply a combination of Powell’s hybrid method �NAG
routine C05NBF� and the optimization routine E04JYF. In
case the routine does not converge to a local minimum, a
new random value can be used for a new search �28�. Several
local minimums can be found, and one has to choose the
optimal one.
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Example 7.1. Let us consider f 4 from Eq. �45� with �32�

�a0
(4) , . . . ,a4

(4)��10�2��2.411,�3.812,3.716,

�2.089,0.5168�

and the basis �q4,p4,(q��1p)4,(q��2p)4,(q��3p)4	.
We consider the approximation

e : f 4 :�e :d1q4:e :d2p4:�
i�1

3

exp� :di�2�q�� ip �4: �. �70�

We took 100 different initial conditions in the region q0 ,p0
�(�1/2,1/2) and measured the values of E1(�) and E2(�)
for a large number of different values of �1 ,�2 ,�3�
(�2,2). Numerical experiments indicated that most local
minimums of E1 and E2 nearly coincide, as expected. In
particular, an interesting local minimum for both was found
at �op�(�1 ,�2 ,�3)�(�0.897,�0.239,�1.033). However,
if we slightly change our problem, for example replacing
a1

(4) by a1
(4)/10, we observe that �op is no longer optimal so,

a new search has to be done, and the optimal value we found
is �op�(�1.030,0.217,�1.022). In order to illustrate how
the error depends on the choice of the � i , in Fig. 1 we
present, for this last case, the results obtained for E1(�) and
E2(�) along the uniparametric family (�1 ,�2 ,�3)
�(�1.030� ,0.217� ,�1.022�) with ��(0.9,1.1), which
approximately cross through the minimum at ��1. Observe
that the minimum is very narrow. This is in agreement with
the comments on �4� where only very few values of the pa-
rameters in the Cremona maps had small error coefficients.
For comparison, we have computed

e : f 4 :�e :g(1):e :g(2):e :g(3): �71�

with g (1)�c1q4�c2q3p , g (2)�c3q2p2, and g (3)�c4qp3

�c5p4. In Fig. 1 we show in horizontal lines the values of
E1 and E2 obtained. We found that the computational cost of
Eq. �71� is approximately three times more expensive and
still it gives an error more than one order of magnitude
higher than Eq. �70� for �op . Very similar results are ob-
tained for the original problem with the previous value of
�op .

Notice that the error at the minimum decreases by several
orders of magnitude, and it is very sensitive to the value of
� . In addition, at the minimum we see that �1��3, and this
fact makes the corresponding Vandermonde matrix nearly
singular, and the coefficients bi can take large values. We
think it is important to better understand this point in order to
locate the minimums, especially when we are working in a
higher-dimensional space, were many � i , j coefficients are
involved.

In Refs. �16,4� a factorization similar to Eq. �60� is con-
sidered but, replacing the e :P( j): factors by more general lin-
ear symplectic transformations Lj . From the relation be-
tween this set of linear transformations �acting on a
normalized basis of polynomials depending only on coordi-
nates� and another basis for general polynomials �composed
by normalized monomials� they build the named sensitive
vectors. From these vectors they build the corresponding
Gram matrix, whose eigenvalues indicate how good is the
choice of the set of Lj . For instance, if we choose the basis
�(q�� ip)4	 i�0

4 , the sensitive vectors are �r

�(�0
r , . . . ,�4

r ), r�0, . . . ,4, with � j
r�(C4

r )1/2� j
r , and the

FIG. 1. Error of the method
�70� for (�1 ,�2 ,�3)
�(�1.030,0.217,�1.022)� . E1

measures the Euclidean norm of
the coefficients at the leading er-
ror term and E2 measures the av-
erage relative error in the Hamil-
tonian. The horizontal lines
correspond to the errors obtained
with Eq. �71�.
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components of the Gram matrix are �rs�
1
5 � j�0

4 � j
r� j

s , being
closely related to the Vandermonde matrix.

In our context, this analysis would be equivalent, in some
sense, to the study of the eigenvalues of the matrices
V (m1m2m3) for maximizing the minimum eigenvalue, in order
to get relatively small values for the coefficients b j

(m1m2m3) .
One expects that, after the composition of the exponentials,
the error will remain relatively small. On the other hand, we
observed that the optimal choice for the linear transforma-
tions also depends on each particular problem �on the coef-
ficients ai1 , . . . ) . However, this analysis for the eigenvalues

of V (m1m2m3) can give a good starting point for the numerical
search of the � coefficients, and this could be the subject of
a future work.

VIII. CONCLUSIONS

In this paper we have studied different symplectic map
approximations for polynomial Hamiltonian systems. In gen-
eral, one has to separate the Hamiltonian in solvable parts.
Next, one has to compute each part and finally, to compose
the results in order to have an approximation to the original
Hamiltonian. However, the Hamiltonian can be separated in

many different ways. The efficiency of a method depends on
its computational cost and its accuracy. But, it depends on
how H is separated. We have analyzed this aspect in the
paper and presented methods �most of them are Cremona
maps� with the following properties.

�1� They are cheap to compute. The cost, in general, is
very similar to the corresponding Taylor map up to the same
order.

�2� There is a systematic and easy procedure for building
the methods.

�3� They have a number of free parameters for optimizing
the methods, and this can be done very easily.

The numerical experiments clearly confirm the efficiency
of the new methods versus other schemes, although this is
ultimately dependent on each particular problem.
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