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Abstract. We present a generalisation of the Levi-Civita and Kustaanheimo–Stiefel regular-
isation. This allows the use of more general time rescalings. In particular, it is possible to find a
regularisation which removes the singularity of the equations and preserves scaling invariance.
In addition, these equations can, in certain cases, be integrated with explicit symplectic

Runge–Kutta–Nyström methods. The combination of both techniques gives an explicit
adaptive symplectic (EASY) integrator. We apply those methods to some perturbations of the
Kepler problem and illustrate, by means of some numerical examples, when scaling invariant

regularisations are more efficient that the LC/KS regularisation.
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1. Introduction

The Levi-Civita (LC) regularisation for the planar motion of two body
problems (Levi-Civita, 1920), or its extension to the spatial case given by
Kustaanheimo and Stiefel (KS) (Kustaanheimo and Stiefel, 1965; Stiefel and
Scheifele, 1971) is a standard technique for the numerical integration of
eccentric orbits in the Kepler problem. It combines a time regularisation with
a canonical transformation. The time regularisation removes the singularity
in the potential terms, but it has the disadvantage of making the system (or
Hamiltonian) more complicated. However, by using a proper canonical
transformation the system becomes a regular Hamiltonian problem (a har-
monic oscillator), making its numerical integration very efficient. This tech-
nique has been used as a tool for treating two-body close encounters because
it reduces the accumulation of numerical error in highly eccentric orbits. The
long-term behaviour of the resulting integration errors of the orbital motions
has been studied in (Arakida and Fukushima, 2000), and these show that the
regularised method is also superior to non regularised methods even when the
orbit is far from a close encounter.
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On the other hand, it has also been shown that for systems with singu-
larities, the use of methods which inherit natural scalings (scale-invariant
methods) can lead to low errors (Barenblatt, 1996, Budd et al., 1996, 2001;
Budd and Piggott, 2001, Blanes and Budd, 2004). Numerical integrators
preserving (or nearly preserving) this property have proved to be superior to
other regularisations for a number of problems. Although the Kepler prob-
lem is invariant under changes of scale in space and time (a result encapsu-
lated in Kepler’s third law) the LC/KS regularisation does not exploit this
scaling invariance. The performance of numerical methods based on this
regularisation can then considerably decrease when some perturbations to
the Kepler problem are considered for which the transformed problem is no
longer a simple harmonic oscillator, as shown in Blanes and Budd (2004) for
a particular example. Alternatively, the performance of integrators which
inherit natural scalings is not degraded by such perturbations.

In order to preserve scaling invariance, the monitor function controlling
the time-transformation has to be chosen properly. The monitor function for
the LC/KS transformation is simply the radial distance r. In this paper we
generalise the LC/KS regularisation for two- and three-dimensional prob-
lems so, more general monitor functions can be used. The approach we
describe contains the LC/KS regularisation as a particular case. It also
contains another regularisation which removes the singularity of the Kepler
problem, preserving at the same time its scaling invariance. The resulting
system is, in general, suitable to be numerically integrated with high order
symplectic Rung–Kutta–Nyström (RKN) integrators, and in certain cases
this integration can be performed by using explicit methods. As a result, we
have in these cases an explicit adaptive symplectic (EASY) method which
preserves the scaling invariance of the Kepler problem.

We study some circumstances under which a scaling invariant transfor-
mation is superior to other time regularisations. In particular, we consider
the collision problem and several perturbations to the Kepler problem. We
find that for the pure Kepler problem (with no collision) and for regular
polynomial perturbations to it, the LC/KS regularisation is the most efficient
method. However, for the collision problem and for near collisions where
perturbations with higher singularities are included, the scaling invariant
transformation is the most efficient technique giving the lowest errors for a
given computational cost. A particular example being computations of per-
turbed, highly eccentric orbits. Since the LC/KS regularisation has been
widely used for the numerical integration of the N-body problem both with
gravitational and Coulombic interactions (Waldvogel, 1972; Mikkola, 1997b;
Leimkuhler, 1999), we propose that the new scale-invariant regularisation
could be very useful for the accurate integration of these problems. Scale
invariant regularisations can be seen as complimentary to LC/KS as they
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work well for non-integrable problems, where the high eccentricity and/or
singularities in the orbits make scaling effects important.

The plan of the remainder of this paper is as follows. In Section 2 the Levi-
Civita regularisation and the KS generalisation of two and three-dimensional
problems is presented. These transformations are generalised in Section 3 to
allow for the use of different regularisation functions. In Section 4 we relate
the regularisation function to scaling structures in the original system.
Numerical examples are presented in Section 5, and Section 6 gives some
conclusions.

2. Levi-Civita and Kustaanheimo–Stiefel Regularisations

Let us denote by q ¼ ðq1 . . . ; qkÞT, p ¼ ðp1 . . . ; pkÞT, k ¼ 2; 3 the coordinates
and associated momenta of a system in a 2 k -dimensional phase space with
Hamiltonian

Hðp; qÞ ¼ TðpÞ þ VðqÞ ¼ 1

2
pTpþ VðqÞ: ð1Þ

This system can be integrated numerically using explicit symplectic integra-
tors with constant time steps (Yoshida, 1990; Kinoshita et al., 1991; Wisdom
and Holman, 1991; Yoshida, 1993; Blanes et al., 2000; Hairer et al., 2002).
These methods are very efficient for the long time integration of such
Hamiltonian systems (for non-eccentric trajectories). In addition, since T is
quadratic in momenta then the more efficient symplectic RKN integrators
can be used (Sanz-Serna and Calvo, 1994; McLachlan and Quispel, 2002).
However, if the potential has singularities, the numerical integration of the
system of differential equations derived from (1) can produce large errors
when the particle approaches the singularity (Gladman et al., 1991; Calvo
and Sanz-Serna, 1993). A standard technique to reduce such errors is to
regularise the equations through a time rescaling in order to remove or re-
duce the strength of the singularity. This can be achieved if a fictive time, s, is
introduced through the ordinary differential equation,

dt

ds
¼ gðq; pÞ; ð2Þ

defining a Sundman transformation (Leimkuhler, 1999, and references
therein). Here g is a positive scalar monitor function which is taken to be
small if the solution is evolving rapidly and s is the fictive time which is used
for all computations. Next, we introduce two new conjugate coordinates1

1 It is usual in the literature to take qt ¼ t and pt ¼ �Hðq0; p0Þ. However, to obtain a

more natural splitting of the extended Hamiltonian, in this paper we take pt to be the time.
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qt ¼ Hðq0; p0Þ and pt ¼ t:

To preserve the Hamiltonian structure of the system after rescaling in terms
of s, we apply a Poincaré transformation (Waldvogel, 1972; Mikkola, 1997a).
With this transformation the whole system ðq; qt; p; ptÞ is Hamiltonian and
evolves in the fictive time, s, with Hamiltonian

Kðq; qt; p; ptÞ ¼ gðq; pÞðHðq; pÞ � qtÞ: ð3Þ
Observe that with this choice of qt and pt the evolution of the system of
ordinary differential equations corresponding to the Hamiltonian (1) is
equivalent to the evolution of the extended system with Hamiltonian (3),
where the effect of the time transformation is included automatically.

With this transformation it is possible to remove the singularity of the
potential with a careful choice of the monitor function gðq; pÞ but, usually
this leads to a more complicated system to be solved numerically and it may
not be possible to use explicit symplectic integrators. This problem can be
simplified if a canonical transformation is found such that the Hamiltonian,
in the new coordinates, recovers a simple structure. For the Kepler problem,
this can be achieved using the LC or KS regularisation.

2.1. THE KUSTAANHEIMO–STIEFEL REGULARISATION

Given the Hamiltonian (1) with k ¼ 3, the Kustaanheimo–Stiefel regulari-
sation of the Kepler problem uses the Poincaré transformation (3) together
with the monitor function

gðqÞ ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22 þ q23

q
:

This leads to the following Hamiltonian

Kðq; qt; p; ptÞ ¼ 1

2
rpTpþ rðVðqÞ � qtÞ: ð4Þ

This transformation is especially suitable for the analysis of eccentric orbits
in the Kepler problem under the usual gravitational potential, V ¼ c=r; with c
a constant, because the singularity in the potential is removed. As mentioned,
the original Hamiltonian H is separable, but the transformed Hamiltonian K
is not as it contains the term 1

2 rp
Tp. Although the Hamiltonian H ¼ 1

2 rp
Tp is

exactly solvable using, for example, the KS transformation that we show
below, it is necessary to compute both the transformation and its inverse at
each stage of the computation. This makes the exploitation of such separa-
bility expensive, and the benefits of using, for example, an explicit symplectic
integrator in this case are not clear.

Fortunately, there is a simple solution which allows the use of an efficient
numerical method on the transformed problem. It is possible to find an
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invertible canonical transformation (CT) to a new set of coordinates
ðQ;Qt;P;PtÞ which allows us to rewrite K as a simple and separable Ham-
iltonian in the new coordinates. This is the KS canonical transformation
(with ðQt;PtÞ ¼ ðqt; ptÞÞ

q ¼ bQQ;
p ¼ 1

2R2
bQP;

�
ð5Þ

where now q ¼ ðq1; q2; q3; 0ÞT, p ¼ ðp1; p2; p3; 0ÞT are four-dimensional vec-
tors, Q ¼ ðQ1;Q2;Q3;Q4ÞT, P ¼ ðP1;P2;P3;P4ÞT are the four-dimensional

KS-variables, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1 þ � � � þQ2
4

q
and

bQ ¼
Q1 �Q2 �Q3 Q4

Q2 Q1 �Q4 �Q3

Q3 Q4 Q1 Q2

Q4 �Q3 Q2 �Q1

0BB@
1CCA; ð6Þ

is the KS matrix which has the propertybQ T bQ ¼ bQ bQT ¼ R2I; ð7Þ
where I is the identity matrix.

If we consider this canonical transformation, it follows that

r ¼
ffiffiffiffiffiffiffiffi
qTq

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QT bQT bQQ

q
¼ R2;

1

2
rpTp ¼ 1

8
PTP: ð8Þ

The Hamiltonian K in the new coordinates then takes the form

K ¼ 1

8
PTPþ R2VðQÞ � R2Qt; ð9Þ

which is separable in two trivially solvable parts, K ¼ eTðPÞ þ eVðQ;QtÞ witheT again quadratic in momenta. For the Kepler problem ðV ¼ �1=r ¼
�1=R2Þ we then have

K ¼ 1

8
PTP� 1� R2Qt: ð10Þ

Since Qt < 0 for bounded trajectories, this corresponds to a harmonic
oscillator which can be integrated to high accuracy.

The two-dimensional Levi-Civita regularisations corresponds to the par-
ticular case where qi ¼ pi ¼ Qi ¼ Pi ¼ 0, i > 2. The LC/KS regularisation
has been used during the last decades as a very efficient technique for
numerically solving the Kepler problem as well as for some perturbations to
it ( Arakida and Fukushima, 2000; Celletti, 2002). However, we must keep in
mind that this CT is only valid for one particular regularisation function
ðg ¼ rÞ which, as we will see, does not preserve the scaling invariance for the
Kepler problem. On the other hand, for different potentials or for some
perturbations to the Kepler problem other regularisation functions can give
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better performances (Janin, 1974). For this reason, it seems interesting to
look for different CTs for more appropriate monitor functions, g . An
additional bonus is obtained if the final Hamiltonian is still separable taking
the same form as (9), with the kinetic energy quadratic in momenta, being
then suitable to be integrated with explicit symplectic RKN integrators.

3. Generalisations of the LC/KS Transformation

We now consider more general CTs which can be applied to a variety of
scaling functions gðqÞ, depending only on the coordinates. At this stage it is
convenient to consider the following result (Marsden, 1992)

THEOREM 1. The transformation

q ¼ UðQÞ;
U0ðQÞTp ¼ P;

�
ð11Þ

where U is a diffeomorphism of R2k and U0
ij � @Ui=@Qj, is canonical.

We want to generalise the CT (5) with the goal that for a family of
regularisation functions, gðqÞ, the following conditions are satisfied

q ¼ UðQÞ; gðqÞ 1
2
pTp ¼ aPTP; ð12Þ

with a being a constant and U a given function. If a CT satisfying (12) is
found, the Hamiltonian (3), which takes the form

K ¼ 1

2
gðqÞpTpþ gðqÞðVðqÞ � qtÞ ð13Þ

transforms to the separable Hamiltonian

K ¼ aPTPþ eVðQ;QtÞ: ð14Þ
If g is properly chosen then aPTP and eVðQ;QtÞ should both be reasonably
small, and explicit symplectic RKN methods with constant time step, Ds, will
be computationally stable and very efficient.

We present a procedure to find one family of such CTs. Suppose we have
determined a function UðQÞ such that

UðQÞTUðQÞ ¼ Ra ð15Þ
a 6¼ 0, and

U0ðQÞU0ðQÞT ¼ cRbI; ð16Þ
with a, b and c constants. If this function is used to define the CT given in
(11), then r ¼ ðqTqÞ1=2 ¼ ðUTUÞ1=2 ¼ Ra=2 or R ¼ r2=a. On the other hand,
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since PTP ¼ pTU0U0Tp ¼ cRbpTp ¼ cr2b=apTp, then conditions (12) are satis-
fied for the case

g ¼ rc with c ¼ 2b=a;

and the separable Hamiltonian (14) is obtained. Observe that for the LC/KS
transformation (5) we have UðQÞ ¼ bQQ (then UTU ¼ R4 and a ¼ 4) and
U0ðQÞ ¼ 2 bQ (then U0U0T ¼ 4R2 and b ¼ 2) so that in this case c ¼ 1. Note
that the unscaled problem corresponds to taking c ¼ 0.

We follow this procedure to generalise (5) so that the LC/KS transfor-
mation can be generalised to different values for c than unity. Since the
performance of a numerical integrator can be highly dependent on the choice
of c with choices of c 6¼ 1 sometimes leading to much smaller error than
either c ¼ 0 or c ¼ 1 (Blanes and Budd, 2004), this generalisation allows us to
take a more appropriate regularisation function for each particular problem
studied.

Let us now consider the following permutations

Pð1ÞQ ¼ Q; Pð3ÞQ ¼ ð�Q3;�Q4;Q1;Q2ÞT;
Pð2ÞQ ¼ ð�Q2;Q1;Q4;�Q3ÞT; Pð4ÞQ ¼ ðQ4;�Q3;Q2;�Q1ÞT:

ð17Þ

With these vectors we can write the matrix, bQ, in (6) asbQ ¼ ðPð1ÞQ;Pð2ÞQ;Pð3ÞQ;Pð4ÞQÞ:
Next, we define the following sequence of vectors and matrices

QðiÞ ¼ bQi�1Q;bQi ¼ ðPð1ÞQðiÞ;Pð2ÞQðiÞ;Pð3ÞQðiÞ;Pð4ÞQðiÞÞ; iP1
ð18Þ

with bQ0 ¼ I which have the following properties.

LEMMA 1. The matrices bQi defined in (18) with PðjÞ given in (17) satisfybQi
bQT
i ¼ bQT

i
bQi ¼ R2iI: ð19Þ

Proof. From (17) we have

ðPðlÞQðkÞÞTðPðmÞQðkÞÞ ¼ dlmðQðkÞÞTQðkÞ 8QðkÞ 2 R4

so, bQi
bQT
i ¼ bQT

i
bQi ¼ ðQðiÞÞTQðiÞI ¼ QTð bQT

i�1
bQi�1ÞQI; ð20Þ

and by simple induction the lemma is proved. (

This is a generalisation of property (7). The relation between the vectors
and matrices given in (18) is as follows.
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LEMMA 2. Given the vectors QðiÞ and matrices bQi defined according to (18),
then

ðQðmþ1ÞÞ0 ¼ ðmþ 1Þ bQm: ð21Þ
Proof. We proceed by induction. It is immediate that

ðQð2ÞÞ0 ¼ 2 bQ1; ð22Þ
and from (18) we have

ðQðmþ1ÞÞ0ij ¼
@Q

ðmþ1Þ
i

@Qj

¼ @

@Qj

ð bQmQÞi ¼
@

@Qj

X
k

QkPðkÞQðmÞ
 !

i

¼ ðPðjÞQðmÞÞi þ
X
k

QkPðkÞ @Q
ðmÞ

@Qj

 !
i

¼ ðPðjÞQðmÞÞi þ
X
k

QkPðkÞðmPðjÞQðm�1ÞÞ
 !

i

¼ ðPðjÞQðmÞÞi þ mPðjÞX
k

QPðkÞQðm�1Þ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
QðmÞ

0BBBB@
1CCCCA

i

¼ ðmþ 1ÞðPðjÞQðmÞÞi ¼ ðmþ 1Þð bQmÞij: (

Next, we generalise the CT (5) as follows

THEOREM 2. The following family of transformations

q ¼ bQmQ;
p ¼ 1

ðmþ1ÞR2m
bQmP;

(
ð23Þ

for m ¼ 0; 1; 2; . . ., is canonical.

Proof. From Theorem 1, the following transformation

q ¼ Qðmþ1Þ;
ðQðmþ1ÞÞ0Tp ¼ P;

�
ð24Þ

with Qðmþ1Þ ¼ bQmQ is canonical, and from Lemma 2 it is equivalent to

q ¼ Qðmþ1Þ;
ðmþ 1Þ bQT

mp ¼ P:

�
ð25Þ

Multiplying the second equation by bQm and using Lemma 1, the transfor-
mation (23) is obtained and hence is canonical. (
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Notice that m ¼ 0 corresponds to the identity transformation and the LC/
KS transformation corresponds to the particular case of taking m ¼ 1 in (23).
The two-dimensional case corresponds to the generalisation of LC where the
transformation (23) can also be written using complex notation as

q1 þ iq2 ¼ ðQ1 þ iQ2Þmþ1;
p1 þ ip2 ¼ P1þiP2

ðmþ1ÞðQ1�iQ2Þm :

(
ð26Þ

Observe that if we define U ¼ bQmQ then

UTU ¼ QT bQT
m
bQmQ ¼ R2mQTIQ ¼ R2ðmþ1Þ

so r ¼ ðUTUÞ1=2 ¼ Rmþ1 and

U0U0T ¼ ðmþ 1Þ2 bQm
bQT
m ¼ ðmþ 1Þ2R2mI:

If we compare with (15) and (16) we have that a ¼ 2ðmþ 1Þ and b ¼ 2m. This
implies that for the family of regularisation functions

gðqÞ ¼ rc with c ¼ 2m

mþ 1
; ð27Þ

the conditions of (12) are satisfied using the previous CT. Substituting in (13)
we get

K ¼ 1

2ðmþ 1Þ2 P
TPþ R2mVðQÞ � R2mQt: ð28Þ

This regularisation removes the singularity for the following family of
Potentials

VðrÞ ¼ c

R2m
¼ c

r
2m
mþ1

; ð29Þ
as well as for V ¼ c=ra with a < 2m=ðmþ 1Þ, and with c a constant. Although
a number of potentials can be considered, we still have the constraint that
0 � 2m=ðmþ 1Þ < 2. Other potentials can also be regularised following a
different technique to get CTs. For example, in (Blanes and Budd, in press) a
CT in two and three dimensions is presented for the regularisation function
g ¼ r4 (removing the singularity for the potential VðrÞ ¼ c=r4) and it is shown
that for the one-dimensional potentials V ¼ c=qa the regularisation function
g ¼ qa removes the singularity and the CT ðq; pÞ ¼ ðQ 2

2�a; 2�a
2 Q

a
a�2PÞ trans-

forms the Hamiltonian into a separable system as (28).
On the other hand, the inverse of (23), ðQ;PÞ ¼ C�1ðq; pÞ, can be

numerically expensive to compute. Fortunately, it has to be evaluated only
once for starting the computation, which then proceeds to use the trans-
formed coordinates. For the output we have to compute the transformation
(23), ðq; pÞ ¼ CðQ;PÞ, which involves only a few and simple arithmetic
operations, in general they are not required at each step, and they can also be
computed in parallel.
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This new technique can also be useful for potentials with no singularities.
For example, suppose we find a function, g, and a CT such that the new
potential eVðQ;QtÞ and the transformation ðq; pÞ ¼ CðQ;PÞ are easy and
cheap to compute, or the equations in the new coordinates have better
properties. In other words, the complexity of the original potential, V(q),
moves to the CT, ðQ;PÞ ¼ C�1ðq; pÞ, which, as previously mentioned, is only
required once for starting the computation, and has not to be computed at
each step. Then, the new algorithm for the integration will be faster and can
be more efficient even for smooth trajectories, where the variable time-step
technique seems not appropriate. This is also the case of the Kepler problem,
which requires the computation of a square root at each stage in a numerical
integration. However, if the previous regularisation is considered with m odd
(remember that m ¼ 1 corresponds to LC/KS) one square root appears in the
computation of the initial conditions ðQ0;P0Þ, and the remainder of the
integration can then be done only with simple arithmetic operations.

4. EASY Integrators

The evolution of the Hamiltonian (1) in the real time, t, and coordinates
ðq; pÞ is equivalent to the evolution of the Hamiltonian (28) in the fictive time,
s, introduced through (2) and (27), and coordinates (Q, P) related to (q, p)
through (23). Since (28) is also separable into very simple parts then splitting
and explicit symplectic integrators, which we briefly introduce, can be used.
As a result, we can solve numerically the system (1) with explicit adaptive
symplectic (EASY) integrators.

Given the HamiltonianH ¼ TðpÞ þ VðqÞ we have that T and V are exactly
solvable and the second order symmetric and symplectic Störmer/leapfrog/
Verlet method, for one time step h, is

S2ðhÞ ¼ eð�h=2ÞLVe�hLTeð�h=2ÞLV ¼ e�hLH þOðh3Þ ð30Þ
with LF :¼ fF; �g, where f�; �g denotes the usual Poisson bracket so, the
algorithm for one step is given by

pnþ1=2 ¼ pn �
h

2
rqVðqnÞ;

qnþ1 ¼ qn þ hpnþ1=2;

pnþ1 ¼ pnþ1=2 �
h

2
rqVðqnþ1Þ;

ð31Þ

where ðqn; pnÞ ’ ðqðtnÞ; pðtnÞÞ with tn ¼ t0 þ nh. For N steps, the last com-
putation of rqVðqnþ1Þ at each step can be reused in the next step, and only
one evaluation of rqV per step is required.
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Higher order symplectic methods can be obtained by composition of this
method (Creutz and Gocksch, 1989; Suzuki, 1990; Yoshida, 1990). For
example, a well known symmetric fourth order method is given by

S4ðhÞ ¼ S2ðx1ÞS2ðx0ÞS2ðx1Þ
¼ eð�x1=2Þ=LVe�x1LTe�ððx1þx0Þ=2ÞLVe�x0LTeððx1þx0Þ=2ÞLVe�x1LTe�hðx1=2ÞLV

ð32Þ
with x1 ¼ h=ð2� 21=3Þ, x0 ¼ h� 2x1. Higher order methods are also pre-
sented in Yoshida (1990). These methods have become very well known due
to their good behaviour for long time integration (Yoshida, 1993; Sanz-Serna
and Calvo, 1994; Hairer et al., 2002; McLachlan and Quispel, 2002; Budd
and Piggott, 2003). Recently, a number of new splitting methods have ap-
peared which are more efficient (McLachlan, 1995; Blanes and Moan, 2002;
McLachlan and Quispel, 2002). In addition, for Hamiltonians like (1), which
are quadratic in momenta, more efficient symplectic RKN methods in the
more general form

Uh ¼
Yk
i¼0

e�aihLTe�bihLV ð33Þ

can be used. In particular, fourth- and sixth-order methods are presented in
Blanes and Moan (2002), being the methods used in this paper, and referred
hereafter asRKN4 andRKN6. Methods up to order eight, using the processing
technique and modified potentials, are presented in Blanes et al. (2001).

5. Scaling Invariance

5.1. PURE SCALE INVARIANCE

The main motivation for the previous generalisation of the LC/KS regular-
isation comes from the fact that by using them we can use different scaling
functions g. In particular, these can be chosen to exploit natural scaling laws
obeyed by the solution. Many systems of ODEs are invariant under changes
of scale. A given differential equation

dzi=dt ¼ fiðz1; . . . ; zNÞ; i ¼ 1; . . . ;N; ð34Þ
is scale invariant if it is unchanged under the scaling transformation of the
form

t ! kt; zi ! kai zi; ð35Þ
where k > 0 is an arbitrary real number and the ai depend on the problem. A
solution of such a system is self-similar if it is also invariant under this change
so that
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ziðktÞ ¼ kai ziðtÞ:
Whilst most of the solutions of (34) are not self-similar (for example, periodic
orbits), the self-similar solutions are often attractors and/or describe inter-
esting behaviour such as the formation of singularities. Applying the Sund-
man transformation (2) to the system (34) we have

dzi=ds ¼ gðzÞfiðzÞ:
With a careful choice of g we can construct an scaling invariant system which
has the desirable property that two solutions mapped into each other by the
scaling relation (35) evolve at the same fictive time and the resulting
numerical method has a relative local truncations error which is independent
of the scale of the solution (Budd et al., 2001). It is also possible to compute
self-similar solutions with uniformly bounded relative errors on all fictive
times. To achieve scale invariance the function g must satisfy the functional
equation

gðka1z1; ka2z2; . . . ; kaNzNÞ ¼ kgðz1; z2; . . . ; zNÞ: ð36Þ
Given the potential V ¼ c=ra and the regularisation function g ¼ rc, it is

easy to see that the Hamiltonian equations are scaling invariant for the
choice c ¼ csc � 1þ a=2. From (27), if we choose csc ¼ 2m=ðmþ 1Þ we have:
(i) For a < 2, the singularity is removed because c > a; (ii) for the family of
potentials ðcsc ¼ 2m=ðmþ 1Þ ¼ 1þ am=2Þ

VðrÞ ¼ c

ram
; am ¼ 2ðmþ 1Þ

mþ 1
ð37Þ

the scaling invariance is preserved, a CT is known, and condition (i) is sat-
isfied. In addition, this class contains (29) as a particular case
ða2kþ1 ¼ 2k=ðkþ 1ÞÞ. From (37) we observe that the Kepler potential
ðam ¼ 1Þ corresponds to the case m ¼ 3 for which

csc ¼ 3=2;

and the regularisation for this value of m preserves the scaling invariance.
Then, it is important to know under which conditions this scaling invariant
regularisation is superior to the LC/KS regularisation m ¼ 1ðc ¼ 1Þ.

5.2. NEAR SCALING INVARIANCE

Whereas most problems are not exactly scale invariant they are often closely
approximated by scale invariant systems. For example, the equations for the
Kepler problem are scaling invariant, but for most perturbations to the
Kepler problem they are only close to scale invariant. Suppose the pertur-
bation is conservative and the system is described by the Hamiltonian
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H ¼ HKep þHpert, where HKep corresponds to the pure Kepler problem and
Hpert is the perturbation. Two classes of perturbations are considered:

(i) A perturbation which vanishes, or can be neglected at the singularity, i.e.
jHpert=HKepj ! 0 as r ! 0. In this case, close to a collision the system can
be considered as purely Keplerian, and the analysis for the pure Kepler
problem should apply.

(ii) A perturbation with a higher singularity. Suppose that close to the sin-
gularity Hpert ’ 1=rd, d > 1. Some examples are: the oblateness pertur-
bation, the perturbation due to relativistic effects, or the angular
momentum term of the evolutionary equation for r in polar or spherical
coordinates.

In the last case, for those initial conditions which allow close approaches
to the origin the perturbation have an important contribution in those re-
gions where 1=r � 1=rd. In such a case, it seems difficult to know in advance
which regularisation function gðqÞ gives the best performance. A preliminary
analysis (Blanes and Budd, 2004) for the one-dimensional problem with the
potential V ¼ �1=qa þ e=qb for different values of e, a, b, with b > a, sug-
gested that when using a regularisation function of the form g ¼ qc there was
a value c ¼ c� for which optimal results were obtained. In particular, as the
order of the method increased it was found that c� ! csc ¼ 1þ a=2 which
gave a regularisation function exactly preserving scaling invariance for the
unperturbed part �1=qa. Since these results also apply to near scale invariant
higher dimensional systems then, g ¼ r3=2 preserving the scale invariance for
the pure Kepler problem, will be very close to the optimal choice for most
perturbations with singularities at the origin if the trajectory is near self-
similar (i.e. close to a collision or for a high eccentricity).

6. Numerical Examples

In this section we will look at a series of problems in which there is an orbit
with a singularity or high eccentricity. We will consider both integrable and
perturbations of integrable problems. Our conclusions from these calcula-
tions are that if we perturb a nearly singular integrable problem, then the
scale invariant method performs better than the LC/KS methods in terms of
accuracy versus computational cost. In contrast if the problem is integrable
or not especially singular or eccentric then LC/KS gives more accurate an-
swers. Hence these two rescalings can be seen as complimentary to each
other.

GENERALISATION OF THE LC/KS REGULARISATION 395



6.1. THE COLLISION PROBLEM

As a first test, we consider a collapse in finite time, T, in the Kepler problem,
so that q ! 0, p ! 1 as t ! T. This is a problem with a singularity, which
can be described by a self-similar solution. This corresponds to the one-
dimensional Hamiltonian

H ¼ 1

2
p2 � 1

q
: ð38Þ

We take as initial conditions ðqð0Þ; pð0ÞÞ ¼ ð1; 0Þ, (so qt ¼ �1) which has a
solution which collapses at the finite time pt ¼ T ¼ p

2
ffiffi
2

p ¼ 1:11072 . . . (Such a
solution is asymptotically self-similar). If we consider the regularisation
function (27) and the CT (23) for the one-dimensional problem: q ¼ Qmþ1,
p ¼ P=ððmþ 1ÞQmÞ (which corresponds to (26) with q2 ¼ p2 ¼ Q2 ¼ P2 ¼ 0)
then the transformed Hamiltonian system is ðQt ¼ �1Þ

K ¼ 1

2ðmþ 1Þ2 P
2 �Qm�1 �Q2mQt: ð39Þ

In Figure 1 we show the curves obtained taking m ¼ 1; 2; 3; 4 for s 2 ½0; 10�.
We observe that if mP3 then the singularity in finite time becomes an
asymptotic limit of a smooth solution in the fictive time s as s ! 1. If
m ¼ 1; 2 then the numerical method instead gives a periodic solution. This fact
is due to the regularisation considered and not to the numerical integrator
used. Observe that for the LC regularisation ðm ¼ 1Þ the Hamiltonian (39) is
equivalent to K ¼ P2=8�QtQ2, with initial conditions ðQð0Þ;Pð0ÞÞ ¼ ð1; 0Þ,
giving oscillatory solutions, and then crossing the singularity because this
Hamiltonian allows the value Q ¼ 0 (q takes positive values because q ¼ Q2).
If we want to study how the system approaches the singular point asymp-
totically, this method needs a variable time step strategy on the fictive time s in
order not to cross through this point. However, with the scaling invariant
regularisation ðm ¼ 3, cs ¼ 3=2Þ, the Hamiltonian to be solved is
K ¼ P2=32�Q2 �QtQ6, with initial conditions ðQð0Þ;Pð0ÞÞ ¼ ð1; 0Þ.

The solution of the numerical discretisation with a constant time step Ds
then approaches the origin asymptotically as s ! 1 , as does the exact
solution, although the numerically computed and actual collapse times differ.
In order to know how accurately the methods approach this collapsing time,
in Figure 2 we present jqtðsÞ � T j for mP3 at s ¼ 10 and s ¼ 20 respectively,
taking different values of Ds and using always RKN4 as the symplectic
numerical integrator. Here, ptðsÞ is used as an estimate of the collapse time. It
seems clear that for this particular problem the choice m ¼ 3, preserving
scaling invariance, is optimal to study how the solution approaches the
collision as well as in approximating T.
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6.2. OBLATENESS PERTURBATION

In the previous section we have seen that the scale invariant method works
very well for a singular problem. We now consider the related problem of a
highly eccentric, periodic, orbit. In the computation of highly eccentric sa-
tellite orbits, the oblateness perturbation is the dominant perturbation (Ja-
nin, 1974). In first approximation, the dynamics of a satellite moving into the
gravitational field produced by a slightly oblate spherical planet is described
by the following Hamiltonian (Stiefel and Scheifele, 1971)

Hþ 1

2
ðp21 þ p22Þ �

1

r
þ e
2r3

1� a
3q21
r2

� �
: ð40Þ

The motion takes place in a plane containing the symmetry axis of the planet
when a ¼ 1, whereas a ¼ 0 corresponds to a plane perpendicular to that axis.
Taking the general regularisation function ‘‘gc with c ¼ 2m

rmþ1’’ and the gener-
alised transformation (23), the Hamiltonian (40) becomes

K ¼ eTðPÞ þ eVðQ;QtÞ

¼ P2
1 þ P2

2

2ðmþ 1Þ2 � Rm�1 þ e
2Rmþ3

1� a
q21ðQÞ
R2ðmþ1Þ

� �
�QtR2m;

ð41Þ

where the function q1ðQÞ can easily be obtained from (26).
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Figure 1. Trajectories obtained for the collapsing problem taking different values of m in the
generalisation of the LC/KS regularisation. The case m ¼ 1 corresponds to LC/KS.
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We study the performance of the methods taking a ¼ 1 and different
values of m (similar results are obtained with a ¼ 0). This problem is neither
integrable nor scaling invariant, although it does have an approximate
scaling symmetry if e=r3 is small in which case it approximates the Kepler
problem. We take as initial conditions q1 ¼ 1� e, q2 ¼ 0, p1 ¼ 0,
p2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ eÞ=ð1� eÞp
which, for the unperturbed problem, would corre-

spond to a periodic orbit with eccentricity e and energy �1=2. We integrated
the resulting system of ODEs using RKN6 until tf ¼ 20p for different values
of e 2 ð0; e�Þ, where e� is the largest value for e which gives apparently
bounded trajectories, and measured the average relative error in energy. The
fictive time step is adjusted such that tf is reached with approximately 200
steps. We considered three values of m: (i) m ¼ 0 (non-regularisation); m ¼ 1
(the standard Levi-Civita regularisation), and (iii) m ¼ 3 (the scaling
invariant regularisation for the unperturbed Kepler problem).

Case (a): e ¼ 0 (unperturbed problem). The results of this experiment are
shown in Figure 3. Three important facts can be deduced: (i) For the regu-
larised schemes ðm ¼ 1; 3Þ, the error is nearly independent of the eccentricity
in contrast to the case m ¼ 0 where the errors became very large as e ! 1.
The error for the case m = 3 increases when e is very close to 1 because a
large fictive time step is necessary to reach the final time tf with the fixed
number of steps, and the numerical integrator is unstable for these time steps.
(ii) The performance of the regularised schemes is clearly superior to the non
regularised method, even for small eccentricities, as already observed in
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Figure 2. Log–log curves for the error in the collision time, T, for different values of the fictive

time step, taking as the final fictive time s ¼ 10 and 20. Only values of m � 3 are considered
since the resulting trajectories then approach the collision asymptotically.
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Arakida and Fukushima (2000). (iii) LC is more accurate than the optimal
scaling invariant scheme.

Case (b): e ¼ 10�8, e ¼ 10�6 and e ¼ 10�4 (small perturbations). We now
make the following observations from Figure 3: (i) The accuracy for m ¼ 3 is
apparently not reduced; (ii) the high performance of LC is retained for most
eccentricities, but it is severely deteriorated for high eccentricities and then it
is out performed by the scaling invariant regularisation; and (iii) this effect is
magnified with e. We conclude that the scaling invariant method works best
for large eccentricities and moderately large perturbations.

In Figure 4 we show the results of the experiment for e ¼ 10�8 and taking
m ¼ 1; 2; 3; 4; 5. We clearly observe that for high eccentricities the nearly
scaling invariant regularisation, m ¼ 3, gives the most accurate results.

The reason for the good performance of the Levi-Civita regularisation on
the unperturbed problem comes because, if e ¼ 0 and m ¼ 1 in (41), the
Hamiltonian to be solved is (10) which is exactly solvable. This is possible
because the original system is also integrable. However, if e 6¼ 0, integrability
is lost and the LC method gives markedly worst results when the perturbation
is strong (i.e. for high eccentricities). In contrast, the scaling invariant method
does not rely on integrability. The symplectic integrators used on the pure
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Figure 3. Average relative error in energy as a function of the eccentricity for m ¼ 0; 1; 3, and
for different values of e. Only values of e giving bounded trajectories are considered.
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Kepler problem with the LC regularisation solve exactly a slightly perturbed
harmonic oscillator or, equivalently, they solve exactly a Kepler problem, with
slightly different parameters, giving also a closed trajectory (Mikkola and
Tanikawa, 1999; Preto and Tremaine, 1999). This is a surprising fact since it is
well known that most symplectic integrators, when applied to the Kepler
problem, give trajectories with a precession of the orbit. We illustrate this fact
in Figure 5. First, we consider the pure Kepler problem with e= 0.999 and we
integrate for three periods with a time step requiring approximately 50 steps
per period. We consider the LC/KS regularisation (stars) and the scaling
invariant regularisation with m ¼ 3 (circles). The numerical integrator used
was the second order method described in (30) and (31). Each star in the figure
corresponds to three different points (to drawing accuracy they look the same)
staying in a closed trajectory very near the exact one (solid line). However, the
solution for m ¼ 3 shows the typical precession of a symplectic integrator
applied to the Kepler problem. Next, we repeat the experiment for e ¼ 10�4

and e ¼ 0:9. We integrate until tf ¼ 20p choosing a time step such that the
whole integration is done with approximately 100 steps. Now, the exact
solution (obtained numerically with a very small time step) has a precession
which is better approximated with the scaling invariant regularisation.

On the other hand, the previous good behaviour for the LC/KS regular-
isation only happens when solving the pure Kepler problem in Cartesian
coordinates, but not in polar coordinates for the one-dimensional Hamilto-
nian H ¼ 1

2 p
2 � 1

p þ l2

q2
with l the angular momentum, and the one-dimen-
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Figure 4. Average relative error in energy for e ¼ 10�8 as a function of the eccentricity for
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sional LC transformation ðq; pÞ ¼ ðQ2;P=ð2QÞÞ, as observed in (Blanes and
Budd, 2004). This is because the singularity in l2

q2
can not be removed with the

regularisation function g ¼ q. The choice m ¼ 3 (or g ¼ r3=2) resulting a
nearly scaling invariant scheme, gives a much better performance for high
eccentricities for this perturbed, Kepler problem.

To illustrate the performance of the methods at high eccentricities, we
consider again (40) with: (i) e ¼ 0 and e ¼ 0:999; (ii) e ¼ 10�8 and e ¼ 0:98.
The EASY integrators use the following RKN integrators: the second order
method (30), RKN4 and RKN6. We compare the results when the numerical
integrators are used with the LC regularisation (LCn, n ¼ 2; 4; 6) and with the
nearly scaling invariant ðm ¼ 3Þ regularisation (EASYn, n ¼ 2; 4; 6). We
measure the average relative error in energy versus the number of force
evaluations. Figure 6 shows the results obtained. For the pure Kepler
problem with e ¼ 0, the LC regularisation gives more accurate results for
each integrator. However the relative performance of the two regularisations
completely change when the small perturbation is introduced. Observe that
the difference between EASYn and LCn increases with n in agreement with
the general results obtained for the one-dimensional problem studied in
(Blanes and Budd, 2004).
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Finally, several examples such as the Hill’s lunar problem, a perturbation
due to a constant electric and magnetic field or the Stark problem (which
correspond to a regular perturbation to the Kepler problem in the sense that
Hpert=HKep ! 0 as r ! 0) have been considered. During a near-collision
these systems can be considered as purely Keplerian. For this reason, the LC/
KS regularisation works more efficiently than the scaling invariant regular-
isation. This has been observed on several numerical experiments carried out
by us but not reported in this paper. However, if in these problems a per-
turbation with a singularity which cannot be removed with the LC/KS reg-
ularisation is introduced, the performance of LC/KS deteriorates as
happened in the oblateness perturbation, and the scaling invariant regulari-
sation works, in general, more efficiently for high eccentricities.

7. Conclusions

The Levi-Civita and Kustaanheimo–Stiefel regularisation have been revis-
ited. With a time transformation and a canonical transformation the unstable
differential equation with a singularity, associated to the Kepler problem, is
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Figure 6. Average relative error in energy versus the number of potential evaluations for the
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transformed into a stable differential equation with no singularities. How-
ever, the equations for the Kepler problem are scaling invariant, and this
property is not preserved by the LC/KS regularisation, reducing its perfor-
mance on a number of problems. Then, a generalisation of the LC/KS reg-
ularisation is presented which removes the singularity and preserves the
scaling invariance for a family of potentials including the Kepler potential as
a particular case.

From the theoretical analysis and the numerical experiments carried out
for several perturbations to the Kepler problem it seems clear that for the
numerical integration of the pure Kepler problem or some polynomial per-
turbations to it, the LC/KS regularisation, in general, gives the most efficient
technique. However, for collision problems as well as if the perturbation has
an important contribution close to the singularity, the scaling invariant
regularisation is more efficient for eccentric orbits. We reiterate the obser-
vation that scale invariant methods seem to be complimentary to LC/KS
working best (for high eccentricty, near singular and non-integrable behav-
iour) precisely where LC/KS has certain difficulties.
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