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Abstract

In this paper we analyse numerical integration methods applied to differential equations which are separable in
solvable parts. These methods are compositions of flows associated with each part of the system. We propose an
elementary proof of the necessary existence of negative coefficients if the schemes are of order, or effective order,
p � 3 and provide additional information about the distribution of these negative coefficients. It is shown that if
the methods involve flows associated with more general terms this result does not necessarily apply and in some
cases it is possible to build higher order schemes with positive coefficients.
 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Operator splitting schemes are numerical methods which are particularly useful to approximate the
evolution of differential equations when they are separable in solvable parts [17]. To be more specific, let
us consider the ODE

x ′ = f (x), x0 = x(0) ∈ R
D (1)
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with f :RD → R
D and associated vector field (or Lie operator associated withf )

F =
D∑

i=1

fi(x)
∂

∂xi

. (2)

Let us denote byϕh theh-flow of the ODE (1) for a given time steph. In other words, the exact solution
is given byx(h) = ϕh(x0).

Now let us assume thatf (x) can be written asf (x) = fA(x) + fB(x), the vector fieldF is split
accordingly asF = FA + FB and theh-flows ϕ

[A]
h andϕ

[B]
h corresponding toFA andFB , respectively,

can be exactly computed or, equivalently, the equationsx ′ = fA(x) andx ′ = fB(x) are solvable. Then
the composition (sometimes called Lie–Trotter splitting)

ψh,1 ≡ ϕ
[B]
h ◦ ϕ

[A]
h (3)

approximatesϕh with error of orderh2, i.e., ψh,1(x0) = ϕh(x0) + O(h2), whereas the so-called Strang
splitting or Störmer/Verlet/leapfrog scheme

ψh,2 ≡ ϕ
[A]
h/2 ◦ ϕ

[B]
h ◦ ϕ

[A]
h/2 (4)

is such thatψh,2(x0) = ϕh(x0)+O(h3). The order of approximation to the exact solution can be increased
by including more maps with fractional time steps in the composition. In general, the scheme

ψh ≡ ϕ
[B]
bmh ◦ ϕ

[A]
amh ◦ · · · ◦ ϕ

[B]
b1h

◦ ϕ
[A]
a1h

, (5)

(a1, b1, . . . , am, bm) ∈ R
2m, is of orderp if ψh = ϕh +O(hp+1) for a proper choice ofm and coefficients

ai , bi . It can be assumed without loss of generality that in (5) none of the coefficientsb1, b2, . . . , bm−1

as well as none ofa2, a3, . . . , am are vanishing, i.e., onlya1 and/orbm can be zero, since otherwise the
corresponding flows could be removed (ϕ

[A]
0 = ϕ

[B]
0 = id, the identity map) and the rest of the maps

would be concatenated (due to the group property of the flows).
Numerical schemes of orderp � 3 based on the composition (5) have been successfully applied for

solving a large number of problems [10,17], including also certain partial differential equations. In fact,
splitting methods are frequently used in celestial mechanics [21], quantum mechanics [6], molecular
dynamics [12], accelerator physics [7] and, in general, for numerically solving Hamiltonian dynamical
systems [8,16], Poisson systems [14] and reversible differential equations [15]. It has been noticed, how-
ever, that some of the coefficients in (5) are negative forp � 3 when one considers arbitrary vector fields
FA andFB . In other words, the methods always involve stepping backwards in time. This constitutes a
problem when the differential equation is defined in a semigroup, as arises sometimes in applications,
since then the method can only be conditionally stable [17]. Also schemes with negative coefficients may
not be well-posed when applied to PDEs involving unbounded operators.

The existence of backward fractional time steps in the composition method (5) is in fact unavoidable,
and can be established as the following two theorems:

Theorem 1 [20,22]. If p is a positive integer such thatp � 3, then there are no composition methods of
the form(5) and finitem with all the coefficientsai , bi being positive.

Theorem 2 [9]. If p is a positive integer such thatp � 3, then, for everypth-order method(5) with m

any finite positive integer, one has

min
1�i�m

ai < 0 and min
1�j�m

bj < 0.
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Theorem 2 is stronger than Theorem 1, in the sense that it establishes that at least one of theai and
also one of thebi coefficients have to be strictly negative, although a similar (and certainly non-trivial)
proof strategy was used. One of the goals of this paper is to provide an alternative, elementary proof of
Theorem 2, giving in addition a more detailed analysis of how negative coefficients are distributed in the
composition.

During the last few years the processing technique has been used to find composition methods re-
quiring less evaluations than conventional schemes of orderp [13]. The idea consists in enhancing an
integratorψh (thekernel) with a parametric mapπh :RD → R

D (thepost-processor) as

ψ̂h = πh ◦ ψh ◦ π−1
h . (6)

Application ofn steps of the new (and hopefully better) integratorψ̂h leads to

ψ̂n
h = πh ◦ ψn

h ◦ π−1
h ,

which can be considered as a change of coordinates in phase space. Observe that processing is advan-
tageous ifψ̂h is a more accurate method thanψh and the cost ofπh is negligible, since it provides the
accuracy ofψ̂h at essentially the cost of the least accurate methodψh.

The simplest example of a processed integrator is provided in fact by the Strang splitting (4). As a
consequence of the group property of the exact flow, we have

ψh,2 = ϕ
[A]
h/2 ◦ ϕ

[B]
h ◦ ϕ

[A]
h/2 = ϕ

[A]
h/2 ◦ ϕ

[B]
h ◦ ϕ

[A]
h ◦ ϕ

[A]
−h ◦ ϕ

[A]
h/2

= ϕ
[A]
h/2 ◦ ψh,1 ◦ ϕ

[A]
−h/2 = πh ◦ ψh,1 ◦ π−1

h (7)

with πh = ϕ
[A]
h/2. Hence, applying the first order method (3) with processing yields a second order of

approximation.
Although initially intended for Runge–Kutta methods [4], the processing technique has proved its

usefulness mainly in the context of geometric numerical integration [10], where constant step-sizes are
widely employed.

We say that the methodψh is of effective orderp if a post-processorπh exists for whichψ̂h is of
(conventional) orderp [4], that is,

πh ◦ ψh ◦ π−1
h = ϕh +O(

hp+1
)
.

Hence, as the previous example shows, the Lie–Trotter splitting (3) is of effective order 2. Obviously, a
method of orderp is also of effective orderp (takingπh = id) or higher, but the converse is not true in
general.

The analysis of the order conditions of the methodψ̂h shows that many of them can be satisfied byπh,
so thatψh must fulfill a much reduced set of restrictions [2,3]. In particular, if one takes a composition (5)
for ψh, the number and complexity of the conditions to be verified by the coefficientsai , bi is notably
reduced. As a consequence, by considering both the kernelψh and the post-processorπh as compositions
of basic integrators, highly efficient processed methods have been proposed [23,2,1,17]. Nevertheless,
whenπh is constructed as a composition (5), its computational cost is usually higher than that ofψh, and
thus the use of the resulting processed scheme is restricted to situations where intermediate results are
not frequently required. Otherwise the overall efficiency of the method is deteriorated.
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To overcome this difficulty, in [3] a technique has been developed for obtaining approximations to
the post-processor at virtually cost free and without loss of accuracy. The clue is to replaceπh by a new
integratorπ̃h � πh obtained from the intermediate stages in the computation ofψh. As a result of the
analysis carried out in [3], it is generally recommended to have a very accurate pre-processorπ−1

h but,
on the contrary,πh can safely be replaced bỹπh, since the error introduced by the cheap approxima-
tion π̃h is of a purely local character and is not propagated along the evolution (contrarily to the error
in π−1

h ).
Here we also address the following question: do Theorems 1 and 2 also hold for a compositionψh

of effective orderp � 3? Observe that, in principle, Theorem 2 applies to the whole compositionψ̂h

of (6), but it would nonetheless be advantageous to have the negative coefficients restricted only to the
compositionπh. For in that case the integration starts by computingπ−1

h (which only involves posi-
tive coefficients), thenψh (involving only positive coefficients) is evaluated once per step and finally an
appropriate approximation toπh may be considered when output is required (even the crudest approx-
imation πh = id [13]). In this way the algorithm only involves stepping forward in time and could be
applied even to PDEs with unbounded operators. The answer to the question posed before could also be
useful in the search of efficient methods of order higher than 2 for systems that evolve in a semigroup,
such as the heat equation in two space dimensions [17].

Also in quantum statistical mechanics, the partition function requires computingZ = Tr(e−βH ),
whereH is the Hamiltonian operator andβ is the inverse temperature [22]. In numerical calculations
a processed composition algorithm may be used to approximate e−βH , and since the trace is invariant
under similarity transformations, only the kernel is necessary to determineZ. If it involves only positive
coefficients then it would be possible to build up higher order convergent algorithms for this class of
problems.

In Section 3 we prove explicitly that this is not the case, so that any composition method (5) of effective
orderp � 3 contains necessarily some negative coefficients.

2. An elementary proof of Theorem 2

It is well known that, for each infinitely differentiable mapg :RD → R, g(ϕh(x)) admits an expansion
of the form

g
(
ϕh(x)

) = g(x) +
∑
k�1

hk

k! F
k[g](x) = ehF [g](x), x ∈ R

D,

whereF is the vector field (2). Similarly, for the mapψh given in (5) one has

g
(
ψh(x)

) = Ψh[g](x),

where [10]

Ψh = exp(ha1FA) exp(hb1FB) · · ·exp(hamFA) exp(hbmFB). (8)

By repeated application of the Baker–Campbell–Hausdorff (BCH) formula to (8) we can obtain a series
of differential operatorsFh = ∑

k�1 hkFk such thatΨh = exp(Fh), i.e.,ψh is formally the exact 1-flow of
the vector fieldFh. The schemeψh is of orderp � 3 if F1 = FA + FB andF2 = F3 = 0. In terms of the
coefficientsai , bi , this corresponds to the following order conditions:
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order 1:
m∑

i=1

ai = 1,

m∑
i=1

bi = 1;

order 2:
m∑

i=1

bi

(
i∑

j=1

aj

)
= 1

2
;

order 3:
m−1∑
i=1

bi

(
m∑

j=i+1

aj

)2

= 1

3
,

m∑
i=1

ai

(
m∑

j=i

bj

)2

= 1

3
. (9)

The proof of Theorems 1 and 2 provided by [20,22,9] is based precisely on the fact that a scheme of
the form (5) withm any finite positive integer and all the coefficientsai , bi being positive cannot satisfy
Eqs. (9).

In the particular case of the first order methodχh = ϕ
[B]
h ◦ϕ

[A]
h , the corresponding operator (8) is given

by

exp(hFA)exp(hFB) = exp(Xh) = exp
(
hX1 + h2X2 + h3X3 + · · · ), (10)

with X1 = FA + FB , X2 = 1
2[FA,FB], etc., whereas for its adjoint schemeχ∗

h = χ−1
−h = ϕ

[A]
h ◦ ϕ

[B]
h one

hasg(χ∗
h (x)) = e−X−h[g](x). Here[FA,FB] stands for the Lie bracketFAFB − FBFA. Since our aim is

to get results valid for all pairsFA, FB of arbitrary vector fields, then we must assume that the only linear
dependencies among nested Lie brackets ofFA andFB can be derived from the skew-symmetry and the
Jacobi identity of the Lie brackets. In other words,Xk, k � 1, is an element of the graded free Lie algebra
generated by the symbolic vector fieldsFA, FB , where both have degree one [18].

The crucial observation that leads to an alternative, elementary proof of Theorem 2 is the close con-
nection existing between the splitting method (5)

ψh = ϕ
[B]
bmh ◦ ϕ

[A]
amh ◦ ϕ

[B]
bm−1h

◦ · · · ◦ ϕ
[A]
a2h

◦ ϕ
[B]
b1h

◦ ϕ
[A]
a1h

(11)

and the composition of the first order methodχh = ϕ
[B]
h ◦ ϕ

[A]
h and its adjointχ∗

h = ϕ
[A]
h ◦ ϕ

[B]
h with

different time steps [15]:

ψh = χ∗
β2mh ◦ χβ2m−1h ◦ · · · ◦ χ∗

β2h
◦ χβ1h ◦ χ∗

β0h
. (12)

Indeed, by inserting the explicit form ofχβih andχ∗
βih

in (12) we have

ψh = (
ϕ

[A]
β2mh ◦ ϕ

[B]
β2mh

) ◦ (
ϕ

[B]
β2m−1h

◦ ϕ
[A]
β2m−1h

) ◦ · · · ◦ (
ϕ

[A]
β2h

◦ ϕ
[B]
β2h

) ◦ (
ϕ

[B]
β1h

◦ ϕ
[A]
β1h

) ◦ (
ϕ

[A]
β0h

◦ ϕ
[B]
β0h

)
= ϕ

[A]
β2mh ◦ ϕ

[B]
(β2m+β2m−1)h

◦ ϕ
[A]
(β2m−1+β2m−2)h

◦ · · · ◦ ϕ
[B]
(β2+β1)h

◦ ϕ
[A]
(β1+β0)h

◦ ϕ
[B]
β0h

,

where in the last equality we have used the group property of the exact flow. If we putβ0 = β2m = 0 we
recover expression (11) as soon as

ai = β2i−1 + β2i−2, bi = β2i + β2i−1, i = 1, . . . ,m. (13)

Then
m∑

i=1

ai =
2m∑
i=0

βi =
m∑

i=1

bi. (14)
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In consequence, composition (11) can be rewritten as (12) only if (14) holds. Consistency of both schemes
require in fact that

∑m
i=1 ai = ∑m

i=1 bi = ∑2m
i=0 βi = 1 and it has been shown in [15] that the order condi-

tions for the coefficientsai , bi to get a method of orderp � 1 are equivalent to the order conditions for
theβi . In that case the operatorΨh given in (8) can also be expressed as

Ψh = exp(−X−β0h)exp(Xβ1h)exp(−X−β2h) · · ·exp(Xβ2m−1h)exp(−X−β2mh) (15)

and repeated application of the BCH formula gives

Ψh = exp
(
hf1,1X1 + h2f2,1X2 + h3

(
f3,1X3 + f3,2[X1,X2]

) +O(
h4

))
,

where the coefficientsfk,j are homogeneous polynomials of degreek in the variablesβi . In particular
we have

f1,1 =
2m∑
i=0

βi, f2,1 =
2m∑
i=0

(−1)i+1β2
i , f3,1 =

2m∑
i=0

β3
i . (16)

Conditionsf1,1 = 1 andfn,j = 0 for all n � p are then sufficient for the method to be of orderp.

Proof of Theorem 2. From the preceding discussion, it is clear that

f3,1 =
2m∑
i=0

β3
i = 0 (17)

is a necessary condition to be satisfied by any method of orderp � 3. We suppose that more than twoβi

are different from zero becauseβ3
1 +β3

2 = 0 together with the consistency conditionβ1 +β2 = 1 have no
real solution. Now (17) can be written as

m∑
i=1

(
β3

2i−1 + β3
2i−2

) + β3
2m =

m∑
i=1

(
β3

2i−1 + β3
2i−2

) = 0,

for any positive integerm. In consequenceβ3
2j−1 + β3

2j−2 has to be negative for some 1� j � m. But it
is easy to verify that sign(x3 + y3) = sign(x + y) for anyx, y ∈ R, so that

aj = β2j−1 + β2j−2 < 0, (18)

for somej such that 1� j � m. Similarly, we can write (17) as

β3
0 +

m∑
i=1

(
β3

2i + β3
2i−1

) =
m∑

i=1

(
β3

2i + β3
2i−1

) = 0

so thatβ3
2k + β3

2k−1 < 0 for some 1� k � m, and again

bk = β2k + β2k−1 < 0. � (19)

Distribution of the coefficients

We can get more information about the distribution of the negative coefficients in the composition (5)
by applying a slightly more involved argument which, in fact, also provides another demonstration of
Theorem 2.



S. Blanes, F. Casas / Applied Numerical Mathematics 54 (2005) 23–37 29

If we denoteα2i−1 = ai , α2i = bi , i = 1, . . . ,m, in the composition (5)

ψh = ϕ
[B]
α2mh ◦ ϕ

[A]
α2m−1h

◦ · · · ◦ ϕ
[B]
α2h

◦ ϕ
[A]
α1h

,

then (13) implies

αi = βi + βi−1, i = 1, . . . ,2m, (20)

whereβj are the coefficients appearing in (12) (β0 = β2m = 0). Now all we need to prove Theorem 2
is to analyse how Eqs. (17) and (20) imply that at least one odd as well as one evenαi coefficients are
negative.

As before, we assume that there are more than two nonvanishing coefficientsβi and at least one of
them is negative.

(a) Let us suppose first that only one coefficient is actually negative, sayβj , for some 0< j < 2m. Then,
from Eq. (17),

βj = −
(∑

i �=j

β3
i

)1/3

so that|βj | > βi for all i �= j . Therefore

αj = βj + βj−1 < 0 and αj+1 = βj+1 + βj < 0,

i.e., two consecutiveαk coefficients are negative, and thus at least oneaj and onebj are negative.
(b) Suppose now that the negative coefficients areβj1, βj2, . . . , βjk

with j1 < j2 < · · · < jk.
(b.1) If

βji−1 < |βji
| and |βji

| > βji+1 (21)

for someji ∈ I ≡ {j1, j2, . . . , jk} then also two consecutive coefficientsαk are negative,
namelyαji

andαji+1.
(b.2) On the other hand, when (21) does not hold for anyji ∈ I, then the following situations are

possible:
(i) if βji−1 < |βji

|, then|βji
| < βji+1;

(ii) if |βji
| > βji+1, thenβji−1 > |βji

|;
(iii) finally, βji−1 > |βji

| andβji+1 > |βji
|.

Let us suppose thatβji+1 �= βji+1−1 for all ji . Then

βjk
= −

((
β3

j1−1 + β3
j1

+ β3
j1+1

) + (
β3

j2−1 + β3
j2

+ β3
j2+1

) + · · ·

+ (
β3

jk−1−1 + β3
jk−1

+ β3
jk−1+1

) +
∑′

β3
i

)1/3
,

where
∑′ contains the remaining terms (includingβjk−1 andβjk+1). Sinceβ3

jl−1+β3
jl

+β3
jl+1 >

0 for l = 1, . . . , k − 1, then clearly

|βjk
| > βjk−1 and |βjk

| > βjk+1

in contradiction with hypothesis (b.2). Thereforeβji+1 = βji+1−1 for someji . Let us suppose,
without loss of generality, that they correspond to the firstl + 1 coefficientsβji

. Then, the only
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possible sequence (different from those considered before) has to beβji−1, βji
, βji+1, βji+2,

βji+3, . . . , βji+2l−1, βji+2l , βji+2l+1 such that

βji−1 < |βji
| < βji+1,

|βji+2| < βji+1, |βji+2| < βji+3, . . .

βji+2l−1 > |βji+2l| > βji+2l+1,

whereβji+2k , k = 0,1, . . . , l are the negative coefficients. Then

αji
= βji

+ βji−1 < 0, αji+2l+1 = βji+2l+1 + βji+2l < 0.

Also in this case at least oneai and onebi are negative becauseji andji + 2l + 1 differ in an
odd number.

Notice that this is the only situation where two negativeαi coefficients in a given method do not stay
in consecutive places. We have checked several composition methods published in the literature having
observed that this occurrence is in fact quite rare: it is very much frequent that at least two consecutive
αi coefficients are negative, and this discussion provides an explanation of the phenomenon.

3. Compositions of effective order p ��� 3

As with the compositionψh in (5), let us consider a post-processorπh in (6) formally as the exact
1-flow of the vector fieldPh, i.e.,g(πh(x)) = ePh[g](x) for all g, with Ph = ∑

k�1 hkPk. Then one has

for the processed schemeg ◦ ψ̂h = Ψ̂h[g], whereΨ̂h = exp(F̂h) and the vector field̂Fh can be determined
from the relation

exp
(
F̂h

) = exp(−Ph)exp(Fh)exp(Ph). (22)

With respect to the vector fieldPh, it is natural to choose it as an element of the graded free Lie algebra
generated byFA andFB . Thus, up to order two inh,

Ph = h(c1FA + c2FB) + h2c3X2 +O(
h3

)
, (23)

with ci free parameters. Notice thatπh can be approximated by a composition (5), or equivalently,
exp(Ph) by the product (8). However, ifc1 �= c2 then

∑
i ai = c1 �= c2 = ∑

i bi and composition (12)
cannot be used (as is the case, for instance, of the Strang splitting (7)). On the other hand, since
c1FA + c2FB = (c2 − c1)FB + c1X1 = (c1 − c2)FA + c2X1, from (23) it is possible to write

ePh = ehc1X1ehcFB eh2d1X2 +O(
h3

)
(24)

as well as

ePh = ehc2X1e−hcFAeh2d2X2 +O(
h3

)
, (25)

wherec = c2 − c1 andd1, d2 are parameters depending onc1, c2, c3. Since the processed schemeψ̂h

is of conventional orderp, thenΨ̂h = exp(hX1) + O(hp+1) and ehX1Ψ̂h = Ψ̂hehX1 + O(hp+1), so that
exp(hciX1) in (24) and (25) can be safely removed without loss of generality and thus we takec1 = 0 or
c2 = 0.

Now we are in disposition to establish and prove the main result of this section.
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Theorem 3. At least one of theai as well as one of thebi coefficients have to be negative in the compo-
sition (5) if ψh is the kernel of a processed method of order(or equivalently ifψh is of effective order)
p � 3.

Proof. Let ψh be a composition (5) of effective order 3 with, say, allai positive. Then it is possible to
construct a vector fieldPh such that (24) (withc1 = 0) holds and therefore (22) leads to

e−h2d1X2e−hcFB ΨhehcFB eh2d1X2 = eF̂h = eh(FA+FB) +O(
h4

)
, (26)

or equivalently

	Ψh ≡ e−hcFB ΨhehcFB = eh2d1X2eh(FA+FB)e−h2d1X2 +O(
h4

)
= exp

(
h(FA + FB) − h3d1[X1,X2]

) +O(
h4

)
, (27)

whereΨh is given by (8). Notice that all coefficientsai in 	Ψh are positive, since	Ψh is associated with the
composition map

ψ̄h = ϕ
[B]
ch ◦ ϕ

[B]
bmh ◦ ϕ

[A]
amh ◦ · · · ◦ ϕ

[B]
b1h

◦ ϕ
[A]
a1h

◦ ϕ
[B]
−ch, (28)

which, as previously, can be written as a composition of the first order methodχh and its adjointχ∗
h with

coefficientsβ̄i :

ψ̄h = χ∗
β̄2kh

◦ χβ̄2k−1h
◦ · · · ◦ χ∗

β̄2h
◦ χβ̄1h

◦ χ∗
β̄0h

, (29)

with β̄0 = β̄2k = 0. Since the coefficient ofX3 is zero in (27), it is clear that

f̄3,1 :=
2k∑
i=0

β̄3
i = 0. (30)

But, as we know from the proof of Theorem 2 provided in Section 2, this condition cannot be satisfied
with all coefficientsai positive.

Similarly, if we assume that allbi are positive then the same argument applied to the post-processor
(25) leads to the same contradiction.�

In fact, the explicit expression of the effective order conditions up to order 3 can be derived in the
following way. By inserting (24) in (22) and applying the BCH formula one finds

Ψ̂h = exp

(
hX1 + h2(f2,1 + 2c)X2 + h3

((
f3,1 + 3c(f2,1 + c)

)
X3

+
(

f3,2 − 1

2
c(f2,1 + c) + d1

)
[X1,X2]

))
+O(

h4
)

(31)

and a second order method is obtained by takingc = −1
2f2,1. If we substitute this value in (31) and take

d1 such that the coefficient of[X1,X2] vanishes, then

Ψ̂h = exp

(
hX1 + h3

(
f3,1 − 3

4
f 2

2,1

)
X3

)
+O(

h4
)
. (32)
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This same result is obtained if one considers a post-processor such that (25) holds (withc2 = 0) instead
of (24). In summary, it is clear that

f3,1 − 3

4
f 2

2,1 = 0 (33)

is the only condition to be satisfied by a composition to be of effective order three. This condition is
equivalent to the kernel condition at order three presented in [2] using a different basis of the Lie algebra.

Example. Let us consider the composition map

ψh = ϕ
[B]
(1−b)h ◦ ϕ

[A]
(1−a)h ◦ ϕ

[B]
bh ◦ ϕ

[A]
ah = χ∗

β4h
◦ χβ3h ◦ χ∗

β2h
◦ χβ1h ◦ χ∗

β0h
, (34)

with β0 = 0, β1 = a, β2 = b − a, β3 = 1− b, β4 = 0, and the consistency conditions already imposed.
This composition cannot be of order three (there are not enough parameters to solve all the order condi-
tions (9)), yet it could be of effective order three if condition (33) is satisfied, which in this case reads

1− 12ab(1− a)(1− b) = 0.

But it turns out that this equation has no real solution ifa ∈ (0,1) as well as ifb ∈ (0,1).

4. Other classes of composition methods

The previous results can be generalized in different contexts. For instance, let us consider a partitioned
scheme built up using finite linear combinations of splitting methods of the form (5), i.e.,

ψh =
K∑

k=1

γk ψh,k, (35)

where

ψh,k = ϕ
[B]
bk,nh ◦ ϕ

[A]
ak,nh ◦ · · · ◦ ϕ

[B]
bk,1h

◦ ϕ
[A]
ak,1h

(36)

and it is assumed that
∑

k γk = 1 and
∑

i ak,i = ∑
i bk,i , k = 1, . . . ,K . The generalization provided by

the following theorem establishes that even with partitioned schemes of the form (35) each basic flow in
a convex partition (γk > 0 for every 1� k � K) must be applied for at least one backward fractional time
step. On the other hand, simple polynomial extrapolation of the leapfrog method (7) shows that ifγk < 0
all the coefficientsak,i , bk,i may indeed be positive.

Theorem 4 [9]. If p andK are positive integers such thatp � 3 andK � 2, andγk > 0 for k = 1, . . . ,K ,
then at least one of the coefficientsak,i as well as one of thebk,i have to be negative in the composition
(36) if ψh has order, or effective order,p � 3.

Proof. Also in this case the proof is quite elementary. Since
∑

i ak,i = ∑
i bk,i we can write

ψh,k = χ∗
βk,2nh ◦ χβk,2n−1h ◦ · · · ◦ χ∗

βk,2h
◦ χβk,1h ◦ χ∗

βk,0h
(37)

and by following the same procedure as previously we find that instead of (16) the necessary condition
for (35) to be a method of order three or higher is now

K∑
k=1

γk

2n∑
i=1

β3
k,i = 0.
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Sinceγk > 0, k = 1, . . . ,K , there exists somej , 1� j � K , such that
2n∑
i=1

β3
j,i � 0,

and the previous proof can be applied.�
The two-term splitting analyzed so far can be seen as a special instance of ak-term splitting of the

vector fieldF , F = F1 + F2 + · · · + Fk. Suppose we have a scheme of the form

ψh = ϕ
[k]
am,kh

◦ · · · ◦ ϕ
[2]
am,2h

◦ ϕ
[1]
am,1h

◦ · · · ◦ ϕ
[k]
a2,kh

◦ · · · ◦ ϕ
[2]
a2,2h

◦ ϕ
[1]
a2,1h

◦ ϕ
[k]
a1,kh

◦ · · · ◦ ϕ
[2]
a1,2h

◦ ϕ
[1]
a1,1h

, (38)

whereϕ
[l]
h stands for the exacth-flow of the vector fieldFl . If the composition (38) is of order, or effective

order,p � 3 for all choices of operatorsF1, . . . ,Fk, then clearly

min
1�i�m

ai,l < 0, l = 1, . . . , k.

Consider now composition maps of the Strang splittingψh,2 given by (4) (or with the roles of the flows
ϕ

[A]
h andϕ

[B]
h interchanged), i.e.,

ψh = ψβmh,2 ◦ ψβm−1h,2 ◦ · · · ◦ ψβ1h,2 ◦ ψβ0h,2. (39)

The series of differential operatorsSh associated with the integratorψh,2, i.e., such thatg ◦ ψh,2 = Sh[g],
can be written asSh = exp(Xh), whereXh = hX1 + h3X3 + h5X5 + · · · , X1 = F and

Ψh = exp(Xβ0h)exp(Xβ1h) · · ·exp(Xβm−1h)exp(Xβmh).

Now, by repeated application of the BCH formula,

Ψh = exp
(
hf1,1X1 + h3f3,1X3 +O(

h4
))

,

where

f1,1 =
m∑

i=0

βi, f3,1 =
m∑

i=0

β3
i .

Thereforef1,1 = 1,f3,1 = 0 are necessary conditions forψh to be of orderp � 3. In fact, sincef2,1 = 0 in
this case, they are also the conditions to be satisfied byψh to have effective orderp = 3 and the following
theorem can be established.

Theorem 5. If p is any positive integer such thatp � 3 andψh,2 is the Strang splitting(or Störmer/Verlet
scheme) (4), then at least two consecutive coefficientsai , bi have to be negative in the composition(39)
(when it is expressed in terms of the basic flowsϕ

[A]
h , ϕ

[B]
h ) if ψh is of order, or effective order,p. Even

more, at least two coefficientsai1, ai2 have to be negative.

Proof. By substituting in (39) the expression of the basic methodψβih,2 = ϕ
[A]
βih/2◦ϕ

[B]
βih

◦ϕ
[A]
βih/2, we obtain

a composition of the type (5) with

bi = βi, ai = 1

2
(βi + βi−1), i = 1, . . . ,m, (40)



34 S. Blanes, F. Casas / Applied Numerical Mathematics 54 (2005) 23–37

if β0 = βm = 0. It is immediate to check that if there exists one negative coefficient, sayβj < 0, 1� j �
m − 1, and

|βj | > βj−1, (41)

thenaj < 0, bj < 0, whereas if

|βj | > βj+1, (42)

then bj < 0, aj+1 < 0. In other words, as soon as one of theβi is negative and its absolute value is
higher than the previous one or the next one then the corresponding composition (5) has, at least, two
consecutive coefficients which are negative.

Let us analyse the different possibilities arising from the order conditionf3,1 = 0.
(i) First, suppose there exists only one negative coefficientβj < 0, 1� j � m − 1. Then

βj = −
(∑

i �=j

β3
i

)1/3

and both conditions (41) and (42) are satisfied so that, according to the previous discussion,aj < 0,
bj < 0 andaj+1 < 0.

(ii) Suppose now that there arek � 2 negative coefficients,βj1, βj2, . . . , βjk
< 0 such that they do not

satisfy conditions (41) and (42). Observe that they cannot be consecutive, otherwise either (41) or (42)
are satisfied. Then we can write conditionf3,1 = 0 as

βjk
= −

((
β3

j1−1 + β3
j1

) + · · · + (
β3

jk−1−1 + β3
jk−1

) +
∑′

β3
i

)1/3
,

where
∑′ contains the remaining terms, includingβjk−1 and βjk+1. Since β3

ji−1 + β3
ji

> 0, i =
1, . . . , k − 1, thenβjk−1 < |βjk

|, βjk+1 < |βjk
|, conditions (41) and (42) are in fact satisfied byβjk

and
thereforebj1, . . . , bjk−1, ajk

, bjk
, ajk+1 < 0.

(iii) Finally, consider the case in whichβj1, βj2, . . . , βjk
< 0 (k � 2) and only one of the coefficients

βji
, i = 1, . . . , k, satisfies either (41) or (42). For instance, suppose thatβj1 is such that|βj1| > βj1−1 (and

thereforeaj1 < 0). Then, conditionf3,1 = 0 can be expressed as(
β3

j1
+ β3

j1+1

) +
∑

i �=j1,j1+1

β3
i = 0,

butβ3
j1

+ β3
j1+1 > 0, since (42) is not satisfied byβj1, so that(

β3
j2

+ β3
j2+1

) + · · · + (
β3

jk
+ β3

jk+1

) +
∑′

β3
i < 0,

where, as before,
∑′ contains the remaining (positive) terms. In consequence, there must exist some

2� i � k such thatβ3
ji

+ β3
ji+1 < 0. Therefore we have at leastbj1, . . . , bjk

< 0 andaj1, aji+1 < 0.
If βj1 satisfies (42) instead, a similar strategy applies and the same conclusion follows.�
This result, together with the discussion of Section 2 justifies why it is so frequent that at least two

consecutive coefficients are negative.
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5. Composition methods with all coefficients being positive

Let us consider now the second order differential equation

y ′′ = g(y), (43)

which can be written in the form (1) by takingx ≡ (x1, x2) = (y, y ′) and fA(x) = (x2,0), fB(x) =
(0, g(x1)), or equivalently

FA ≡ x2
∂

∂x1
, FB ≡ g(x1)

∂

∂x2
.

This equation frequently appears in relevant problems arising in classical and quantum mechanics: there
the operatorFA is related to the kinetic energy (quadratic in momenta) andFB is associated with the po-
tential energy. Now the flow corresponding toFC ≡ [FB, [FA,FB]] is explicitly and exactly computable
and, in addition,[FB,FC] = 0, so that it makes sense to compute the 1-flowϕ

[B,C]
bh,ch3 associated with the

vector fieldhbFB + ch3FC and include it into the composition (5):

ψh = ϕ
[B,C]
bmh,cmh3 ◦ ϕ

[A]
amh ◦ · · · ◦ ϕ

[B,C]
b1h,c1h

3 ◦ ϕ
[A]
a1h

. (44)

In this caseψh cannot always be written as the composition of a first order scheme and its adjoint, and
Theorem 2 does not necessarily apply. For instance

ψh = ϕ
[B]
h/6 ◦ ϕ

[A]
h/2 ◦ ϕ

[B,C]
2h/3,h3/72

◦ ϕ
[A]
h/2 ◦ ϕ

[B]
h/6 (45)

is a method of order four [11] and

ψh = ϕ
[A]
h/2 ◦ ϕ

[B,C]
h,h3/24

◦ ϕ
[A]
h/2 (46)

is a method of effective order four [19]. In the last case we can writeψh = χ∗
h/2 ◦χh/2 with χh ≡ ϕ

[B,C]
h,h3/6

◦
ϕ

[A]
h . However, if we analyse the corresponding operator exp(Xh) = exp(hX1 +h2X2 +h3X3 +· · ·) asso-

ciated withχh, we find thatX3 = [X1,X2]/6. ThenX3 is not an independent element and its contribution
can be cancelled with a proper choice of the mapπh, thus giving a fourth-order method.

Numerical experiments suggest that this is the highest order one can get with the composition (44)
with positive coefficients and a rigorous proof is at present under investigation. However, methods of
effective order six as well as of order six are known to exist with all coefficientsbi being positive.

On the other hand, if we consider a Hamiltonian system of the form

H = T (p) + V (q),

with T quadratic inp and V (q) a polynomial function up to degree four inq (or, in general, if
g(y) is a polynomial function up to degree three), thenFE ≡ [FA, [FA, [FA, [FA,FB]]]] vanish or de-
pends only on the momenta, i.e.,[FA,FE] = 0, and its flow can be computed exactly. In addition
FD ≡ [FB, [FB, [FA, [FA,FB]]]] depends only on the coordinates and thus[FB,FD] = 0. Thus one may
consider composition maps involving the 1-flowsϕ

[A,E]
ah,eh5, ϕ

[B,C,D]
bh,ch3,dh5 corresponding to the vector fields

haFA + eh5FE andhbFB + ch3FC + dh5FD, respectively. In particular, the generalised leapfrog split-
ting scheme

ψh = ϕ
[A,E]
h/2,eh5 ◦ ϕ

[B,C,D]
h,ch3,dh5 ◦ ϕ

[A,E]
h/2,eh5, (47)
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with c = 1
24, d = 1

1440, e = 1
2880 is a method of effective order six, since these coefficients satisfy the

kernel conditions collected in [2] up to this order.
We should recall that methods (45)–(47) are particular examples of composition schemes involving

only positive coefficients. The possible existence of other families of composition methods of order
p � 3 with positive coefficients is, at the time being, an open question of great interest, for instance, in
the numerical integration of nonreversible systems.
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