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Abstract. We consider adaptive geometric integrators for the numerical integration of Hamil-
tonian systems with greatly varying time scales. A time regularization is considered using either the
Sundman or the Poincaré transformation. In the latter case, this gives a new Hamiltonian which
is usually separable, but with one of the parts not always exactly solvable. This system can be
numerically integrated with a splitting scheme where each part can be computed using a symplec-
tic implicit or explicit method, preserving the qualitative properties of the exact solution. In this
case, a backward error analysis for the numerical integration is presented. For a one-dimensional
near singular problem, this analysis reveals a strong dependence of the performance of the method
with the choice of the monitor function g, which is also observed when using other symmetric
nonsymplectic integrators. We also show how this dependence greatly increases with the order of the
numerical integrator used. The optimal choice corresponds to the function g, which nearly preserves
the scaling invariance of the system. Numerical examples supporting this result are presented. In
some cases a canonical transformation can also be considered, making the system more regular or
easy to compute, and this is also illustrated with some examples.
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1. Introduction. When solving Hamiltonian systems of ordinary differential
equations, certain qualitative properties of the evolution are important, and symplec-
tic integrators have largely shown during the last decade to be superior to standard
integrators [36, 10, 20] when used with constant time step. In contrast, adaptive vari-
able time step methods are often superior to fixed time step methods when applied to
problems with varying evolutionary time scales. They lead to more regular problems
with reduced local errors and with the effects of rounding error minimized. The re-
sults presented in the paper [8] demonstrate that adaptive methods can be especially
effective when the underlying problem has a scaling structure. However, adaptive and
symplectic methods have tended to sit uncomfortably together, with adaptivity often
corrupting the powerful long time error estimates obtained for fixed time step sym-
plectic methods [36]. Attempts to rectify this problem, which we will describe, have
tended to result in either complex and hard to use algorithms or low order methods. It
is also not clear in many of these methods what choice should be made of the adaptive
procedure, and how this choice affects the performance of a numerical integrator of a
given order. We present in this paper a technique for identifying a natural adaptive
procedure based upon identifying the evolutionary scalings of the system, and then
implementing this, using a combination of a Sundman and a Poincaré transform, for

∗Received by the editors October, 28, 2002; accepted for publication (in revised form) December,
31, 2003; published electronically March 11, 2005. The work of both authors has been partially
supported by the TMR program through grant EC-12334303730.

http://www.siam.org/journals/sisc/26-4/41663.html
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Hamiltonian problems. This procedure gives the smallest error in the Hamiltonian
over a class of adaptive methods for both problems with an exact scaling law and
for others where the scaling law applies approximately at points where the solution
is changing most rapidly. If the transformed problem is separable with each part
exactly solvable (or accurately and efficiently approximated using explicit or implicit
symplectic integrators) then applying splitting methods leads to adaptive, symplectic
methods of arbitrary order, which are also invariant under changes of scale. In ad-
dition, backward error analysis can be applied to analyze these methods and gives a
valuable insight about the importance of the choice of the monitor function for the
performance of a method.

Finally, in some cases it is possible to consider a canonical transformation (CT)
such that the rescaled system turns into a system which is more regular and easy
or cheap to compute, and this allows an improvement of the performance of the
integrator. This is always possible for the one-dimensional problem, but only in some
cases at higher dimensions, an important case being the Levi–Civita (LC) and a
generalization to it [2, 24, 38].

1.1. Symplectic methods. Given the Hamiltonian H(q,p), an nth order sym-
plectic integrator (SI) used with a fixed time step h solves a discrete system which
corresponds exactly (up to exponentially small terms in h) to the solutions of a per-
turbed Hamiltonian system with constant Hamiltonian H(q,p) + δH(q,p, h), where
δH = O(hn). If δH is small enough, we can expect that both systems will share
the same qualitative properties. This observation explains, in part, the success of
symplectic methods and their wide use in simulating Hamiltonian systems. Since the
appearance of the papers by Creutz and Gocksch [16], Yoshida [44], and Suzuki [40],
considerable effort has been put into obtaining more efficient, explicit, constant time
step symplectic integrators [30]. Particularly interesting are: symplectic partitioned
Runge–Kutta (PRK) methods [28, 3, 6] for separable systems like H = T (p) + V (q);
symplectic Runge–Kutta–Nyström (RKN) methods [14, 28, 5, 6] for examples where
T is quadratic in momenta; and near-integrable systems H = H0 + εH1, where both
H0 and H1 are exactly solvable or easy to approximate, and ε is a small parameter
[43, 29, 4]. Crucial to these methods is the separability of the Hamiltonian which
allows the use of explicit methods. These integrators have proved to be highly com-
petitive for each family of problems, being cheap to use (as they are explicit) and
having excellent error bounds over long integration times.

1.2. Variable time step methods. If a dynamical system can evolve either
rapidly or slowly along different regions of its trajectory, a standard technique for
optimizing the performance of an integrator is, for traditional methods, to introduce
a variable time stepping strategy into the algorithm. The choice of time step is
often dictated by an estimate of the local truncation error of the method given, for
example, by the Milne device or the Zadunaisky estimate [23]. As an example of
where such methods are needed for a Hamiltonian problem, consider the many body
problem, in which near collisions lead to rapid changes in the solution over small time
scales. Adaptivity can markedly increase the integration accuracy of a numerical
procedure over a short time scale, although it may not improve its accuracy over
long time intervals. In an attempt to overcome the latter problem, it is desirable to
combine the short term accuracy of an adaptive method with the long time accuracy
of a symplectic method. However, this synthesis of techniques has proved difficult
to achieve. When standard techniques for changing the time step were included in
a symplectic integrator, it was found [36] (see also [13, 17, 37]) that several of the
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good properties of symplectic methods were lost. These integrators still preserve
symplecticity, but now, roughly speaking, they are exactly solving a perturbed time-
dependent Hamiltonian, H(q,p)+δH̃(q,p, t). If the time step is not changed properly,
secular terms will appear, δH̃ will grow with t, and the error in energy and positions
will grow similarly to standard nonsymplectic integrators. More recently, this problem
has been reconsidered, and integrators with variable time step and nonsecular terms
have been obtained. The key behind these methods is to introduce a regularization
of the time (often by using a Sundman transformation). This technique has been
successfully used for many years in celestial mechanics for solving the Kepler problem
[42]. The drawback is that separable systems usually turn into nonseparable (or not
easily separable), and the highly efficient explicit methods previously mentioned can-
not be used any longer. Several alternatives have been recently considered in the
literature and some will be described in more detail in section 2.

1.3. Scaling invariance. Many Hamiltonian problems, such as the Kepler
problem, are invariant up to changes in the scale of both time and the solution. Whilst
many other systems are not exactly scaling invariant, close to (hard to compute) al-
most singular events such as near collisions are often approximately scaling invariant.
Exploiting scaling invariance through a suitably chosen adaptive time stepping strat-
egy to lead the scale invariant numerical schemes with the same scaling invariance
as the underlying equations has proved to be a very useful property for numerically
solving both partial and ordinary differential equations [1, 11, 8, 9, 33]. For certain
initial conditions, scaling invariant systems admit self-similar solutions (i.e., solutions
which map to themselves under a change of scale) which can be attractors for many
other solutions starting from more general boundary conditions. It has been shown [8]
that multi-step and Runge–Kutta integrators for scale invariant ODEs admit discrete
self-similar solutions obtained by group reductions of the discretization of the original
problem. These discrete self-similar solutions have the very desirable properties of (i)
uniformly approximating the true self-similar solution for all times, and (ii) retaining
the stability of the underlying self-similar solution and, hence, describing correctly
the asymptotic evolution of the whole ODE system. In a sense, such performance
of an adaptive method is optimal for this particular class of solutions. The principal
drawback of the methods implemented in [8] is that they involve enlarging the original
system, they can be implicit, and they are not necessarily symplectic. Furthermore,
there are many problems which are unchanged under scaling but which posses solu-
tions which are not self-similar. A good example is the Kepler problem, which admits
nonself-similar periodic solutions which can be transformed into other periodic so-
lutions through the action of Kepler’s third law. However, if the periodic orbit has
high eccentricity with close approaches to the central body, then as it approaches, the
natural time scale for its evolution is closely linked to its spatial position. Scaling can
guide the correct choice of our adaptive method in this case.

When it is possible to combine both the scaling and the Hamiltonian structure of
the original problem into a numerical integrator, we end up with an integrator which
keeps the good behavior for long integration times, has the benefits of a variable time
step algorithm, and can accept scaling invariant solution with a constant relative
error. The construction and analysis of these is the objective of this paper.

1.4. An example. All of the above discussion, and indeed the remainder of this
paper, can be both summarized and motivated through the following example. As
remarked above, we hope to achieve, by combining adaptive and symplectic splitting
methods with a choice of time step based on scaling invariance, a method which
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Fig. 1.1. Evolution of the error in energy for the Hamiltonian (1.1) in a log− log scale using
different integrators. The time step and tolerances are chosen such that all methods require approx-
imately the same number of force evaluations. For a better illustration, SI has been computed with
twice the number of evaluations.

is accurate on both short and long time scales. A problem in which all of these
features are desirable is the Kepler problem, which possesses periodic orbits with close
approaches. Such an orbit with a small angular momentum has a radial coordinate q
with associated momentum p which evolves according to the Hamiltonian

H =
1

2
p2 − 1

q
+

ε

q2
,(1.1)

where
√
ε is the angular momentum. We now integrate this system, taking as initial

conditions (q0, p0) = (1, 0), in the case of ε = 0.1 over 40 periods using four different
methods, namely, the Matlab integrators ode45 and ode113, an explicit sixth order
RKN symplectic method with constant time step (SI), and the same method included
as part of an adaptive integrator in which a scale invariant time transformation is
employed (ASI). In each case the step size of each method was chosen so that ap-
proximately the same number of force evaluations was made during the integration.
Since the value of H is constant, we compute its numerical value at each step and
measure its relative error with respect to the original value. Figure 1.1 shows the
results obtained, which neatly illustrates all that we have said. The adaptive, non-
symplectic methods outperform the classical symplectic integrator SI over the initial
integration period, but both have errors that grow linearly, which is not the case of
the symplectic integrator (some jumps in the error of the energy are observed at each
close approach, but this error oscillates at a larger scale and is bounded above). The
adaptive symplectic method outperforms all of them, having low errors initially which
hardly grow at all during the integration. More details of this example, together with
other calculations, are given in section 4.

1.5. Summary. The remainder of this paper is set out as follows. The class
of (scale invariant) Hamiltonian problems to be studied is presented in section 2. In
section 3 we derive an optimal scaling function for those problems which are exactly
scaling invariant. In section 4 we consider problems with one degree of freedom which
may be approximately scaling invariant. Using backward error analysis we determine
the optimal rescaling of the problem leading to the lowest energy error for a given



ADAPTIVE GEOMETRIC INTEGRATORS USING SCALE INVARIANCE 1093

computational cost. Section 5 reviews the LC and KS transformations in two and
three dimensions, respectively. This is generalized to the Lennard–Jones potential,
making the resulting Hamiltonian system scaling invariant and separable. The new
method is numerically tested in section 6 and the effects of scaling determined in this
case.

2. Adaptive and symplectic methods for Hamiltonian problems.

2.1. The Sundman and Poincaré regularizations. Let us consider the
Hamiltonian

H = T (q,p) + V (q) =
1

2
pTM(q)p + V (q)(2.1)

with q = (q1, . . . , qk)
T , p = (p1, . . . , pk)

T , and M a diagonal matrix, which at this
stage we consider the identity M = I. A standard a priori adaptive technique for
an ODE integration method is based on a time regularization so that the solution
evolves on a fictive time τ used for all computations. Ideally, rapid variations in t
should correspond to moderate variations in τ . This fictive time is introduced through
the ordinary differential equation defining a Sundman transformation [25]

dt

dτ
= g(q,p).(2.2)

Here g is a positive scalar function taken to be small if the solution is evolving rapidly.
For this section we consider the scaling function g to be arbitrary. In sections 3 and
4 we show how considerations of scale invariance allow it to be determined. This
transformation leads to the system

dp

dτ
= −g∇qH = −g∇qV,

dq

dτ
= g∇pH = gp.(2.3)

In general, this system is no longer Hamiltonian. To recover a Hamiltonian structure
we introduce two new conjugate coordinates,1 qt = H(q0,p0) and pt = t, which
satisfy the differential equations

dqt

dτ
= 0 and

dpt

dτ
= g.

The whole system (q, qt,p, pt) then evolves in the fictive time, τ , and is Hamiltonian
with Hamiltonian function

K = g(q,p)(H(q,p) − qt).(2.4)

K remains constant at its initial value of 0 throughout time. As g is positive, this
implies that H(q, p)−qt = H(q, p)−H(q0, p0) also remains zero. Therefore, the origi-
nal Hamiltonian is conserved. The extended system of ordinary differential equations
that we now require to be solved is

dq

dτ
= gp + ∇pg(H − qt),

dqt

dτ
= 0,

(2.5)
dp

dτ
= −g∇qV −∇qg(H − qt),

dpt

dτ
= g.

1In the literature it is usual to take qt = t and pt = −H(q0,p0), but to get a more natural
splitting of the extended Hamiltonian, in this paper we prefer to consider pt as the time.
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This system is a Poincaré transformation of the original [19, 35, 42]. We know that
H−qt = 0 for the exact solution, but this is not necessarily the case for the numerical
integrators, and for this reason this term is not removed in (2.5).

2.2. Hamiltonian problem and symplectic methods. Let us consider (2.1)
with M(q) = g(q)I, which has the same structure as (2.4) if g depends only on
coordinates. If Ĥ is the Lie operator associated to the Hamiltonian2 and t is the time,

the Lie transformation, e−tĤ , acting on (q,p) gives the evolution, which is a canonical
or symplectic transformation. Suppose that T and V are both exactly solvable; the
second order explicit, symmetric, and symplectic Störmer/leapfrog/Verlet method,
for one time step h, is

S2(h) = e−
h
2 V̂ e−hT̂ e−

h
2 V̂ = e−hĤ + O(h3)(2.6)

giving the algorithm

pn+1/2 = pn − h

2
∇qV (qn),

(qn+1, p̄n+1/2) = Φh
T (qn,pn+1/2),(2.7)

pn+1 = p̄n+1/2 − h

2
∇qV (qn+1),

where (qn,pn) � (q(tn),p(tn)) with tn = t0 + nh, and Φh
T = e−hT̂ corresponds to

the flow associated to T . Suppose now that T is not exactly solvable, but can be
approximated by an nth-order integrator, Ψh

T = Φh
T +O(hn+1). If Ψh

T is a symmetric,
symplectic, and/or of second order, then these properties are also preserved by S2(h).

For N steps, the last computation of ∇qV (qn+1) at each step can be reused in
the next step, and only one evaluation of ∇qV per step is required. Fourth order
symplectic methods can be obtained by composition of this method [40, 44]. For
example, a well-known symmetric fourth order method is given by

S4(h) = S2(x1h)S2(x0h)S2(x1h)(2.8)

with x1 = 1/(2 − 21/3), x0 = 1 − 2x1. Higher order methods are also presented in
[44]. These methods have become very well known due to their good behavior for long
time integration and recently, a number of new splitting and composition methods
have appeared which are more efficient [30]. For Hamiltonians like (2.1), which are
quadratic in momenta, we have that {V, {V, T}} depends only on the coordinates and

{V, {V, {V, T}}} = 0. Then, if e−hT̂ is computed exactly or approximated with high
accuracy, more efficient symplectic RKN composition methods like

Φh =

k∏
i=0

e−aihT̂ e−bihV̂(2.9)

with appropriate coefficients ai, bi can be used. In addition, if in (2.9), instead of
the Lie operator associated to bihV we consider the Lie operator associated to the
most general potential bihV + cih

3{V, {V, T}}, the efficiency of the integrators can
be further improved. To illustrate the benefits of using RKN methods, in this paper

2It is defined by its action on a differentiable function, f(q,p), as Ĥf = {H, f}, {·, ·} being the
usual Poisson bracket.
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we will consider the six-stage fourth order integrator (RKN4) and the 11-stage sixth
order integrator (RKN6) presented in [6], both taking the form (2.9). Methods up
to order eight, using the processing technique and the previous general potential, are
presented in [3, 5].

2.3. Canonical transformations. We consider the case in which g depends
only on the coordinates g ≡ g(q). This is a natural condition for the central force
examples that we consider later in this paper, and at the same time the system
simplifies slightly. Then the Hamiltonian (2.4) can be written as

K = T (q,p) + V (q, qt) = g(q)
1

2
pTp + g(q)(V (q) − qt).(2.10)

The evolution due to the Hamiltonian T = g(q)pTp/2 can be very efficiently approx-
imated using implicit symplectic integrators because of its particular structure [19,
13, 12]. Then S2(h) in (2.6) is also symmetric and, by composition, higher orders can
be obtained. However, if we proceed this way, the more efficient RKN methods cannot
be used. For this reason, we believe it is interesting to study for which functions g
the evolution of T is exactly solvable. This can be considered equivalent to finding
a set of coordinates (Q,P) derived from those used in the Poincaré transformation,
so that the Hamiltonian (2.10), in the transformed coordinates, has a separable form
like H. We can then apply a splitting Nyström method, such as given in section 2.2,
to this new system.

Describing the evolution of a system using Hamiltonian equations has the ad-
vantage that q and p are independent coordinates which play symmetric roles in
the equations. This allows us to choose the most appropriate coordinates and mo-
menta to describe a particular system. In the numerical integration of separable
systems, it is important to take into account the cost of the computation associated
to each part of the Hamiltonian. If new coordinates and momenta Q, P are found,
giving a Hamiltonian that is simpler and faster to compute with, then the perfor-
mance of the integrators can improve. If the transformation (q,p) = C(Q,P) is
canonical, the Hamiltonian which describes the evolution on the new coordinates is
H(Q,P) = H(q(Q,P),p(Q,P)). The problem we then face is to find the canonical
transformations (CT’s) which transform a complicated Hamiltonian into a simpler
one, for example, one which changes a nonseparable Hamiltonian into a separable
one. For this purpose, the following theorem is very useful [18, 27].

Theorem 2.1. The transformation{
q = Φ(Q),

Φ′(Q)Tp = P,
(2.11)

where Φ is a diffeomorphism of R
2k, is canonical.

2.3.1. Example. In order to illustrate the benefits of using a CT for the numer-
ical integration of a Hamiltonian system, let us consider the Hamiltonian (1.1) with
the regularization function g = q3/2. The motivation for this particular choice will
come later when we consider scaling symmetries. Now, (2.10) takes the form

K = T (q, p) + V (q, qt) =
1

2
q3/2p2 +

(
−q1/2 +

ε

q1/2
− qtq3/2

)
,(2.12)

where both T and V are exactly solvable (the Hamiltonian H = qαpβ , with α, β
constants, is exactly solvable). However, T can be relatively expensive to compute,
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and can accumulate large errors if q is small and p large. If the same problem is
considered using new coordinates (Q,P ), related to the old coordinates through the
CT

q = Q4, p = P/(4Q3), pt = P t, qt = Qt,

the Hamiltonian to be solved is

K =
1

32
P 2 +

(
−Q2 +

ε

Q2
−QtQ6

)
.(2.13)

If a splitting method is used in (2.12), at least one square root per stage is needed.
However, if the same splitting method is applied to (2.13) no square root is required
and a smaller number of arithmetic operations is also required. The only root needed
is for starting the computation. In addition, as mentioned above, near a collision the
computation of q3/2p2 can be problematic in the accumulation of roundoff errors, and
this is avoided using (2.13). If at a given instant the output is desired in the old
coordinates, this can also be cheaply computed.

2.4. Other explicit adaptive integrators. In the following we present some
of the most important explicit adaptive integrators for Hamiltonian systems.

2.4.1. Symmetric nonsymplectic methods. Most Hamiltonian systems are
reversible, and symmetric linear one-step methods preserve this symmetry [39], and
usually show qualitative properties similar to symplectic integrators. The following
second order symmetric nonsymplectic adaptive Verlet method (adapted from the
symmetric and symplectic velocity Verlet algorithm (2.7)) is presented in [22, 7, 21]:

pn+1/2 = pn − h

2ρn
∇qV (qn),

qn+1/2 = qn +
h

2ρn
pn+1/2,

ρn+1 + ρn = 2/g(qn+1/2,pn+1/2),(2.14)

qn+1 = qn+1/2 +
h

2ρn+1
pn+1/2,

pn+1 = pn+1/2 − h

2ρn+1
∇qV (qn+1).

To start the integration one can use ρ0 = 1/g(x0) but this choice might lead to oscil-
lations in the numerically computed ρn’s, which can be avoided choosing a modified
initialization [15]. This can be considered as the basic integrator, S2(h), to build
higher order methods by composition. We must also mention that Nyström methods
for problems with quadratic kinetic energy cannot be used. In addition, choosing
the previous value for ρ0 introduces new error terms in the algorithm (backward error
analysis [15]) which cannot be canceled by composition to get methods of order higher
than four. This problem can be trivially avoided choosing as the new basic method,
S2(h), two steps of (2.14) [41].

2.4.2. Generalized logarithmic Hamiltonian methods. Suppose that for
solving the Hamiltonian problem (2.5) we consider [34]

g =
f(T (p) − qt) − f(−V (q))

H(q,p) − qt
(2.15)
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Fig. 3.1. Average error in energy in logarithmic scale in the integration of (1.1). The system is
integrated until the final real time t = 20. All integrations require, approximately, the same number
of potential evaluations for each value of γ.

with f(u) an analytic function. Observe that the apparent singularity at H = qt is
removable (take the Taylor series of f about the point −V (q) and use T (p) − qt =
H(q,p) − qt − V (q)). Since numerically T (p) − qt � −V (q), then g � f ′(−V (q)),
where f(u) has to be a function such that f ′(u) > 0, with no singularities in the
region of interest. Substituting into (2.4), the Hamiltonian to solve is

K = f(T (p) − qt) − f(−V (q))(2.16)

which is again separable, but RKN methods cannot be used. The particular case
f(u) = log(u) has been considered in [31, 32].

3. Choice of the monitor function g(u). The performance of the numerical
integrator described above is often highly dependent on the function g, and as we will
show, this dependence drastically increases with the order of the integrator. For this
reason, it is very important to have a simple criterion to find a good regularization
function for a given problem. This criterion seems to be closely related to the scaling
invariance of the dominant part of the potential in those regions where the system
evolves rapidly. We see this by looking at a particular example.

Example. We consider the Hamiltonian (1.1) with ε = 0.001 and integrate the
system using a regularization function

g(q) = qγ

(the reason for this choice will be made clear in section 3.2) for different values of
γ. We take all integrations until t = 20. The trajectories of this problem are pe-
riodic orbits with close approaches to the origin, where the particle moves rapidly
and adaptivity is necessary. To compare methods we measure the average error in the
energy (Hamiltonian) using a time step, ∆τ , such that the final time is always reached
with approximately 12000 force evaluations. Figure 3.1a shows the results obtained
with splitting RKN integrators, which solve the transformed kinetic energy T = 1

2q
γp2

exactly so that the formulae (2.6)–(2.9) can be used. In particular we consider the
second order, S2, and the fourth order, S4, methods given in (2.6) and (2.8), respec-
tively, as well as RKN4 and RKN6. We can observe very sharp minima (notice the
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logarithmic scale of the error) with a clear dependence on the order of the method.
We repeat the same experiment taking the adaptive Verlet method (2.14) as the basic
integrator S2 (EAV2), and EAV4 corresponds to the fourth order 5 stage composition
given in [40] (solid lines). To get higher order methods we take as S2 two steps of
(2.14) (EAV4m and EAV6m). The sixth order method EAV6m uses the symmetric
composition with nine steps of S2 given in [28]. Figure 3.1b shows the results obtained,
and we can also observe that for both families of methods (broken and solid lines) the
curves turn sharper with the order. It is clear that to obtain accurate results it is very
important to choose γ carefully. Comparing the results of S4 and RKN4 in the left
figure, we can also appreciate the benefits of using a Nyström method versus a more
general integrator. To compare the performance between methods in Figures 3.1a and
3.1b, it is necessary to consider the values of γ chosen as well as the computational
cost, and this is highly problem dependent. If the cost for the computation of the
evolution of T is expensive, the EAV methods can be superior for a range of values
of γ.

The optimal value of γ as seen in these graphs is quite different from γ = 0
(constant time step), γ = 1 (the Levi–Civita scaling), or γ = 2 (constant angle), but
lies close to the scale invariant value of γ = 1.5. In addition, we observe that for each
family of methods, the minimum approaches this value when increasing the order. In
section 4 we return to give a more detailed analysis of this example using backward
error analysis for the splitting and symplectic methods, and show that γ → 1.5 as
the order of the method increases. We now consider two systematic approaches for
finding g.

3.1. Computational cost and backward error analysis. A reasonable con-
dition on the choice of g is that the average error in the computation of the Hamilto-
nian should be minimized for a given computational cost. An application of backward
error analysis [20] implies that a symplectic integrator for a Hamiltonian system with
Hamiltonian K used with a fixed time step, ∆τ , solves a discrete system which corre-
sponds exactly (up to exponentially small terms in ∆τ) to the solutions of a perturbed
Hamiltonian system K+∆τK2 +∆τ2K3 + · · · . If the integrator is a splitting method
(with the evolution due to T exactly computed), the functions Ki are linear combi-
nations of nested commutators of the parts of the Hamiltonian [44]. In particular we
have that

K2 = k21{T, V }, K3 = k31{V, {V, T}} + k32{T, {V, T}} . . . ,
where the coefficients kij depend only on the particular integrator used. For instance,
kij = 0, i = 2, . . . , n, j = 1, . . . if the integrator is of order n. For simplicity, let us

consider the one-dimensional problem with T = 1
2g(q)p

2 and V = g(q)(Ṽ (q) − qt),
then

K2 = k21gV
′p, K3 = k31g(V

′)2 − k32

2
g(V ′g′ + 2gV ′′)p2, . . . .

To obtain a realistic error analysis we look at the error in the unscaled Hamiltonian H,
where, up to a constant, H = K/g. Thus, H is perturbed to H+∆τH2+∆τ2H3+ · · ·
where Hi = Ki/g. We aim to choose the scaling function g for an nth-order method
so that the average of ∆τnHn+1 over an orbit is minimized for a fixed computational
cost. In general, this calculation will be very hard, and more detailed information on
the problem is needed to find the optimal g. However, for certain problems with a
scaling structure we can make estimates for the size of each term to guide the choice
of g. This we do in section 4.3.
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3.2. Scale invariance. A second motivation of our choice of the function g is
the phenomenon of scale invariance. Adaptive methods for scale invariant problems,
which themselves inherit the invariance, shadow self-similar solutions with a uniform
error and inherit any conservation properties of the original problem which are linked
to symmetries. Moreover, it is relatively easy to identify functions g(q) which lead to
scale invariant discretizations. Suppose that we consider the (not necessarily Hamil-
tonian) ODE system dui/dt = fi(u1, . . . , uN ), i = 1, . . . , N. This system is scale
invariant if it remains unchanged under the transformation

t → λt, ui → λαiui,(3.1)

where λ > 0 is an arbitrary real number and the αi depend on the problem. A
solution of such a system is self-similar if ui(λt) = λαiui(t). Such solutions have the
general form ui = tαivi, where the constants vi satisfy an algebraic equation. The
Kepler problem admits (both regular and singular) self-similar solutions with zero
angular momentum, as well as nonself-similar periodic solutions with nonzero angular
momentum. Applying the Sundman transformation to this system, we have

dt/dτ = g(u) and dui/dτ = g(u)fi(u).

Unless g is chosen appropriately, this system is no longer scale invariant. However,
with a careful choice of g we can construct a system which has the desirable property
that two solutions mapped into each other by the scaling relation (3.1) evolve at the
same fictive time. This is a desirable property for an adaptive method which can
use a constant step size ∆τ for two solutions evolving on different spatial scales. To
achieve scale invariance the function g must satisfy the functional equation

g(λα1u1, λ
α2u2, . . . , λ

αNuN ) = λg(u1, u2, . . . , uN ).(3.2)

In general, functions g(u) which satisfy such scaling laws are either multi-variable
polynomials or are functions of groupings of the variables ui which scale in a similar
manner. For the two-dimensional Kepler problem (V = −1/r with r = (q2

1 + q2
2)1/2

in (2.1)) we have g(q) = r3/2.

Suppose that we now discretize the transformed system with a multi-step or
Runge–Kutta method with a constant step size ∆τ , so that Un

i ≈ ui(n∆τ) is a discrete
approximation of u(τ) at time tn. If the underlying ODE admits a self-similar solution
then the following result is proved in [8].

Theorem 3.1. (i) If ∆τ is sufficiently small, then the discrete problem admits a
discrete self-similar solution of the form Un

i = zαinVi, tn = zn;

(ii) if u(t) is the true self-similar solution, then ‖Un
i − ui(tn)‖ = ui(tn)(1 +

O(∆τp)), where the implied constant in the order relationship does not depend upon
n;

(iii) if the true self-similar solution is an attractor, then so is the discrete self-
similar solution.

This theorem applies only for problems which are scale invariant. In practice most
problems arising in applications are not truly scale invariant, but are approximately so
(for example, close to a collision). This is true for the Hamiltonian (1.1) when ε �= 0.
In this case the choice of g(u) may not be optimal, but should still give reasonable
results, and we explore this in the next section.



1100 S. BLANES AND C. J. BUDD

4. Regularization and error analysis for problems with one degree of
freedom.

4.1. Preserving scaling invariance for the one-dimensional problem.
Suppose that the Hamiltonian equations obtained from (2.1) are invariant under a
linear scaling

(t, q, p) → (λt, λα1q, λα2p).(4.1)

This then leads to certain restrictions on the scaling function g(q). We consider this
question in the context of a central force type of equation. Suppose the potential is
given by V (q) = C/qr. Then the Hamiltonian equations are invariant when

(α1, α2) =

(
2

2 + r
,

−r

2 + r

)
.(4.2)

Consider that the scaling type regularization function, g(q) = qγ , has been in-
troduced and the phase space enlarged with (qt, pt). The Hamiltonian (2.10) for the
extended system is now

K(p, q, pt, qt) =
1

2
g(q)p2 + g(q)(V (q) − qt) =

1

2
qγp2 + Cqγ−r − qtqγ ,(4.3)

and the corresponding differential equations are

dq

dτ
= qγp,

dqt

dτ
= 0,

(4.4)
dp

dτ
= −γ

2
p2qγ−1 − (γ − r)Cqγ−r−1 + γqtqγ−1,

dpt

dτ
= qγ .

Now consider the scalings of this transformed equation of the form (q, qt, p, pt, τ)→
(λβ1q, λβ2qt, λβ3p, λβ4pt, λβ5τ). As the original system is scale invariant it is impor-
tant that the transformed system should also have this property. Furthermore, we
require that all solutions, at all scales, should evolve with the same fictive time, so
that β5 = 0. This is the phenomenon of scaling invariance described in section 3.2,
i.e., the numerical method should perform equally well at all scales. Inspection of
the equation for dq/dτ shows that β3 = (1 − γ)β1. Making this substitution in the
equation for dp/dτ implies that we have scale invariance only if

γ = γsc ≡ 1 + r/2,(4.5)

so that γsc = 3/2 if r = 1.

4.2. Example. We consider again the one-dimensional Hamiltonian

H =
1

2
p2 − 1

qr
+

ε

qs
(4.6)

with s > r and ε ≥ 0. If H < 0 and ε > 0, then the solution is bounded and periodic,
and it has very close approaches to the origin when ε 
 1. If ε = 0 and H ≤ 0, then
q → 0 and |p| → ∞ in a finite time T . In either case the solution evolves on small time
scales and, hence, small time steps must be used for these parts of the motion, whilst
longer time steps are desirable when q is not small. Taking g = qγ , the Hamiltonian
to be solved becomes

K =
1

2
qγp2 − qγ−r + εqγ−s − qtqγ .(4.7)
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When ε = 0 the differential equations derived from this Hamiltonian are exactly in-
variant under the change of scale given by (4.1) and (4.2). There is an exact (singular)
self-similar solution of the form

q(t) = C(T − t)α, p(t) = Cα(T − t)α−1,(4.8)

where α = 2/(r + 2), C = (2/α2)1/(r+2), which acts as an attractor [8]. Here T is a
finite time at which the singularity occurs. In this case a scale invariant numerical
method with γ = γsc is a natural choice for integrating the differential equation.

If ε > 0, then the differential equations are not precisely invariant under this
change of scale, but are close to being so provided that q > ε1/(s−r), and in this case
the corresponding solutions are close to the self-similar solution.

4.3. Error analysis. We now combine the backward error analysis of section
3.1 with the scaling ideas to give an explanation of the distinctive form of the graphs
in Figure 3.1a, and to estimate the average energy error given a fixed computational
cost for the more general Hamiltonian (4.6).

Suppose that we consider a periodic orbit with initial values of (q, p) = (1, 0) so
that H = ε − 1. If ε > 0 is small, then the orbit has a close approach so that the
minimum value of q is given by qmin ≈ ε1/(s−r) with d2q/dt2 ≈ 1/ε(r+1)/(s−r) at this
point. Similarly, the maximum value of p is given by pmax ≈ ε−r/2(s−r) and occurs
when q = q∗ = (sε/r)1/(s−r). Thus this orbit is close to being singular at this point.
We identify two regions of the orbit, the outer region in which q > q∗ and |p| increases
to pmax and an inner region in which qmin < q < qmax and 0 < |p| < pmax. A simple
estimate, using the approximation of d2q/dt2, implies that the time scale T2 of the
inner region is proportional to

T2 = C(s, r)ε(r+2)/2(s−r), with C(s, r) =

((
s
r

)1/(s−r) − 1

s− r

)1/2

,(4.9)

but for simplicity we will consider T2 = ε(r+2)/2(s−r). Using the scaling function
g = qγ , the time step ∆t selected for this part of the motion (over which the scaling
symmetry of the problem does not apply, as 1/qr is comparable to ε/qs) is approxi-
mately uniform at ∆t ≈ εγ/(s−r)∆τ . The outer region exists for times increasing from
zero until the time T − T2 close to the collapse time T for the unperturbed problem.
The equation is close to being scaling invariant in the outer region, and the solution
lies close to the singular self-similar solution (4.8) for which p2 = 2/qr. From the
previous analysis we know that this self-similar solution is approximated optimally
well if we use a scale invariant discretization in this region. If a monitor function of
the form g = qγ is used, then the following heuristic argument explains the errors that
we observe. If γ is too small, then too large, a time step is chosen and the motion
in the inner region is poorly approximated, leading to large errors. Conversely, if γ
is too large, then a small time step is chosen and a large number of calculations are
made in the inner region. If the overall computational cost is to be held constant,
then fewer calculations are made in the outer region and the error here is large. It is
only when it is close to the scaling invariance value that we achieve the right balance
between computational cost and accuracy. We now show that for the transformed
symplectic methods the optimal value is

γ � r + 2

2
+

r − 2

2n
= γsc +

r − 2

2n
,(4.10)
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Fig. 4.1. Top figures: Plots of t versus computational time τ , for r = 1, s = 2, ε = 0.001,
N = 60, and γ = 1, 1.5, 1.8. The vertical lines separate the inner from the outer regions. Medium
and bottom figures: Rescaled trajectories in the q − p and Q− P phase spaces.

where n is the order of the method.

Computational cost. We presume that all calculations are made in the compu-
tational τ space and that ∆τ is uniform, and we make N calculations overall (with
one computation per computation time-step). A computational time τ1 is spent in
the outer region and a time τ2 in the inner region. This is illustrated by Figure 4.1,
where we present how the true time varies as a function of the computational time
for r = 1, s = 2, ε = 0.001, and γ = 1, 1.5, 1.8, taking N = 60.

The true time T2 spent in the inner region is proportional to ε(r+2)/2(s−r) so that,
as g(q) ≈ εγ/(s−r) in this region, we have

τ2 = O(ε(1+ r
2−γ)/(s−r)).(4.11)

Note that τ2 is small if γ < 1 + r
2 and large if γ > 1 + r

2 . In the outer region q(t)

approximates the self-similar solution which is proportional to (T − t)2/(2+r) close
to the point of singularity. We can make an order of magnitude estimate of τ1 by
assuming that the true time interval for the outer region is given by t ∈ [0, T −
ε(1+r/2)/(s−r)]. From the identity dt/dτ = g(u) we have that

τ1 ≈
∫ T−ε(1+r/2)/(s−r)

0

(T − t)−2γ/(2+r)dt =




O(1) if γ < 1 +
r

2
,

O(log(ε)) if γ = 1 +
r

2
,

O(ε(1+ r
2−γ)/(s−r)) if γ > 1 +

r

2
.

As N calculations are made in the computational time space, we have ∆τ = (τ1 +
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τ2)/N , so that

∆τ = O(1/N) if γ < 1 +
r

2
,

∆τ = O(log(ε)/N) if γ = 1 +
r

2
,

∆τ = O(ε(1+ r
2−γ)/(s−r)/N) if γ > 1 +

r

2
.

(4.12)

Backward error analysis. We can now apply the backward error analysis of section
3.1 by making estimates of the terms Hi for the orbit we are considering. Here the
scaling structure of the problem works strongly to our advantage as the various dom-
inant commutator terms involved in Hi all scale in a similar manner and the precise
values of the coefficients kij do not matter. In particular we have that T = qγp2/2
and V = −qγ−r + εqγ−s − qtqγ . As we are interested in the dominant contributions
to the error, expressions involving qtqγ can be neglected so that the dominant terms
in H2 take the form pqγ−r−1, εpqγ−s−1, the dominant terms in H3 take the form
q2γ−2r−2, p2q2γ−r−2, εq2γ−r−s−2, εp2q2γ−s−2, and ε2q2γ−2s−2, etc. In the inner re-
gion, p is bounded above by ε−r/(2(s−r)) and q is bounded below by ε1/(s−r). Thus, all
dominant terms in Hi scale in the same way with H2 bounded by ε(γ−1−3r/2)/(s−r),
H3 by ε2(γ−1−2r)/(s−r), H4 by ε3(γ−1−5r/2)/(s−r), etc. Continuing this calculation
inductively, it follows that in the inner region

Hi+1 < Cε[i(γ−1−r/2)−r]/(s−r).(4.13)

In the outer region we exploit the fact that ε is small and that (q, p) are close to the
self-similar solution (4.8). Again, all terms scale similarly and we have

Hi+1 ∼ (T − t)[i(γ−1−r/2)−r]/(1+r/2).(4.14)

Using (4.13) and (4.14) we may now determine the average contribution, E, to the
error over one period for a method of order n. This is given by combining the estimate
over the inner and outer regions so that

E = ∆τn
∫ T

0

Hn+1(t)dt � ∆τn
∫ T

T−ε(r+2)/2(s−r)

Cε
1

s−r [n(γ−1− r
2 )−r]dt

(4.15)

+ ∆τn
∫ T−ε(r+2)/2(s−r)

0

(T − t)[n(γ−1− r
2 )−r]/(1+r/2)dt

and so

E = Cε
1

s−r [n(γ−1− r
2 )+1− r

2 ]∆τn +

{
O(ε

1
s−r [n(γ−1− r

2 )+1− r
2 ]∆τn) if γ < γ∗,

O(∆τn) if γ > γ∗.
(4.16)

Here γ∗ is the critical exponent for which both [n(γ− 1− r
2 )− r]/(1 + r/2) = −1 and

1
r [n(γ − 1 − r

2 ) + 1 − r
2 ] = 0 so that γ∗ is given by (4.10).

The value of ∆τ above depends upon γ from the previous analysis, so that ∆τ is
O(1/N) if γ < 1 + r/2 and ∆τ is O(ε(1+ r

2−γ)/(s−r)/N) if γ > 1 + r/2. Substituting
these estimates into (4.16) and extracting the dominant error contribution, we have
that

E =

{
O(ε

1
s−r [n(γ−1−r/2)+1−r/2]/Nn) if γ < γ∗,

O(ε
1

s−r [n(1+r/2−γ)+1−r/2]/Nn) if γ∗ < γ.
(4.17)
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Fig. 4.2. Average error in energy in logarithmic scale in the integration of (4.6). The system
is integrated until the final real time t = 20 for r = 1, s = 2 (left column), and until t = 10 for
r = 6, s = 12 (right column). For each particular value of ε all integrations require, approximately,
the same number of force evaluations.

Thus E has a minimum at γ = γ∗ and it is clear that γ∗ approaches the scaling
invariant value of 1 + r

2 as n → ∞.

Numerical experiments. In the limit ε → 0 the evolution of the orbit becomes more
nearly singular and we can study whether the choice (4.10), which nearly preserves
scaling invariance in the fictive time, approaches the numerically observed optimal
value. To find the optimal choice of γ numerically, we consider problems with ε =
0.1, 0.01, 0.001, 0.0001, and a range of values of γ, on the following two cases.

Case 1: The Kepler problem (r = 1, s = 2). We integrated the system until
t = 20 for different values of γ and measured the average error in energy using a time
step, ∆τ , such that the final time, t = 20, is reached in approximately 1000(ε = 0.1),
1500(ε = 0.01), 3000(ε = 0.001), and 5000(ε = 0.0001) steps, respectively. The fourth
order RKN4 integrator is used for the numerical experiments. The results obtained
are presented in the left column of Figure 4.2 (which is similar to Figure 3.1a).

Case 2: The Lennard–Jones potential (r = 6, s = 12). In this case, we integrated
until t = 10 using, approximately, 500(ε = 0.1), 1000(ε = 0.01), 2000(ε = 0.001), and
3000(ε = 0.0001) steps, respectively. See the right column of Figure 4.2.

The error formula (4.17) describes certain features of the graphs in Figures 3.1a
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Fig. 4.3. Same as Figure 4.2 for ε = 0.01 and 1500 steps (broken lines) and ε = 0.0001 and
5000 steps (solid lines) for s = 1.5 and s = 3.

and 4.2. In particular, the minimum of the error when γ = γ∗ is well approximated.
In the two cases considered we have that

γ∗ =
3

2
− 1

2n
<

3

2
if r = 1, γ∗ = 4 +

2

n
> 4 if r = 6,

so that in both cases γ∗ approaches the scaling invariant values of 3/2 and 4, re-
spectively, as n increases. The results also predict that log(E) should have a linear
dependence on γ − γ∗, n, and log(ε) which is as observed. If γ > γ∗, the predicted
slope is log(E) ∼ log(ε) n

s−r (1+ r
2 −γ), which is very close to that observed. If γ < γ∗,

the slope observed is smaller. A possible explanation for this is that the approxima-
tion we used for the outer region is valid for t ∈ [T − ε̃

1
2 (1+ 2

r ), T ] with ε̃ ≥ ε. Then
log(ε) has to be changed by log(ε̃) = α log(ε) with α ≤ 1.

Notice also that the performance of the method can drastically change along small
intervals of values for γ in the monitor function, as observed from the slopes of the
curves. In addition, we have found that this slope is proportional to 1/(s − r). To
illustrate this dependence with s, in Figure 4.3 we repeat the numerical experiments
for r = 1 taking ε = 0.01 (broken lines) and ε = 0.0001 (solid lines) for s = 1.5 and
s = 3. The relative slopes are in agreement with the rate 1/(s− r), but their minima
have moved from the estimated value γ∗ = 3/2 − 1/8. However, we observed that
this value was approximated in the limit ε → 0. This is because we have neglected
C(s, r) in (4.9), where C > 1 if r < s < 2r and C < 1 if s > 2r. If we consider C =
εlogC/ log ε, the minimum obtained will depend on this exponential and its contribution
will disappear in the limit ε → 0.

4.4. The canonical transformation. The previous error analysis has used
backward error analysis and relies on the underlying method being symplectic. It
has also implicitly made the assumption that an equal computational cost is incurred
for each computational time step. In particular, this arises when we use an explicit
method for which the evolution of T = 1

2q
γp2 is exactly computed. When this hap-

pens, it must be possible to find a CT such that T in the new coordinates depends
only on the momentum. For the one-dimensional systems considered it is possible to
make the transformation. Let us consider the transformation{

Q = G(q), Qt = qt

G′(q)P = p, P t = pt.
(4.18)
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Here the function G(q) is defined via the differential equation G′(q) = 1/(a
√
g), where

a is a suitable constant. The most important feature of this transformation is that
it is canonical (from a direct application of Theorem 2.1). Consider now a rescaling
function of the form g(q) = qγ . Then taking a = 2/(2 − γ) (for simplicity in (4.18))
the CT becomes 


Q = q

2−γ
2 ,

P =
2

2 − γ
q

γ
2 p,

⇔



q = Q
2

2−γ ,

p =
2 − γ

2
Q

γ
γ−2P.

(4.19)

The Hamiltonian (4.3) in the new coordinates (evolving on the fictive time τ) is

K =
(2 − γ)2

8
P 2 + CQ

2(γ−r)
2−γ −QtQ

2γ
2−γ ,(4.20)

and if we consider γ = 1 + r/2, then

K =
(2 − r)2

32
P 2 + CQ2 −QtQ

4+2r
2−r .(4.21)

The canonical transformation then has a singularity when γ = r = 2 and this proce-
dure fails, but it can be solved with the CT: Q = log(q), P = qp, with g = q2. Observe
that the Hamiltonian is now separable in trivial parts, and explicit symplectic RKN
integrators can be used.

4.5. Other adaptive methods. The previous examples show the importance
of a good choice of scaling function g. Now, we study the benefits of using the adaptive
and splitting methods described in this paper versus other explicit adaptive geometric
(GI) and nongeometric (NGI) integrators, using related scaling functions.

(NGI). First, to show the benefits of using the adaptive symplectic methods
versus other standard adaptive nonsymplectic algorithms and symplectic integrators
with constant time step, we consider (4.6) with r = 1 and s = 2, which corresponds
to (1.1). We take as initial conditions (q0, p0) = (1, 0), ε = 0.1, and integrate until
t = 100 (40 periods, approximately). The following integrators are considered:

1. The variable time step nonsymplectic ode45 from Matlab with RelTol= 10−7

and AbsTol= 10−10 applied to (4.6) (18685 force evaluations).
2. The variable time step variable order nonsymplectic ode113 from Matlab

with RelTol= 10−10 and AbsTol= 10−12 applied to (4.6) (18361 evaluations).
3. (SI) RKN6 applied to (4.6) with h = 1

35 (38489 evaluations).
4. (ASI) RKN6 applied to (4.7) with γ = 1.5 and ∆τ = 1

6 (19019 evaluations).
All methods involve approximately the same number of force evaluations except SI,
which requires twice this number. The results were shown in Figure 1.1, where the
benefits of combining adaptivity and symplecticity are clear.

(GI). Now we compare the efficiency of different adaptive geometric integrators
(symmetric and explicit versus symmetric, symplectic, and explicit or implicit). We
consider the symmetric second order scheme (2.14) as the basic method and, as in
Figure 3.1b, we consider EAV2, EAV4, and EAV6m. We compare the results with
those obtained with the new adaptive explicit and splitting methods implemented with
RKN4 (ARKN4) and RKN6 (ARKN6). We consider r = 1, s = 2, ε = 0.01, and
γ = 1.5, and the average relative error in energy is measured for different time steps.
Figure 4.4 shows the results obtained. The superiority of the symplectic integrators
is apparent from these graphs and comes mainly from the fact that they can be
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Fig. 4.4. Relative error in energy versus number of evaluations in a log− log scale for second,
fourth, (dashed lines) and sixth order (dotted line) symmetric methods using (2.14) as the basic
method, and fourth and sixth order explicit symplectic RKN methods (solid lines).

implemented with more efficient splitting methods than other methods considered.
The computational cost for a fixed number of evaluations is approximately the same
for all methods. This is because the ARKN integrators consider the CT, which makes
the system very cheap to compute. For problems where this is not possible, the cost
of the algorithm has to be considered and then the EAV methods can be superior.

For this one-dimensional problem, (2.15) gives similar results to the nonregular-
ized problem. This is because at the pericenter and apocenter of the orbit, we find that
T (p) = 0 and the time step for the numerical algorithm is the same in those points.
This method is not recommended for one-dimensional nonsymmetric problems.

5. Higher dimensional problems. The analysis carried out to find a good
regularization function to preserve (or nearly preserve) scaling invariance remains
still valid for problems posed in higher dimensions. However, in contrast to the
one-dimensional problem, there is not a systematic procedure to solve exactly the
Hamiltonian T = g(q)pTp nor to find a CT such that the new Hamiltonian is still
easily separable. Nevertheless, it is always possible to use implicit methods to solve
this part. For this reason, it is natural to consider important physical problems
and to analyze whether it is possible to apply this technique case by case. If this
happens, a very efficient method should be obtained. Indeed, the LC regularization is
a technique which combines time regularization with a CT, being a standard technique
in celestial mechanics for numerically solving the Kepler problem (and perturbations
to it) for eccentric orbits. This has been generalized in [2], giving a family of CTs
to regularize the equations in two and three dimensions for the potential V = c/rαm

with αm = 2(m−1)/(m+1), m = 1, 2, 3, . . . and preserving scale invariance. The case
m = 3 corresponds to the Kepler potential. The goal is to find a CT, (Q,P) = C(q,p)
such that

T (q,p) = g(q)pTp = G(Q)PTP = T̄ (Q,P)

and making T̄ easier or cheaper to be numerically computed than T . Obviously, the
optimal situation corresponds to the case when G(Q) is a constant, but it seems this
happens only in few cases. In the following we present the CT of LC/KS for the
Kepler potential, and a generalization to another potential.
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5.1. The Levi–Civita/Kustaanheimo–Stiefel transformation. The LC
transformation [26] applies to the two-dimensional problem, and its generalization
to the three-dimensional space is due to Kustaanheimo–Stiefel (KS) [24, 38]. It cor-
responds to the Hamiltonian (2.10) with the regularization function g(q) = r, with
r = (qTq)1/2. This transformation is especially suitable for the numerical analysis
of highly eccentric orbits in the Kepler problem (for which V = −1/r) as the singu-
larity in the potential is removed. As in the one-dimensional problem, the original
Hamiltonian H is separable, but the transformed Hamiltonian K contains the term
1
2rp

Tp, which is exactly solvable. However, it is computationally expensive, and the
benefits of using splitting methods break down. However, there is a simple solution.
Kustaanheimo and Stiefel [24, 38] proposed the CT

q = Q̂Q, p =
1

2R2
Q̂P.(5.1)

Here, the three-dimensional system has been enlarged with another dimension, using
the vectors q = (q1, q2, q3, 0)T and p = (p1, p2, p3, 0)T . Now Q = (Q1, Q2, Q3, Q4)

T ,
P = (P1, P2, P3, P4)

T are the KS-variables, R = (QTQ)1/2, and Q̂ is the KS-matrix

Q̂ =



Q1 −Q2 −Q3 Q4

Q2 Q1 −Q4 −Q3

Q3 Q4 Q1 Q2

Q4 −Q3 Q2 −Q1


 .

This includes the LC transformation, which corresponds to the particular case q3 =
p3 = Q3 = Q4 = P3 = P4 = 0.

If we substitute this transformation into the Hamiltonian (2.10) with V = −1/r
and consider that QTQ = R2 and Q̂T Q̂ = R2I with I is the identity matrix, we get
the following Hamiltonian K in the new coordinates:

K =
1

8
PTP − 1 −R2Qt.(5.2)

Since Qt = H0 is constant, this is a harmonic oscillator which is easy and cheap
to integrate even for highly eccentric orbits. One problem for this regularization is
that it does not preserve the scaling invariance of the Kepler problem. From the
one-dimensional problem we know the influence of the regularization function on the
performance of a numerical integrator as well as its close relation with the scaling
invariance. Then, as we will show in one example, the performance of the LC/KS
regularization deteriorates for some problems. For this reason, the LC/KS trans-
formation is generalized in [2] in order to allow the use of a regularization function
which both removes the singularity of the Kepler problem and still preserves its scaling
invariance.

5.2. The Lennard–Jones potential. Let us consider the Hamiltonian in the
two- and three-dimensional space

H =
1

2
pTp − a

r6
+

b

rs
,(5.3)

with s > 6, a = cβ6, b = cβs, and c, β constants. The term −a/r6 gives usually
the dominant contribution for most evolution region, and a regularization function
which makes this part scaling invariant is, as before, g = r4. Unlike in the previous
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case, we present a CT which works for this important potential and function g. The
Hamiltonian (5.3) with s = 12 is frequently used in molecular dynamics to describe
the two-body interaction in the N -body problem. But, the CT we propose works only
for the two-body problem, and has to be considered as an illustrative example in the
search for Hamiltonians T = g(q)pTp with exact solution. Its possible application to
the N -body problem must be considered as an open problem.

Let us now consider the coordinate transformation q = Φ(Q) with

Φ(Q) =
1

R2m
Q.(5.4)

Then

Φ′(Q)i,j =
1

R2(m+1)
(R2δij − 2mQiQj).(5.5)

A simple inspection of (5.5) indicates that Φ′ is orthogonal only for m = 1, and this
is the only case we consider, where

Φ′Φ′T =
1

R4
I.(5.6)

Let us denote Q̂ij = (R2δij − 2QiQj), q̂ij = (r2δij − 2qiqj), where r = 1/R, Q̂T Q̂ =
R4I, q̂T q̂ = r4I. Then, from Theorem 2.1 and (5.4)–(5.6) with m = 1, it is immediate
that the transformation 

 q =
1

R2
Q,

p = Q̂P,

⇔

 Q =

1

r2
q,

P = q̂p
(5.7)

is canonical, for both the two- and three-dimensional problem (it is not necessary to
introduce a new coordinate for the three-dimensional problem, as in the KS transfor-
mation). In addition, since r4pTp = PTP, this CT makes separable the Lennard–
Jones Hamiltonian with g = r4 (which makes the system nearly scaling invariant),
and the Hamiltonian to solve is

Ksc =
1

2
PTP − aR2 + bRs−4 +

Qt

R4
.(5.8)

If the LC/KS regularization is considered, the resulting Hamiltonian is

KLC =
1

8
PTP − a

R10
+

b

R2s−2
+ QtR2,(5.9)

which contains singularities of higher order.

6. Numerical examples of two-dimensional problems.

6.1. The two-dimensional Lennard–Jones problem. We consider (5.3)
with s = 12 and initial conditions q1 = 1/5, q2 = 0, p1 = 0, p2 =

√
2(H0 − V (r)),

for H0 − V (r) ≥ 0, which corresponds to a system with energy H0. We take c = 20,
β = 0.15, 0.1, and H0 = −0.1, and we integrate until t = 5. We study the performance
of the schemes taking g = rm in the following cases: (i) nonregularization (m = 0);
(ii) LC regularization (m = 1); and (iii) scaling invariant regularization (m = 4). We
measured the average relative error in energy versus the number of force evaluations for
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Fig. 6.1. (a), (b): trajectories for the Lennard–Jones problem. (c), (d): average relative error
in energy versus number of evaluations in a log− log scale when nonregularization is considered
(m = 0), when considering the LC regularization (m = 1), and when considering the scaling invari-
ant regularization (m = 4).

different time steps ∆τ . In all cases, we integrated the systems using the symplectic
RKN6 integrator. Figure 6.1 shows the trajectory of the orbits and the average
relative error in energy of the methods versus the number of evaluations. We observe
that for β = 0.1 the trajectory approaches closer to the origin and the scaling invariant
scheme with g = r4 is much superior. We clearly observe that the case m = 1 does
not play any special role as it does in the Kepler problem, giving less efficient results.
Then, for this problem, the choice m = 4 gives the most efficient algorithm, and the
relative performance will increase in the limit β → 0. This superiority is also observed
numerically for other values of s and initial conditions (consistently with the results
obtained for the one-dimensional problem).

6.2. A perturbed Kepler problem. Let us now consider the two-dimensional
perturbed Kepler problem

H =
1

2
(p2

1 + p2
2) −

1

r
+

ε

r3
,(6.1)

which, among others, describes in first approximation the dynamics of a satellite mov-
ing into the gravitational field produced by a slightly oblate planet. This problem is
neither integrable nor scaling invariant, although it does have an approximate scaling
symmetry if ε/r3 is small. We take as initial conditions q1 = 1 − e, q2 = 0, p1 =
0, p2 =

√
(1 + e)/(1 − e) which, for the unperturbed problem, would correspond to

an orbit of period 2π, eccentricity e, and energy −1/2. We integrate until t = 10π
for different values of e using the RKN4 integrator, and measure the average relative
error in energy choosing the fictive time steps such that the whole integration is car-
ried out with approximately 100 steps. We consider two cases: (i) the nonregularized
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Fig. 6.2. Average relative error in energy in logarithmic scale as a function of the eccentricity
for the nonregularized system and for the LC regularization using the same fictive time step. This
is done for ε = 0 and ε = 10−8.

case (NR) and (ii) the LC regularization. We started the experiments with ε = 0
(unperturbed problem) and repeated the experiment with ε = 10−8. The results are
shown in Figure 6.2 where three important facts can be deduced: (i) when using LC
regularization the error does not deteriorate at high eccentricities if ε = 0; (ii) the
performance of the regularized scheme is considerably superior to the constant step
size integrator, even for small eccentricities; (iii) even for a very small perturbation
the performance of LC is severely deteriorated for high eccentricities.

The reason for the good performance of the LC regularization on the unperturbed
Kepler (ε = 0) problem comes because the Hamiltonian to be solved is (5.2), which
is exactly solvable. This is possible because the original system is also integrable.
The symplectic integrators used solve exactly a perturbed harmonic oscillator or,
equivalently, they solve exactly a Kepler problem, with slightly different parameters,
giving also a closed trajectory (this is a surprising fact since it is well known that most
symplectic integrators, when applied to the Kepler problem, give trajectories with a
precession of the orbit). However, if some perturbations are introduced making the
system not integrable, the performance of the LC/KS regularization can be seriously
deteriorated for high eccentricities. The main reason is because the fictive time is
not (nearly) scaling invariant. In addition, we must remember that this excellent
performance for the LC/KS regularization happens only when solving the Kepler
problem in Cartesian coordinates, but not in polar coordinates as shown in the one-
dimensional example of section 4.

7. Conclusions. In this paper we present a procedure to build adaptive geomet-
ric integrators making use of the Poincaré transformation. For the one-dimensional
problem, a backward error analysis for a family of problems is presented, using adap-
tive splitting methods, and an explicit dependence of the error with the monitor
function, g (at constant work), is obtained. The error and the optimal function,
g, strongly depend on the order of the method used and, most importantly, on the
value which makes the regularized system scaling invariant (for the dominant part of
the potential). These results perfectly agree with those obtained from the numerical
experiments and can be extrapolated to other higher dimensional problems. Then
the choice of the correctly scaled monitor function is essential for the performance of
the method. In those cases where the Hamiltonian T = g(q)pTp is exactly solvable
using a proper CT, explicit splitting methods can be used, which can be considered
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a generalization of the LC/KS regularization. As an example, an adaptive explicit
and symplectic method for the two- and three-dimensional Lennard–Jones potential
is presented, showing its superiority versus other regularizations. We also show how
the well-known LC/KS regularization (which does not preserve scaling invariance for
the Kepler problem) looses its efficiency on some problems.

Obviously, it is not always possible to find a CT for each function g. In such a case,
several alternatives can be considered. For example: (i) to consider the function g and
its corresponding CT which are closer to the optimal scaling function obtained from
the error analysis; (ii) choose this optimal function and either use an implicit method
to solve the transformed kinetic energy or use the explicit adaptive Verlet method
(2.14) (or consider it the basic method to higher order composition integrators). In the
last case, the previous backward error analysis does not apply but, from Figure 3.1b,
we expect the results obtained are still approximately valid.
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