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Abstract

We present a family of numerical integrators based on the Magnus series expansions which is designed for solving non-
autonomous differential equations. The main difference with standard Magnus integrators is that no commutators are involved.
This property allows, in a simple way, to use the methods on non-linear ODEs. Fourth- and sixth-order methods for non-stiff dif-
ferential equations are studied and new methods are presented. This type of method can easily be tailored to preserve geometric
properties of the solutions, and we show through several examples that the performance and error behaviour is significantly better
than known methods.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider numerical methods for systems of ODEs

ẋ = f(t,x), x(t0) = x0 ∈ R
d (1)

where the dot indicates derivative respect to t . In particular, we are interested in problems where the vector field f(t,x)

is explicitly time-dependent. For simplicity of presentation, and without much loss of generality we assume that the
vector field f can be factored, that is, f(t,x) = B(t)F(x), so (1) can be written as

ẋ = B(t)F(x), x(t0) = x0, (2)

with B(t) ∈ R
d×m and F : Rd → R

m. Note that this is often the case in applications. This includes the following cases:
(i) the linear problem

ẋ = A(t)x, x(t0) = x0, (3)

with A(t) ∈ R
d×d , corresponding to the particular case m = d,B(t) = A(t) and F(x) = x; (ii) the non-homogeneous

problem, f(x, t) = A(t)x + b(t) which corresponds to B(t) = (A(t),b(t)) and F(x) = (x,1)T; (iii) the non-linear
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systems where the vector field is given by f(x, t) = ∑
i αi(t)gi (x), with αi(t) scalar functions, can also be rewritten

in this form, being the case, for instance, of all time-dependent polynomial vector fields. This form is also very
common in control theory, where the αis are the controls. (iv) When dealing with perturbed problems of the form
ẋ = f0(x) + εf1(x) where the solution of f0 is explicitly known, a change of coordinates can be carried out leading to
a new ODE, ẏ = ε f̃1(t,y), giving the motion of the system relative to the unperturbed motion ẋ0 = f0(x0). In some
important cases such as when f0 is linear in x and f1 is a polynomial, f̃1 can be written as (2). Although the analysis is
presented for (2) only minor modifications are needed in the general case (1).

On the other hand, geometric integrators (GIs) are numerical methods especially designed to retain qualitative prop-
erties of the exact dynamics. It is known that preserving certain properties lead to improved stability and errorgrowth,
thus making such methods vastly more efficient for some types of simulations [13]. Handling non-autonomous prob-
lems has not been viewed a particular difficulty, but loss of efficiency often result if such problems are not treated in a
good way. Methods based on Magnus series have addressed the linear problem (3), and some highly efficient general
purpose Magnus integrators up to order ten [23,6,17] as well as modified versions for highly oscillatory systems [16],
adiabatic systems [19], eigenvalue problems [23,1], etc. have been derived. These methods involve the exponential of
nested commutators of A(t) evaluated at different instants. It is straightforward to formally use these Magnus inte-
grators also for the non-linear problem (1). In this case the exponential of a matrix corresponds to the computation
of a flow-map (associated with a Lie transformation or exponential of a Lie operator) and the commutator of matri-
ces corresponds to the Lie bracket of Lie operators [8]. To avoid the presence of commutators we consider Magnus
integrators using a composition technique and new methods at order four and six are obtained.

In Section 2 we present a composition technique and present the basic form of the methods proposed. In Section 3
we show how such methods can be constructed using the Magnus series expansion for linear problems and in Section 4
we adapt the methods to non-linear problem. Section 5 contains several illustrative examples.

2. Composition methods

Let us briefly consider the standard and maybe the simplest procedure to convert Eq. (1) into autonomous. We
introduce a new coordinate xt as follows

d

dt

{
x
xt

}
=

{
0
1

}
︸︷︷︸

X

+
{

B(xt )F(x)

0

}
︸ ︷︷ ︸

Y

(4)

which we write in this separable form for later convenience. Then to solve this extended autonomous system is equiv-
alent to solve Eq. (2), where now we can use an standard method for autonomous systems. However, this procedure
has several drawbacks: (i) it usually requires many evaluations of B(t), thus making it computationally expensive for
some problems; (ii) depending on the structure of B(t) (for example, if it evolves slowly or fast with respect to the
evolution of F(x)) it can be convenient to evaluate the matrices at certain points to reduce the error; (iii) let us suppose
that for the autonomous problem

ẋ = DF(x) (5)

with D ∈ R
d×m a constant matrix, it is known a map, ψh

D , which approximates the solution, ϕt
D up to order q in the

time step h, i.e. ψh
D = ϕh

D +O(hq+1) (x(t) = ϕτ
D(x0) with τ = t − t0 and ϕ0

D the identity map, e.g. for the linear case
ϕt

D = exp(τD)). We can think, for example, that (1) is a Hamiltonian system, then Eq. (5) is an averaged autonomous
Hamiltonian system and ψh

D is a symplectic integrator for autonomous Hamiltonian systems. Then, in general, the
map ψh

D cannot be used for solving (4), and another (frequently less efficient) integrator has to be used.
This last drawback (iii) can be solved making use of the splitting and composition methods frequently used in

geometric integration. Given X,Y two non-commutative operators, consider the splitting scheme given by

Ψ
[q]
k ≡ ehbkY ehakX · · · ehb1Y eha1X = eh(X+Y) +O

(
hq+1) (6)

where many solutions for the parameters ai, bi at different orders and for a number of problems can be found in the
literature (see [20] and references therein).

We can adapt the scheme (6) to solve (2), and this corresponds to the composition

Ψ
[q] ≡ ψh ◦ · · · ◦ ψh (7)
k bkBk b1B1
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with Bi = B(t0 + cih) where ci = a1 + · · · + ai and ψh
biBi

is, as mentioned, a map which approximates the h-flow

solution of the autonomous equation ẋ = biBiF(x). If the map ψh
D preserves the qualitative properties of the exact

solution then Ψ
[q]
k will retain these properties too. However, the main problem with the composition (7) is that k takes

relatively large values (k � 3 for q = 4 and k � 9 for q = 6) and the drawbacks mentioned in (i) and (ii) still remain.
To solve this problem, in this paper we propose a new family of composition schemes given by

Ψ
[q]
m ≡ ψh

Dm
◦ · · · ◦ ψh

D1
(8)

where Ψ
[q]
k = ϕh

B +O(hq+1) with q = 4,6 and

Di = h

r∑
j=1

ρi,jBj , i = 1, . . . ,m, (9)

with Bj = B(t0 + cjh) where now cj are the nodes of a previously chosen quadrature rule of order q and ρi,j are
constants to be determined once m and cj are fixed. We will show that m � 2, r � 2 for q = 4 and m � 5, r � 3 for
q = 6 so, a significant reduction in the cost of the methods can be obtained.

In addition, the new schemes can be adapted (or optimized) for different problems depending where the main
source of error comes from. For instance, we can increase m (the number of map evaluations) while keeping the
evaluation of B(t) at the same quadrature points by changing appropriately the constants ρi,j , and vice-versa, we can
look for a more appropriate quadrature rule for the coefficients cj while keeping m (and changing properly the ρi,j ).

Solutions for the ρi,j can be easily (up to order six) be obtained making use of the Magnus series expansion and,
since (8) does not contain commutators they will be referred as commutator-free (CF) Magnus integrators. They can
lead to efficient integrators for the non-linear equation (2) for a number of problems as well as for many linear systems
even if the computation of the exponential of commutators is not a problem. In [7] two fourth-order CF Magnus
integrators were presented, showing their performances on the Schrödinger equation [7,3], and their efficiencies on
non-linear problems is shown in [8,29]. A similar technique has been also considered in [11,22] to avoid commutators
in the Runge–Kutta–Munthe-Kaas methods [26,17].

The scheme (8)–(9) can also be used to solve (1), and the scheme reads

Ψ
[q]
m,f ≡ ψh

fm ◦ · · · ◦ ψh
f1

(10)

where

fi (x) = h

r∑
j=1

ρi,j f(t0 + cjh,x), i = 1, . . . ,m, (11)

for the same values of the parameters cj and ρi,j as in (9) and ψh
fi

is a map which approximates the 1-flow solution of
the autonomous equation

ẋ = fi (x). (12)

As mentioned, the parameters ρi,j depend on the choice of cj and the number of maps m considered, but they are the
same for linear and non-linear problems. Then, for simplicity, we solve this problem for the linear case.

3. CF Magnus integrators for linear systems

The Magnus expansion [21] is a popular perturbative method for solving the linear system (3) while preserving the
qualitative properties of the exact solution. Magnus assumed the solution can be written in the form

x(t) = exp
(
Ω(t, t0)

)
x0 (13)

with Ω = ∑∞
i=1 Ωi . The first four terms are given by

Ω1 =
t∫
A1 ds1,
t0
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Ω2 = 1

2

t∫
t0

ds1

s1∫
t0

ds2 [A1,A2],

Ω3 = 1

6

t∫
0

ds1

s1∫
0

ds2

s2∫
0

ds3
([[A1,A2],A3

] + [
A1, [A2,A3]

])
,

Ω4 = 1

12

t∫
0

ds1

s1∫
0

ds2

s2∫
0

ds3

s3∫
0

ds4
([[[A1,A2],A3

]
,A4

]
+ [

A1,
[[A2,A3],A4

]] + [
A1,

[
A2, [A3,A4]

]] + [
A2,

[
A3, [A4,A1]

]])
(14)

with Ai ≡ A(si) and [A,B] = AB − BA. Recently, the Magnus expansion has been used as a basis for obtaining
efficient numerical integrators [6,18,23] because the approximate solution is restricted to the same space as the exact
flow, giving it similar geometric properties of the exact solutions. Provided that A(t) is a bounded matrix, the series is
absolutely convergent for a sufficiently small (t − t0) [5,25,24] and accurate approximations can be expected for such
interval. In this case the Magnus series is a good candidate for constructing numerical methods. For some problems
like the Schrödinger equation, for which the norm of the matrices take large values, Magnus integrators have been
shown to be efficient even outside the convergence domain of the Magnus expansion [14]. Due to their particular
structure, it is possible to evaluate all multidimensional integrals using standard unidimensional quadratures derived
from collocation principles [18]. For example, using a Gauss–Legendre quadrature with s points (s evaluations of
A(t) per step) it is possible to obtain a numerical method of order 2s in the time-step.

To evaluate the solution of (3) is then equivalent to compute the exponential (13). For t = t0 + h, this is equivalent
to evaluate the h-flow associated to the autonomous equation (Ωh

A ≡ Ω(t0 + h, t0))

ẋ = 1

h
Ωh

Ax (15)

with solution

x(h) = ϕh
Ω(x0) = exp

(
Ωh

A

)
x0 (16)

(it can also be considered as the 1-flow solution of the equation ẋ = Ωh
Ax). In other words, this corresponds to consider

the vector field f = A(t)x with x frozen at the initial instant and then to take this particular average only on the time-
dependent functions. This point of view helps to understand how Magnus integrators apply on non-linear systems.

3.1. Standard Magnus integrators

Since the solution of (3) is time-symmetric (i.e. ϕh = ϕ−1
−h) it is clear that Ω(t0 + h, t0) = −Ω(t0, t0 + h). To take

advantage of this symmetry we consider the Taylor expansion of A(t) around t1/2 = t0 + h
2 ,

A(t) =
∞∑
i=0

ai(t − t1/2)
i , (17)

where ai = 1
i!

diA(t)

dt i
|t=t1/2 , and then compute the corresponding expression for the terms Ωk(t0 + h, t0) in the Magnus

expansion. Hereafter throughout the work we assume t0 = 0.
To get methods up to order n = 2s it is only necessary to consider Ω1, . . . ,Ω2s−2 and the algebra generated by

the terms a1, . . . , as [23,17,27,6] (if a quadrature of order 2s is finally considered to approximate the integrals). Since
we are interested in methods up to order 2s = 6, we have to consider Ωk , k = 1, . . . ,4. Let us denote bi ≡ ai−1h

i ,
i = 1,2,3 then up to order six we can write

Ω = Ω1 + Ω2 + Ω3 + Ω4 +O
(
h7)

= b1 + 1
b3 − 1 [1,2] + 1 [2,3] + 1 [1,1,3] − 1 [2,1,2] + 1 [1,1,1,2] +O

(
h7). (18)
12 12 240 360 240 720
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Here we denote [i1, i2, . . . , il−1, il] ≡ [bi1, [bi2, [. . . , [bil−1, bil ] . . .]]], being an element of order O(hi1+···+il ). Since
bi = O(hi), i = 1,2,3 then b1, b2, b3 can be considered as the generators of a graded free Lie algebra with grades 1,
2, 3 [27].

We can also consider the following unidimensional integrals [6]

A(i)(h) ≡ 1

hi

h∫
0

(t − t1/2)
iA(t)dt = 1

hi

h/2∫
−h/2

t iA(t + t1/2)dt, (19)

i = 0,1, . . . , s−1. If their analytical evaluation is not possible or is computationally expensive, a numerical quadrature
may be used instead. In fact, the integrals A(i), i � 1, can be approximated up to the required order just by evaluating
A at the nodes ci of the quadrature rule required to compute A(0). Denoting these by Ai ≡ A(t0 + cih), i = 1, . . . , r ,
one can write (terms of order greater than the order of the method itself are omitted)

A(i) = h

r∑
j=1

(
Q

(s,r)
C

)
ij
Aj , i = 0, . . . , s − 1, (20)

with

Q
(s,r)
C =

⎛
⎝ b1 . . . br

...
. . .

...

b1(c1 − 1
2 )s−1 . . . br (cr − 1

2 )s−1

⎞
⎠ (21)

and Q
(s,r)
C ∈ R

s×r . Here bi , ci are the weights and nodes, respectively, of a quadrature referred as C. For instance,
using the fourth and sixth order Gauss–Legendre quadrature rules we obtain

Q
(2,2)
G =

( 1
2

1
2

−
√

3
12

√
3

12

)
, Q

(3,3)
G =

⎛
⎜⎝

5
18

4
9

5
18

−
√

15
36 0

√
15

36
1
24 0 1

24

⎞
⎟⎠ . (22)

On the other hand, it is clear that A(i)(−h) = (−1)i+1A(i)(h), and

A(i) =
s∑

j=1

(
T (s)

)
ij
bj ≡

s∑
j=1

1 − (−1)i+j

(i + j)2i+j
bj , i = 0,1, . . . , s − 1. (23)

If this relation is inverted (to order four, s = 2, and six, s = 3) one has

R(2) ≡ (
T (2)

)−1 =
(

1 0
0 12

)
, R(3) =

( 9
4 0 15
0 12 0

−15 0 180

)
, (24)

and the corresponding expression of bi in terms of A(k) or Aj is then given by

bi =
s∑

j=1

(
R(s)

)
ij
A(j−1) = h

r∑
j=1

(
R(s)Q

(s,r)
C

)
ij
Aj . (25)

Then, making use of (25) we can write Ω(h) in terms of the univariate integrals (19) and also in terms of any
desired quadrature rule. For example, we can get the following fourth- and sixth-order approximations (Ω [2s] =
Ω1 + · · · + Ω2s−2 +O(h2s+1) = Ω +O(h2s+1))

Ω [4] = A(0) + [
A(1),A(0)

]
, (26)

Ω [6] = A(0) +
[
A(1),

3

2
A(0) − 6A(2)

]
+ 1

2

[
A(0),A(0),A(2)

]
+ 3

5

[
A(1),A(1),A(0)

] + 1

60

[
A(0),A(0),A(0),A(1)

]
. (27)
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3.2. CF Magnus integrators

We have seen that eΩ [4]
and eΩ [6]

from (26) and (27) correspond to fourth- and sixth-order methods, respectively,
which contain commutators. Alternatively, approximations up to the same order can be obtained by a product of
exponentials of linear combinations of the A(i) which avoids the presence of commutators. For example, we can
consider

Ψ [4]
m ≡

m∏
i=1

exp
(
α

(0)
i A(0) + α

(1)
i A(1)

) = exp
(
Ω [4]) +O

(
h5), (28)

Ψ [6]
m ≡

m∏
i=1

exp
(
α

(0)
i A(0) + α

(1)
i A(1) + α

(2)
i A(2)

) = exp
(
Ω [6]) +O

(
h7), (29)

where the coefficients α
(i)
k have to be determined. To work with the Lie algebra generated by the A(i)s (or the Ais)

is equivalent to work with the Lie algebra generated by the bi . However, in the last case the problem simplifies
considerably since the number of terms of the Lie algebra is reduced [27]. To get fourth- and sixth-order integrators it
suffices to consider the graded free Lie algebra generated by {b1, b2} and {b1, b2, b3}, respectively. Then, the problem
reduces to solve the equations (see (18))

Ψ [4]
m ≡

m∏
i=1

exp(xi,1b1 + xi,2b2) = exp

(
b1 − 1

12
[b1, b2]

)
+O

(
h5), (30)

Ψ [6]
m ≡

m∏
i=1

exp(xi,1b1 + xi,2b2 + xi,3b3)

= exp

(
b1 + 1

12
b3 − 1

12
[1,2] + 1

240
[2,3] + 1

360
[1,1,3] − 1

240
[2,1,2]

+ 1

720
[1,1,1,2]

)
+O

(
h7). (31)

Here we can use, for example, the Baker–Campbell–Hausdorff (BCH) formula

eAeB = eZ,

with

Z = A + B + 1

2
[A,B] + 1

12

([
A, [A,B]] + [

B, [B,A]]) + 1

24

[
A,

[
B, [B,A]]] + · · · . (32)

Notice that the exact solution Ω(h) is time-symmetric and only odd terms appear in the equation. For example, the
fourth-order commutators [b1, b3] ≡ [1,3] and [b1, [b1, b2]] ≡ [1,1,2] do not appear. Then those terms at even orders
up to the order of the method have to be cancelled with a proper choice of the parameters xi,j .

An integrator, ψh, is time-symmetric if ψ−1
−h = ψh. Then the following symmetry for the coefficients

xm+1−i,j = (−1)j+1xi,j , j = 1,2,3 (33)

makes the schemes (30) and (31) time-symmetric and all even order terms are cancelled. This constraint reduces the
number of free parameters to solve the equations but, in general, it is compensated by the number of equations which
are automatically solved. There are four order conditions for non-symmetric fourth-order methods but only two if the
composition is time-symmetric. Similarly, there are fourteen order conditions for non-symmetric sixth-order methods
but only seven if the composition is time-symmetric. Then, the minimum value of m in (30) and (31) remains the
same if we consider either a symmetric or a non-symmetric composition. From the number of free parameters and
order conditions it is clear that m � 2 to obtain fourth-order integrators and m � 5 to obtain sixth-order integrators. In
addition, time-symmetry is an important property which in many cases is important to be preserved. For these reasons,
in this paper we only consider time-symmetric compositions.
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3.3. Fourth-order methods

In this section we present the order conditions to be satisfied by the coefficients xi,j for several time-symmetric
fourth-order CF Magnus integrators. First, we illustrate in detail the procedure to obtain the methods (we neglect terms
of order O(h5)). The order conditions are easily obtained from the recurrence given by the following time-symmetric
composition

exb1+yb2 eC(β(k))exb1−yb2 = eC(β(k+1)), (34)

where β(k) = (β
(k)
1 , β

(k)
2 ), k = 0,1, . . . ,N = 	m

2 
 with 	x
 the integer part of x, and

C
(
β(k)

) = β
(k)
1 b1 + β

(k)
2 [b1, b2]. (35)

The recurrence relations are then{
β

(k+1)
1 = β

(k)
1 + 2x,

β
(k+1)
2 = β

(k)
2 − y(β

(k)
1 + x)

(36)

for k = 0,1, . . . ,N . This recurrence has to be started with β(0) = (0,0) if m is even or with β(0) = (β
(0)
1 ,0) if m is

odd and the exponential in the middle is eβ
(0)
1 b1 . Finally we have to equate to the coefficients given in (18)(

β
(N)
1 , β

(N)
2

) =
(

1,− 1

12

)
.

Then we find the following order conditions for the coefficients xi,1, xi,2 for symmetric compositions with m = 2,3
exponentials

Ψ
[4]
2 ≡ exp(x1,1b1 + x1,2b2) exp(x1,1b1 − x1,2b2)

2x1,1 = 1
−x1,2x1,1 = − 1

12

}
�⇒ x1,1 = 1

2
, x1,2 = 1

6
, (37)

Ψ
[4]
3 ≡ exp(x1,1b1 + x1,2b2) exp(x2,1b1) exp(x1,1b1 − x1,2b2)

x2,1 + 2x1,1 = 1
−x1,2(x2,1 + x1,1) = − 1

12

}
(38)

and if we take x1,1 = 0 then x2,1 = 1, x1,2 = 1/12. The solutions (37) and (38) (with x1,1 = 0) correspond to the
fourth-order methods with two and three exponentials given in [7].

Example 1. To illustrate how to apply the CF Magnus integrator presented in this section we consider the simple
example

ÿ + f (t)y = 0, y(0) = y0 ∈ R, (39)

which can be written in matrix form ẋ = A(t)x with x = (y, ẏ)T and

A(t) =
(

0 1
−f (t) 0

)
. (40)

If the fourth-order Gauss–Legendre quadrature rule is used then we have to compute fi = f (t0 + cih), ci = 1
2 ∓

√
3

6 ,
i = 1,2 to obtain Ai = A(t0 + cih), i = 1,2. Finally, the two- and three-exponential CF Magnus integrators read

xh = exp

(
1

2
A(0) + 2A(1)

)
exp

(
1

2
A(0) − 2A(1)

)
x0, (41)

xh = exp
(
A(1)

)
exp

(
A(0)

)
exp

(−A(1)
)
x0, (42)

with xh ≡ x(t0 +h), or in terms of A1,A2 (where up to order four A(0) = h
2 (A1 +A2), A(1) =

√
3h

12 (A2 −A1), using

A(i) = (Q
(2,2)

)i,jAj from (22))
G
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xh = exp(α1hA1 + α2hA2) exp(α2hA1 + α1hA2)x0, (43)

xh = exp

(√
3

12
h(A2 − A1)

)
exp

(
h

2
(A1 + A2)

)
exp

(
−

√
3

12
h(A2 − A1)

)
x0 (44)

with α1 = 3−2
√

3
12 , α2 = 3+2

√
3

12 .
Let us consider, for example, the Mathieu equation ÿ + (ω2 + ε cos(t))y = 0, with initial conditions t0 = 0 and

(y(0), ẏ(0)) = (1,0). The solutions can be either bounded and oscillating or unbounded, depending on the parameters
ω and ε. This system is Hamiltonian with Hamiltonian function H(q,p) = 1

2p2 + f (t) 1
2q2 where (q,p) = (y, ẏ).

If we consider, for example, the extended Hamiltonian system (we can avoid working with the momentum associated
to xt )

d

dt

{
q

p

xt

}
=

{
p

0
1

}
+

{ 0
−f (xt )q

0

}
(45)

then splitting symplectic integrators as given in (6) can be used.
We now consider ε = 1/4 and ε = 10/4 for different values of ω and integrate along the interval t ∈ [0,20π].

We assume that the evaluation of f (t) is the most consuming part of the methods (although for this very simple
problem it is not necessarily the case) and we use a time step h such that the whole integration is reached with 800
evaluations of the function f . The following fourth-order methods are compared: (i) the symplectic integrators given
by the standard 3-stage method for a general splitting (S4) and the 6-stage scheme for Nyström problems (SRKN4)
and the splitting (45) [9,20,13]; (ii) the standard 4-stage Runge–Kutta method (RK4) (it uses the Lobatto quadrature,
i.e. two evaluations of the time-dependent functions); (iii) the standard Magnus integrator (M4) given by (26) and the
integrals approximated as mentioned above; (iv) the CF Magnus integrators (43) (CF24) and (44) (CF34).

We measure the error of (y, ẏ) at t = 20 ·π in Euclidean norm. The exact solution has been accurately approximated
using a sufficiently small time step. The results obtained are shown in Fig. 1. We observe that the accuracy of the
splitting symplectic and RK methods highly deteriorate with ω. Obviously, the accuracy of all methods also diminishes
in the zones of parametric resonances in the ω2 − ε plane [2]. The RK4 method is the only one which is not a GI
having a larger error growth along the time, and it will be the least efficient after a few more periods. The error growth
with ω for the symplectic splitting methods can be largely reduced if we consider the splitting H = H1 + H2 with
H1 = 1

2 (p2 + ω2q2) and H2 = 1
2ε cos(t)q2. However, the errors are still higher than for the Magnus methods and the

efficient methods for Nyström problems cannot be used if, for example, ω depends on t .

This example clearly illustrates that CF Magnus integrators can be of similar or even higher accuracy than standard
Magnus integrators. Notice that A(0) = O(h) while A(1) = O(h2), so A(0) carries the main contribution to the solution.
The scheme CF24 distributes this terms equally into the two exponentials allowing to get more accurate results for this

Fig. 1. Error of different numerical methods for the Mathieu equation ÿ + (ω2 +ε cos(t))y = 0 at t = 20 ·π with ε = 1/4 and ε = 10/4 for different
values of ω. All methods require the same number of evaluations of f (t) = ω2 + ε cos(t).
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problem, in agreement with the error analysis carried out in [8]. The advantage of CF34 comes from the simplicity in
the computation of the exponentials of A(1) or A2 −A1 although for this problem this is not much relevant. In addition,
as we show later, these methods can be easily adapted to a large number of non-linear equations. This justifies the
interest to look for other fourth-order CF methods as well as to look for higher order methods.

From (30) and (33) it is clear that a time symmetric composition with m exponentials contains m − 2 free pa-
rameters, and many different criterions to choose the free parameters can be considered. The simplicity of the order
conditions up to order four allow us to build many different schemes tailored for different purposes. In Appendix A
we illustrate some procedures to obtain other fourth-order CF methods which can be of interest for some particular
problems.

3.4. Sixth-order methods

To build sixth-order CF Magnus integrators we first look for the order conditions to be satisfied by the coefficients
of the method. For this purpose we consider the recurrence relations given by the time-symmetric composition

exb1+yb2+zb3eC(β(k))exb1−yb2+zb3 = eC(β(k+1)), (46)

where now β(k) = (β
(k)
1 , . . . , β

(k)
7 ), k = 0,1, . . . ,N with

C(β(k)) = β
(k)
1 b1 + β

(k)
2 b3 + β

(k)
3 [1,2] + β

(k)
4 [2,3] + β

(k)
5 [1,1,3]

+ β
(k)
6 [2,1,2] + β

(k)
7 [1,1,1,2]. (47)

Here we have neglected terms of order O(h7). The order conditions are easily obtained from (46) if we consider

exb1+yb2+zb3 eC(β(k)) = eC(β(k+1)) e−xb1+yb2−zb3 . (48)

Notice that the composition is time-symmetric and we need only to consider odd order terms up order five. The
recurrence relations can be obtained using the BCH formula (32) up fourth order because the element with the higher
number of nested commutators is [b1, [b1, [b1, b2]]] = O(h5). Then, equating terms we obtain

β
(k+1)
1 = β

(k)
1 + 2x,

β
(k+1)
2 = β

(k)
2 + 2z,

β
(k+1)
3 = β

(k)
3 − 1

2

(
β

(k+1)
1 + β

(k)
1

)
y,

β
(k+1)
4 = β

(k)
4 + 1

2

(
β

(k+1)
2 + β

(k)
2

)
y,

β
(k+1)
5 = β

(k)
5 + 1

12

(
x − β

(k)
1

)(
β

(k)
2 x − β

(k)
1 z

) − 1

12

(
x + β

(k+1)
1

)(
β

(k+1)
2 x − β

(k+1)
1 z

)
,

β
(k+1)
6 = β

(k)
6 + 1

2

(
β

(k+1)
3 + β

(k)
3

)
y + 1

12

(
β

(k+1)
1 − β

(k)
1

)
y2,

β
(k+1)
7 = β

(k)
7 + 1

12

((
x − β

(k)
1

)
β

(k)
3 x − (

β
(k+1)
1 + x

)
β

(k+1)
3 x

) + 1

24

((
β

(k)
1

)2 − (
β

(k+1)
1

)2)
xy. (49)

This recurrence has to be started with β(0) = (0, . . . ,0) if m is even or with β(0) = (β
(0)
1 , β

(0)
2 ,0, . . . ,0) if m is odd

and the exponential in the middle is eβ
(0)
1 b1+β

(0)
2 b3 . The final equations are obtained by equating to the coefficients

in (18), i.e.(
β

(N)
1 , . . . , β

(N)
7

) =
(

1,
1

12
,− 1

12
,

1

240
,

1

360
,− 1

240
,

1

720

)
.

A symmetric composition with 4 exponentials has only 6 free parameters for the seven order conditions, so at least
m � 5 exponentials has to be considered. If m = 5, we have 8 coefficients and one of them can be considered as a free
parameter. In general, a composition with m � 5 exponentials has 	 3

2 (m − 5) + 1
 free parameters. Since bi = O(hi),
it is clear that the coefficients xi,1 of b1 in (31) play the most important role. With the constraint

∑m
xi,1 = 1 we
i=1
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Table 1
Coefficients for time-symmetric sixth-order CF Magnus integrators given by the composition (31) with 5 and 6 exponentials

Ψ
[6]
5

x1,1 = 0.2 x1,2 = 0.08734395950888931101 x1,3 = 0.03734395950888931101
x2,1 = 0.34815492558797391479 x2,2 = 0.053438272547684150 x2,3 = 0.00584269157837031012
x3,1 = 1 − 2(x1,1 + x2,1) x3,2 = 0 x3,3 = 1/12 − 2(x1,3 + x2,3)

Ψ
[6]
6

x1,1 = 0.208 x1,2 = 0.09023186422416794596 x1,3 = 0.03823186422416794596
x2,1 = 0.312 x2,2 = 0.04467385661651479788 x2,3 = 0.00439421553992544024
x3,1 = 1/2 − (x1,1 + x2,1) x3,2 = 0.01407960659498524468 x3,3 = 1/24 − (x1,3 + x2,3)

can try, for example, to minimize the value
∑m

i=1 |xi,1 − 1
m

|, keeping the other coefficients still small. This can be
done, for example, if we define the objective function E = ∑

i (|xi,1 − 1
m

| + α1|xi,2| + α2|xi,3|) for some appropriate
values α1 and α2. Some values which gave acceptable results in practice are α1 = 4 and α2 = 10. The coefficients of
the schemes with 5 and 6 exponentials given in Table 1 correspond, approximately, to local minima of E . Obviously,
other criterions as well as additional exponentials can be considered which can lead to more efficient methods for some
problems. Other schemes with a higher number of exponentials have been also analyzed but not much more accurate
methods for the numerical experiments considered have been found. Finally the parameters ρi,j of (9) or (11) are
given by

ρi,j = (
XR(s)Q

(s,r)
C

)
i,j

(50)

with Xi,j = xi,j . Here, R(s) is given by (23)–(24) for methods of order q = 2s, then Q
(s,r)
C is obtained once the

quadrature is chosen and X depends only on m and q .

4. CF Magnus integrators for non-linear systems

Let us first consider the autonomous equation

ẋ = f(x) (51)

or, in order to follow the same notation as in the previous section, it is preferable to consider

ẋ = DF(x) (52)

where D can be the identity matrix. If ϕt
D denotes the exact flow of (52) (with t0 = 0), i.e. x(t) = ϕt

D(x0), then for
each infinitely differentiable map g : Rd → R, g(ϕt

D(y)) admits the representation

g
(
ϕt

D(y)
) = Φt

D[g](y) (53)

where Φt
D acts on differentiable functions (it is a Lie transform). Φt

D is the solution of a differential equation closely
related to (52) which can be written as

d

dt
Idj (x) = Lf(x)Idj (x), j = 1, . . . , d (54)

where Idj (x) = xj is the projection onto the j th component and Lf is the Lie derivative (or Lie operator) associated
to f given by

Lf =
d∑

i=1

fi

∂

∂xi

(55)

acting on differentiable functions (see [2, Chapter 8] for more details). If we consider the map ϕt
D as a change of

coordinates z = ϕt
D(y) (where at the end we can take z = x and y = x0) then (54) can be written as

d
Φt

D[Idj ](y) = Φt
DLf(y)[Idj ](y), j = 1, . . . , d, y = x0 (56)
dt
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or, shortly, we can write

d

dt
Φt

D = Φt
DLf(y), y = x0, (57)

with formal solution

Φt
D = exp(tLf(y)) ≡

( ∞∑
k=0

tk

k!L
k
f(y)

)
, y = x0 (58)

with Li
fψ = Lf(L

i−1
f ψ) and L0

f ψ = ψ . Here exp(tLf) is the Lie transform associated with f.
Suppose now that ϕt

D can be decomposed as ϕt
D = ϕ

t1
D1

◦ ϕ
t2
D2

with

g
(
ϕ

ti
Di

(y)
) = exp(Lfi )[g](y), i = 1,2 (59)

where we use the notation from (5) with fi = DiF. Then it is clear that

g
(
ϕ

t1
D1

◦ ϕ
t2
D2

(y)
) = exp(Lf2) exp(Lf1)[g](y), (60)

i.e. the Lie transforms appear in the reverse order as their corresponding maps. This is also manifest on Eq. (57),
which is an infinite-dimensional linear system where the linear operator Lf is now on the right side of Φt

D .
We can follow the same steps for the non-autonomous equation (1) or (2). The exact solution is denoted by x(t) =

ϕt
B(x0) where g(ϕt

B(y)) = Φt
B [g](y) and Φt

B is the solution of the time-dependent linear equation [8]

d

dt
Φt

B = Φt
BLf(t,y), y = x0. (61)

To simplify notation, from now on we consider x0 as a set of coordinates such that f(t,x0) is a differentiable function
on the coordinates x0.

We can then use the Magnus series expansion to obtain the formal solution Φt
f = exp(Lw(t,x0)), with w = ∑

i wi .
The first two terms are now

w1(t,x0) =
t∫

0

f(s,x0)ds; w2(t,x0) = −1

2

t∫
0

ds1

s1∫
0

ds2
(
f(s1,x0), f(s2,x0)

)
.

Here we have considered the following property: given the vector fields f and g then

[Lf,Lg] = LfLg − LgLf = Lh, (62)

where h is another vector field corresponding to the Lie bracket of the vector fields, h = (f,g), whose components are

hi = (f,g)i = Lfgi − Lgfi =
n∑

j=1

(
fj

∂gi

∂xj

− gj

∂fi

∂xj

)
. (63)

Observe that the sign of w2 is changed when compared with Ω2 in (14).
Then, if we can write (1) as in (2) it is straightforward to adapt the Magnus integrators studied for the linear problem

in the previous section to the non-linear problem. Let us denote f(i)(x0) = D(i)F(x0) with LD(i) the associated Lie
operator and D(i) defined similarly to A(i) in (19)

D(i) = 1

hi

h/2∫
−h/2

t iB(t + t1/2)dt. (64)

Then, the fourth-order Magnus integrator exp(Ω [4]) given by (26) corresponds now to the Lie transform exp(Lw[4])
with

Lw[4] = LD(0) − [LD(1) ,LD(0)] (65)

which is the Lie operator associated to the vector field

w[4](x0) = f(0)(x0) − (
f(1)(x0), f(0)(x0)

)
. (66)
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Similarly to (15) and (16), to evaluate this Lie transform is equivalent to compute the 1-flow solution of the au-
tonomous differential equation

ẋ = w[4](x), x(0) = x0. (67)

However, the Lie bracket involved in w[4] makes very difficult, in general, the computation of the solution or to obtain
an approximation to it.

On the other hand, as we mentioned, it could be possible to have efficient integrators for Eq. (2) when the time is
frozen and this is the case for a large number of problems of practical interest.

Given the autonomous equation

ẋ = f(i)(x) = D(i)F(x) (68)

we denote its solution by x(t) = ϕD(i) (x0) and an appropriate numerical method by x(t) = ψD(i) (x0). If we cannot
write (1) as in (2) the same results remain still valid by considering the autonomous vector fields

f(i)(x) = 1

hi

h/2∫
−h/2

t if(t + t1/2,x)dt (69)

or we can take numerical approximations for the integrals as previously.
In this case CF Magnus integrators are a viable alternative. The same methods obtained for the linear problem can

also be used, and the fourth- and sixth-order methods (28) and (29) are given by

Ψ [4]
m ≡

1∏
i=m

exp(L
α

(0)
i D(0)+α

(1)
i D(1) ) = exp(Lw[4]) +O

(
h5), (70)

Ψ [6]
m ≡

1∏
i=m

exp(L
α

(0)
i D(0)+α

(1)
i D(1)+α

(2)
i D(2) ) = exp(Lw[6]) +O

(
h7) (71)

with the same coefficients α
(i)
k . Notice that due to property (60) the exponentials appear in the reverse order.

Let us denote

Di =
s∑

k=1

(
XR(s)

)
i,k

D(k) =
r∑

j=1

(
XR(s)Q

(s,r)
C

)
i,j

Bj (72)

with Bj = B(cjh), (XR(s))i,k = α
(k)
i and X ∈ R

m×s is the matrix with coefficients Xi,j = xi,j . Then, it is clear that

g
(
ψD1 ◦ · · · ◦ ψDm(y)

) = exp(LDm) · · · exp(LD1)[g](y). (73)

In other words, the maps ψDi
act in the same order as the exponentials of the matrices for the linear problem.

To sum up, the methods proposed are:

(i) For the linear problem ẋ = A(t)(x) with solution x(t) = exp(Ω)x0 we propose the methods

Ψ
[q]
m ≡ exp(D1) · · · exp(Dm) (74)

where Ψ
[q]
m = exp(Ω) + O(hq+1) with q = 4,6 and the matrices are given by (72) replacing the matrices Bi

by Ai .
(ii) For the non-linear problem ẋ = f(t,x) or ẋ = B(t)F(x) with formal solution x(t) = ϕt

B(x0) we propose

Ψ
[q]
m ≡ ψD1 ◦ · · · ◦ ψDm (75)

where Ψ
[q]
m = ϕt

B + O(hq+1) with q = 4,6. As mentioned, ψDi
is a map which approximates the autonomous

equation ẋ = fi (x) or ẋ = DiF(x).
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Example 2. (i) In order to illustrate how the CF Magnus integrators apply to non-linear systems, we consider the
Abel’s equation

ẋ = a0(t) + a1(t)x + a2(t)x
2 + a3(t)x

3 + a4(t)x
4, x(0) = x0 ∈ R (76)

with ai(t) sufficiently smooth functions. Obviously, this equation can be written as (2) with B(t) = (a0, . . . , a4),
F(x) = (1, x, . . . , x4)T. We denote the solution we intend to approximate by x(t) = ϕt

B(x0). Let us now consider the
autonomous equation

ẋ = α0 + α1x + α2x
2 + α3x

3 + α4x
4, (77)

with αi, i = 0, . . . ,4 constants. The solution of this equation for one time step h, ψh
D , with D = (α0, . . . , α4) can be

computed either exactly or accurately approximated with a numerical integrator. Notice that, contrarily to Eq. (76),
the right-hand side of (77) is very cheap to compute because it is an autonomous polynomial function, and a high
order numerical integrator can be used cheaply to get an accurate approximation. For example, CF24 is now given by

ψ
[4]
2 (x0) = ψD1 ◦ ψD2(x0) (78)

where

D1/2 = 1

2
D(0) ± D(1) with D(i) = (

a
(i)
0 , . . . , a

(i)
4

)
, (79)

and a
(i)
j are approximations to the unidimensional integrals. Using the fourth-order Gaussian quadrature we obtain

a
(0)
j = h

2
(aj,1 + aj,2), a

(1)
j =

√
3h

12
(aj,2 − aj,1)

and aj,i = aj (t0 + cih), ci = 1
2 ∓

√
3

6 , j = 0,1,2,3,4, i = 1,2. This method requires then two evaluations of each
function aj (t) and two evaluations of the map ψD . Notice the similarity with (41). Other fourth- and sixth-order
schemes apply similarly.

(ii) Let us consider the linear non-homogeneous equation

dx
dt

= A(t)x + b(t), x,b ∈ R
d, A ∈ R

d×d, (80)

where, for sufficiently small t , the solution can be written as

x(t) = ϕt
B(x0) ≡ eΩ(t,0)x0 +

t∫
0

eΩ(t,τ )b(τ )dτ, (81)

and x(t) = eΩ(t,0)x0 denotes the solution of the homogeneous system. It is well known that the solution of the au-
tonomous equation (A,b constants) is given by

x(t) = ψt
A,b(x0) ≡ etAx0 + etA − I

A
b. (82)

Then, one step with CF24 is given by the composition

ψ
[4]
2 (x0) = ψD1,d1 ◦ ψD2,d2(x0) = ϕt

B(x0) +O
(
h5), (83)

with

D1/2 = 1

2
A(0) ± 2A(1), d1/2 = 1

2
b(0) ± 2b(1)

and if desired we can use different quadrature rules to approximate A(i) and b(i).
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5. Numerical examples

In this section we analyze the performance of the CF methods on some numerical examples. We compare with ex-
plicit fourth- and sixth-order RK methods which require the minimum number of time-dependent function evaluations
per step. Let us consider the general RK scheme

kl = f

(
tn + clh,xn + h

ν∑
j=1

al,j kj

)
, l = 1, . . . , ν, (84)

xn+1 = xn + h

ν∑
l=1

blkl , (85)

with cl = ∑ν
j=1 al,j , l = 1, . . . , ν. Using Lobatto III quadrature points one can build implicit methods of order 2ν −2.

On the other hand, it is known that using the same quadrature points for the cl , explicit methods of the same order
(but with a higher number of stages [12,10]) can be obtained. For example, the standard four-stage fourth-order RK

method has c1 = 0, c2 = c3 = 1/2, c4 = 1. A seven-stage sixth-order method using c1 = 0, c2 = 5−√
5

10 , c3 = 5+√
5

10 ,
c4 = c2, c5 = c3, c6 = c2, c7 = 1 can be obtained [10]. Notice that since c1 = 0 and cν = 1 the last evaluation in one
step can be reused in the next step saving one evaluation, and we count only n evaluations for a method of order 2n.

5.1. Example I: the non-homogeneous Hill’s equation

It is given by the second order equation

ÿ + f (t)y = g(t), with f (t) = θ0 + 2
∞∑

n=1

θn cos(2nt). (86)

It is clear that, in general, the most costly part of the numerical integrators will come from the evaluations of f (t)

and g(t). This system has a Hamiltonian structure and then some geometric properties are preserved. The methods
presented in this paper are GI when applied to this problem, and are optimal with respect to the number of evaluations
of f and g. We consider the following particular cases:

(i) For simplicity we first consider g = 0 and θn = 0, n � 2 which corresponds to the Mathieu equation. To follow
the notation used in Example 1, we consider (with a simple transformation) f (t) = ω2 + ε cos(t). We repeat the same
experiment as in Fig. 1 for ε = 1/4 and include the results obtained for the sixth-order RK (RK6) and CF Magnus
methods with 5 exponentials (CF56) and with 6 exponentials (CF66). The results obtained are shown in Fig. 2. The
results for CF66 are very similar to those of CF56 and, for simplicity, they are not shown in the following.

Next, we take ω2 = 5 and measure the average error at t = k · 2π , k = 1, . . . ,10 for different time steps. Fig. 3
shows, in a logarithmic scale, this error versus the number of evaluations of f (t), Nt . This figure clearly illustrates
the superiority of the CF Magnus integrators. It is also worth to remark the excellent stability property of the Magnus
integrators (the largest time step shown is h = 2π although even larger time steps give stable solutions). We must
remember that this difference with respect to RK methods increases for longer times because they are not GIs. The
splitting symplectic integrators (with the splitting considered in Fig. 1) have similar stability properties as RK methods.

(ii) We now consider the case θn = 0, n � 3 which corresponds to the Wittaker–Hill’s equation and we include the
non-homogeneous term g = 10/ cosh2(t/10). This system can be rewritten as in Example 2(ii) with b(t) = (0, g(t))T

and CF Magnus integrators can be easily implemented using the map (82). We take θ0 = 10, θ1 = θ2 = 1/20 with
initial conditions (y(0), ẏ(0)) = (1,0) and integrated the system until t = 20π using different time steps. Fig. 4 shows
the efficiency curves obtained with the RK and CF Magnus integrators.

5.2. Example II

Let us now consider the following Abel’s equation

ẋ = ax − (
b + c cos(πt)

)
x3 (87)
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Fig. 2. Same numerical experiments as in Fig. 1 for ε = 1/4 but including the sixth-order RK (RK6) method and the sixth-order CF Magnus
integrators with 5 exponentials (CF56) and with 6 exponentials (CF66).

Fig. 3. Error versus number of time-dependent function evaluations, Nt , in logarithmic scale, for the RK and the CF Magnus integrators.

with initial conditions x(0) = 1. The exact solution is given by

x(t) =
[

b

a
+ A cos(πt) + B sin(πt) − Ce−2at

]−1/2

,

with A = 4ac/D, B = 2cπ/D, C = (4a2(a − b − c) + (a − b)π)/(aD), D = 4a2 + π2, corresponding to a solution
which has an exponentially decaying term, it is asymptotically oscillatory and can blow-up at a given instant depending
on the values of the parameters a, b, c. We take a = 1/10, b = 1 and different values of c, where for c > 4.92 . . . the
solution has a singularity.
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Fig. 4. Error versus Nt for the RK and the CF Magnus integrators for the Wittaker–Hill’s equation (86) where f (t) = θ0 +2(θ1 cos(2t)+θ2 cos(4t))

with θ0 = 10, θ1 = θ2 = 1/20 and g = 10/ cosh2(t/10).

Fig. 5. Error versus number of time-dependent function evaluations for the RK and the CF Magnus integrators for the Abel’s equation (87) with
a = 1/10, b = 1, and c = 1,4.9,10. In the last case, the RK methods break-down at the singularity and do not give any solution.
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Let us now consider the autonomous equation ẋ = ax − bx3 with solution given by the map

x(t) = ψt
a,b(x0, t0) =

[
b

a
− C(x0, t0)e

−2at

]−1/2

, (88)

with C(x0, t0) = e2at0( b
a

− 1
x2

0
). We integrate the system (87) until t = 10 and measure the average relative error for

different time steps. Fig. 5 show the results obtained with the RK and the CF Magnus integrators (using the map (88))
for c = 1, c = 4.9 and c = 10. Notice that in the last case the exact solution blow-up at a given instant and after
that the solution is oscillatory. Obviously, the RK methods fail to give any result and, surprisingly, the CF Magnus
integrators are able to cross the singularity and still give accurate results. Notice that the efficiency curves are not
much deteriorated when increasing the value of c. The small pics are due to the fact that for some values of the time
step some discretised times, tn = t0 + nh, can stay very close to the singular point.

6. Conclusions and outlook

Starting with the Magnus integrators for linear systems, we have obtained factored methods of order 4 and 6 which
through simulations have proven themselves as efficient. By avoiding the nested commutators of standard Magnus
methods, the new methods can easily be applied to non-linear problems. The removal of the commutators implied
factorizations into flows/exponentials which, depending on the particular application might not be a significant cost.
Clearly, before a definite assessment of the performance of the new methods can be made, much additional numerical
experimentation is needed. However, from the preliminary results obtained, we believe the CF Magnus integrators can
be of interest for the numerical integration of many ODEs and PDEs.

As mentioned, Magnus integrators have proved to be efficient for the linear time dependent Schrödinger equa-
tion [7,14] for time steps outside the convergence interval of the Magnus series [5,23,24]. Then, a similar analysis for
CF Magnus integrators would also be of interest1 as it might shed some light on how to improve such methods.

Since Magnus integrators can be considered as exponential integrators, it is also interesting to analyze the perfor-
mance of the CF Magnus integrators on stiff differential equations. For instance, time-dependent semilinear parabolic
problems of the form

ẋ = A(t)x + g(t,x), (89)

and for which efficient (possibly Runge–Kutta) exponential integrators for the autonomous problem are known (see
[15,28] and references therein for more information on exponential integrators). The CF Magnus integrator with two
exponentials and Gauss–Legendre quadrature then requires the solution of two autonomous parabolic equations which
can efficiently be done using e.g. an exponential integrator.

It is worth to mention that for separable non-linear differential equations it is possible to adapt the methods pre-
sented to non-autonomous separable systems [4], obtaining e.g. very efficient symplectic schemes.

Finally, the following problems are under consideration at this moment:

(i) as mentioned, symmetric schemes of order four and six require the same minimum number of exponentials as
non-symmetric methods. However, the numerical solutions for their parameters could lead to efficient methods
for some particular problems;

(ii) higher order methods can also be obtained following this procedure. For instance, eight-order schemes require to
consider the Lie algebra generated by {b1, b2, b3, b4}, where a symmetric method has to solve 22 order conditions.
A symmetric composition with m � 11 exponentials has 2(m − 11) free parameters. The complexity of these
schemes is significant and it is not clear if they can lead to efficient methods.
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Appendix A. Some optimized fourth-order CF methods

As analyzed in [23] the accuracy of Magnus integrators can be hampered when time-steps approximate the length of
the natural period of the exact solution. This situation is not unique to Magnus schemes, and such resonances are well
known for most numerical approximation schemes. If we assume that the main cause of the oscillation is the constant
term of A(t), i.e. b1, as it is often the case, then the error will be dominated by the commutators [b1, . . . , b1, b2]
in (18), so we can rearrange the expansion in the form

Ω = b1 − 1

12
[b1, b2] + 1

720
[b1, b1, b1, b2] + · · · + cj [

jb1
′s︷ ︸︸ ︷

b1, . . . , b1, b2] + · · ·

+ 1

12
b3 + 1

240
[b2, b3] + · · · (A.1)

where the coefficients ck are given by∑
k�0

ckx
k = 1 − x

2 − x
ex−1

x
= g(x).

The highest value of cj which is considered depends on how the discrete Magnus series is truncated. In this case, the
dominating error term is given by

E
j

1 = cj [b1, . . . , b1, b2] + cj+1[b1, . . . , b1, b1, b2] + · · · .
The main problem pinpointed by E

j

1 are the singularities at multiples of 2πi (i2 = −1) in g(x). In particular if b1 has
two eigenvalues whose difference is a multiple of 2πi then we expect severe loss of accuracy when using the truncated
Magnus series as an approximation. In [23] this difficulty was resolved by explicitly computing the dominating error
term E

j

1 and adding it to the discrete approximation to the Magnus expansion, improving the accuracy by several
orders of magnitude. For moderately small problems this approach seems to be reasonably good, while for large
systems as well as for non-linear problems the computation of E

j

1 will totally dominate the cost of the algorithm. This
procedure is closely related to the modified Magnus integrators in [16] where the dominant constant term is factorized.
Modified Magnus integrators have proved to be very efficient for oscillatory linear equation but, its direct application
to non-linear systems turn into very complicated procedures.

To avoid computing E
j

1 we can seek to find coefficients xi,j such that our factored scheme renders a good approxi-

mation to E
j

1 . For example, in (38) we can choose the extra parameter to cancel the term at order five [1,1,1,2] which
for many problems is the dominant error term. The solution is given by

x1,1 = 5 − √
5

10
, x1,2 = 5

30 + 6
√

5
, x2,1 = 1 − 2x1,1.

Clearly since E
j

1 has an infinite number of singularities, corresponding to resonances of different orders, it is not
possible to remove all of them with a finite number of coefficients. Then, another criterion for optimization is to
add more factors to the numerical scheme to have free parameters to remove the singularities closest to the origin
2πi,4πi . . . . For instance, a method with 5 exponentials which removes the two first singularities is given by

x1,1 = 0.08320595238621673655, x2,1 = 0.26469874860518009962, x3,1 = 1 − 2(x1,1 + x2,1)

x1,2 = 0.04160297618650280498, x2,2 = 0.07943895007147464695.
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