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a b s t r a c t

We consider splittingmethods for the numerical integration of separable non-autonomous
differential equations. In recent years, splitting methods have been extensively used as
geometric numerical integrators showing excellent performances (both qualitatively and
quantitatively) when applied on many problems. They are designed for autonomous
separable systems, and a substantial number of methods tailored for different structures of
the equations have recently appeared. Splitting methods have also been used for separable
non-autonomous problems either by solving each non-autonomous part separately or
after each vector field is frozen properly. We show that both procedures correspond to
introducing the time as two new coordinates. We generalize these results by considering
the time as one ormore further coordinates which can be integrated following either of the
previous two techniques. We show that the performance as well as the order of the final
method can strongly depend on the particular choice. We present a simple analysis which,
in many relevant cases, allows one to choose the most appropriate split to retain the high
performance the methods show on the autonomous problems. This technique is applied to
different problems and its performance is illustrated for several numerical examples.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, great interest has been devoted to searching and analysing efficient numerical methods for dynamical
systems, which are able to preserve qualitative features of the exact solution (see [1–3] and references therein). In particular,
growing attention is being paid to splitting procedures aimed at numerically solving ordinary differential equations (ODEs)
as well as evolutionary partial differential equations (PDEs) whose vector field is separable in a number of exactly solvable
parts. Thus, the solution flow is approximated by a composition of flows related to each part which are exactly solved.
Splitting methods have been developed in order to approximate the solution of autonomous separable problems

x′ = f (x), x(t0) = x0 ∈ Rd, (1)

where the forcing term f : Rd → Rd is split into solvable parts. For simplicity in the presentation, we consider the system
is separable into only two parts, f (x) = f [A](x) + f [B](x). In this respect, great effort has been made in searching for the
independent order conditions and the algebraic structure of the problem [4,5] aswell as in building newnumericalmethods,
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featured by different accuracy orders and accounting for different structures of the vector field [6–15] (see, for instance, the
reviews [16,1,2,17]). Let us assume that both the systems

x′ = f [A](x), x′ = f [B](x) (2)

can be either solved in closed form or accurately integrated. We denote by ϕt the exact global flow of (1), i.e. x(t) = ϕt(x0),
or equivalently, ϕt = exp((t − t0) (DA+DB)), where DA and DB are the Lie derivatives related to the vector fields f [A](x) and
f [B](x), respectively, i.e. DA ≡ f [A](x) · ∇ and DB ≡ f [B](x) · ∇ . If ϕ

[A]
t , ϕ

[B]
t represent the exact flows associated to (2), then it

is well known that different splitting methods in the form

ψh = ϕ
[A]
am+1h

◦ ϕ
[B]
bm+1h

◦ ϕ
[A]
amh ◦ ϕ

[B]
bmh ◦ ϕ

[A]
am−1h

◦ · · · ◦ ϕ
[B]
b2h
◦ ϕ
[A]
a1h
◦ ϕ
[B]
b1h

(3)

are constructed by choosing coefficients ai, bi ∈ R to ensure that the numerical integrator ψh is an approximation up to
order O(hp) with respect to the time step h, i.e. ψh = ϕh + O(hp+1). Closely connected to the splitting technique are the
compositionmethods. It can be proved (see [12,1]) that any splitting scheme can be interpreted as a composition procedure.
In this respect, there exists a strong relationship between the order conditions for both approaches, whenever splitting is
considered as a special case of composition. Splitting and composition methods have been adapted to integrate different
classes of problem such as general separable autonomous systems, first-order systems arising from second-order problems,
x′′ = g(x), the so-called near-integrable systems, etc. Indeed, the performance of the different compositionmethods strongly
depends on the particular problem to be solved and, as a consequence, a previous analysis is needed in order to choose an
appropriate procedure for approximating the solution [16]. This is the case of the non-autonomous separable problem

x′ = f [A](x, t)+ f [B](x, t). (4)

It is well known that the formal solution is given neither by

ϕt = exp
(
(t − t0) (DA(t)+ DB(t))

)
nor by

ϕt = exp
(∫ t

t0
(DA(τ )+ DB(τ ))dτ

)
.

Then, to use the splitting method (3) requires some appropriate considerations. There are two simple procedures to
circumvent this drawback. One of them corresponds to replacing the maps ϕ[A]aih, ϕ

[B]
bih
by the maps associated to the exact

flow of the equations

x′ = f [A](x, t), t ∈ [t0 + cih, t0 + (ci + ai)h], (5)

x′ = f [B](x, t), t ∈ [t0 + dih, t0 + (di + bi)h], (6)

where ci =
∑i−1
j=0 aj, di =

∑i−1
j=0 bj, a0 = 0, b0 = 0, and the initial conditions are given by the solution obtained from

the previous stage. This procedure can be considered as a time-average on each stage of the composition. Obviously, the
exact solution of the non-autonomous Eqs. (5) and (6) are not always trivial due to the explicit time dependence. The formal
solution for these two equations can be obtained, for instance, using the Magnus series expansion for nonlinear differential
equations [18].
There is a simpler alternative, which we refer to as the ‘‘frozen’’ technique, where the maps ϕ[A]aih, ϕ

[B]
bih
correspond to the

(aih)-flow and (bih)-flow associated to the autonomous vector fields

x′ = f [A](x, t0 + dih), t ∈ [t0 + cih, t0 + (ci + ai)h] (7)

x′ = f [B](x, t0 + cih), t ∈ [t0 + dih, t0 + (di + bi)h] (8)

(notice that the coefficients ci, di appear interchanged in the vector fields with respect to (5) and (6)).
Given amethod characterized by the coefficients {ai, bi}, the averaging and frozen techniques can differ considerably both

in the accuracy reached by the methods, as well as their computational cost. We illustrate this fact in a simple example.

Example 1. Let us consider the perturbed system

x′ = f [A](x)+ ε
k∑
i=1

f [B,i](x), (9)

with |ε| � 1. The composition

ψh = ϕ
[B,1]
h/2 ◦ · · · ◦ ϕ

[B,k]
h/2 ◦ ϕ

[A]
h ◦ ϕ

[B,k]
h/2 ◦ · · · ◦ ϕ

[B,1]
h/2 (10)
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corresponds to a symmetric second-order method which exploits the fact of being a perturbed system, and the local error
is of order O(εh3). For the non-autonomous problem

x′ = f [A](x, t)+ ε
k∑
i=1

f [B,i](x, t), (11)

there are many different ways to freeze and average the vector fields, and then to use the second-order symmetric
composition (10). We advance to the reader that all these combinations except one show a local error O(h3). To keep the
local error O(εh3) obtained for the autonomous case, we will show that one has to take the average of the vector field
f [A](x, t) and to keep all remaining ones frozen. �

There are also some problems where the time dependence can appear in different parts of the vector fields and/or on
different time scales, e.g.

x′ = f [A](x, ε1t, . . . , εkt)+ f [B](x, ε1t, . . . , εmt), (12)

and each time dependence can be treated separately using either the averaging or the frozen technique. Let us illustrate this
case also in a simple example.

Example 2. Let us now consider the system

x′ = cos(t/ε)f [A](x, t)+ f [B](x, t), (13)

with |ε| � 1, corresponding to a highly oscillatory system. Standard splitting methods which freeze both parts present a
local error depending on the time derivative of the highly oscillatory function, cos(t/ε). To reduce this error contribution,
we can integrate exactly the autonomous equation x′ = cos(t/ε)f [A](x, t), but this can be quite involved in practice. We
will show that similar performance can be obtained with a proper combination of the average considered in (5)–(6) and the
frozen technique (7)–(8), i.e.

x′ = cos(t/ε)f [A](x, t0 + dih), t ∈ [t0 + cih, t0 + (ci + ai)h] (14)

x′ = f [B](x, t0 + cih), t ∈ [t0 + dih, t0 + (di + bi)h], (15)

where the first equation requires the integral (or average) of the oscillatory function, and the remaining time-dependent
functions on the vector fields are kept frozen. �

This provides a great flexibility to adapt the splitting methods to separable non-autonomous problems in an efficient
way.
The frozen and averaging techniques transform the original non-autonomous problem into an autonomous problem,

but in an extended phase space. Then, to apply splitting methods which have been tailored for problems with particular
structures in a naive way can lead to numerical solutions with unexpected degradation in their performance and even
in accuracy order (with respect to the same methods applied to the corresponding autonomous problem) as is proved
in [19]. This is explored in the present work in order to understand the origin of this problem and then to look for the
more appropriate combination of averaging and/or frozen techniques to reach the highest performance.
In this paper we analyse different ways to introduce these procedures which allow one, in many cases, to use in a

straightforward way splitting schemes for non-autonomous separable systems while preserving the good behaviour the
schemes show for similar autonomous problems.
The analysis for separable Hamiltonian systems is similar, due to the relationship between Lie brackets of vector fields

and the Poisson brackets of functions associated to vector fields [20]. The time can be considered as a new set of coordinates,
andwe have to introduce the associatedmomenta properly.We found the Hamiltonian formalism easier to understand, and
for this reason, when required, we will illustrate the results using this formalism, but wemust keep in mind that the results
presented in this work are valid for general separable differential equations.

2. Different splitting techniques

Given the general equation

x′ = f (x, t), x(t0) = x0 ∈ Rd, (16)

a usual procedure which enormously simplifies the numerical analysis on the order conditions is to transform (16) into an
autonomous form by appending t to the dependent variables{

x′ = f (x, t)
t ′ = 1. (17)

The averaging and frozen techniques previously mentioned correspond to generalizations to this procedure by taking the
time as two different coordinates, as follows. The averaging technique corresponds to the following split of the vector field
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in the enlarged system:

d
dt

(x
tA
tB

)
=

f [A](x, tB)0
1

+
f [B](x, tA)1

0

 . (18)

This system is now autonomous in the enlarged system, and separable into solvable parts (if we assume that both the
equations x′ = f [A](x, t) and x′ = f [B](x, t) are solvable).
The frozen technique corresponds, however, to the split

d
dt

(x
tA
tB

)
=

f [A](x, tB)1
0

+
f [B](x, tA)0

1

 , (19)

which is also autonomous and separable in solvable parts (if we assume that both the equations x′ = f [A](x, t) and
x′ = f [B](x, t) are solvable when the time is frozen).
These splittings easily generalize to the case where the vector fields present several time-dependent sources

or time scales, f [A](x, ε1t, . . . , εkt), f [B](x, ε1t, . . . , εmt), simply by introducing new coordinates for the times,
ε1t, . . . , εkt, ε1t, . . . , εmt , which are then treated as in any of the previous ways.
For simplicity, andwithout loss of generality, we consider the vector fields containing only two different time-dependent

contributions and k = m = 2 (i.e. f [A](x, ε1t, ε2t), f [B](x, ε1t, ε2t)). For clarity in the presentation and to avoid confusion,
we assume that one of the time dependences in each vector field can be factorized as follows:

f [A](x, t) = A(t) g [A](x, t), f [B](x, t) = B(t) g [B](x, t) (20)

with A(t) ∈ Rd×n1 , B(t) ∈ Rd×n2 and g [A] : Rd × R → Rn1 , g [B] : Rd × R → Rn2 . Moreover, we suppose that the matrix
functions A(t) and B(t) are exactly integrable or, at least, the integrals can be approximated with low computational cost.
We present the cases where the time-dependent functions in g [A](x, t), g [B](x, t) are always frozen, and only the most easy
to deal with, A(t), B(t), can be either frozen or exactly solved in the associated non-autonomous equations.
As a first step, we account for the most frequent approach which arises from formulation (19) by considering the forcing

term split into the sum of

F (A1)(y) =

A(tB)g [A](x, tB)1
0

 , F (B1)(y) =

B(tA)g [B](x, tA)0
1

 (21)

in order to study the equivalent autonomous problem y′ = F (A1)(y)+ F (B1)(y)with y = (x, tA, tB)T , where y′ = F (A1)(y) and
y′ = F (B1)(y) can be solved exactly by means of their related flows ϕ[A1]t , ϕ[B1]t . The solution approximation, given by the
composition method

ψ
(1)
h = ϕ

[A1]
am+1h

◦ ϕ
[B1]
bm+1h

◦ ϕ
[A1]
amh ◦ ϕ

[B1]
bmh ◦ ϕ

[A1]
am−1h

◦ · · · ◦ ϕ
[B1]
b2h
◦ ϕ
[A1]
a1h
◦ ϕ
[B1]
b1h
,

is obtained by advancing in time with step sizes aih, bih (i = 1, 2, . . . ,m + 1) and maintaining the time variable frozen in
both the forcing terms.
As an alternative to this numerical scheme, we provide different approaches in the framework of splitting procedures. In

particular, we notice that in the case when either A(t) or B(t) can be exactly integrated, other schemes can be formulated,
as follows.
First, under the assumption that B(t) is exactly integrable, we consider the forcing split

F (A2)(y) =

A(tB)g [A](x, tB)1
0

 , F (B2)(y) =

B(tB)g [B](x, tA)0
1

 , (22)

which corresponds to a combination of both (18) and (19), and provides the equivalent system y′ = F (A2)(y)+ F (B2)(y). In
this way, the alternative numerical scheme may be developed as

ψ
(2)
h = ϕ

[A2]
am+1h

◦ ϕ
[B2]
bm+1h

◦ ϕ
[A2]
amh ◦ ϕ

[B2]
bmh ◦ ϕ

[A2]
am−1h

◦ · · · ◦ ϕ
[B2]
b2h
◦ ϕ
[A2]
a1h
◦ ϕ
[B2]
b1h
,

where flows ϕ[A2]t and ϕ[B2]t are composed at suitable step lengths. It is worthwhile noticing that, at each step, term B(t)
evolves during the first integration related to ϕ[B2]bih

, i.e. ϕ[B2]bih
corresponds to the (bih)-flow of y′ = F (Bi)(y) or, equivalently,

to the exact solution of

x′ = B(t)g [B](x, tA)

for a time step bih and where tA is frozen. As mentioned, the formal solution for this problem can be obtained by using
the Magnus series expansion for nonlinear differential equations [18], and in the following sections we present some cases
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where this problem is exactly solvable or easy to approximate numerically. For the computation of the flow ϕ[A2]aih
, the time

variable tB is kept frozen in the forcing term F (A2)(y). This argument can be inverted in the approximation process: indeed,
supposing the exact integral is available for A(t), we set

F (A3)(y) =

A(tA)g [A](x, tB)1
0

 , F (B3)(y) =

B(tA)g [B](x, tA)0
1

 (23)

and we discretize the differential equation y′ = F (A3)(y) + F (B3)(y). In this different approach, the numerical algorithm
consists of keeping the time variable completely frozen in the integration at the first step and accounting for time evolution
in the successive integration. The resulting scheme is obtained by the composition

ψ
(3)
h = ϕ

[A3]
am+1h

ϕ
[B3]
bm+1h

◦ ϕ
[A3]
amh ◦ ϕ

[B3]
bmh ◦ ϕ

[A3]
am−1h

◦ · · · ◦ ϕ
[B3]
b2h
◦ ϕ
[A3]
a1h
◦ ϕ
[B3]
b1h
, (24)

where exact flows ϕ[A3]t , ϕ[B3]t are involved.
In addition, we assume that both A(t) and B(t) are exactly integrable, and consider the system y′ = F (A4)(y) + F (B4)(y),

where

F (A4)(y) =

A(tA)g [A](x, tB)1
0

 , F (B4)(y) =

B(tB)g [B](x, tA)0
1

 . (25)

This formulation leads to the alternative numerical scheme

ψ
(4)
h = ϕ

[A4]
am+1h

◦ ϕ
[B4]
bm+1h

◦ ϕ
[A4]
amh ◦ ϕ

[B4]
bmh ◦ ϕ

[A4]
am−1h

◦ · · · ◦ ϕ
[B4]
b2h
◦ ϕ
[A4]
a1h
◦ ϕ
[B4]
b1h
.

In this procedure, the vector field related to F (B4)(y) is first integrated by accounting for an explicit time dependence in term
B(t), then the second integration related to F (A4)(y) is performed by letting A(t) evolve in time; therefore, a full integration
is performed with respect to the time variable.
Notice that all the schemes we have just considered reduce to the classical one ψ (1)

h when the matrices A and B are
constants. On the other hand, the performance of a splitting method depends on the choice of the set of coefficients, ai, bi,
and the most appropriate one depends on the Lie algebra generated by the Lie operators, Li = {DAi ,DBi}, i = 1, . . . , 4.
Unfortunately, in most cases, the Lie algebra generated by Li does not have the simplified structure which characterizes
the autonomous problem, with the Lie algebra generated by {DA,DB}. For example, there are separable problems where the
vector fields satisfy the simplifying relation, [DB, [DB, [DB,DA]]] = 0. This is the case of second-order problems, x′′ = g(x),
when written as a first-order ODE system, and such a system can be efficiently solved numerically by Nyström methods.
Many other separable problems share the same algebraic structure (e.g. in classical and quantum mechanics) and, for
brevity, in this work we will refer to them as Nyström problems. On the other hand, for near-integrable systems we have
‖DB‖ � ‖DA‖. We analyse these algebraic structures and look for those cases where the algebraic structure is recovered by
the non-autonomous problem.

2.1. Near-separable systems

As an example of integration, we consider the following time-dependent system:

q′ = M1(t)g2(p, t), p′ = M2(t)g1(q, t),

q ∈ Rs, p ∈ Rd−s, which is separable with respect to q and p variables but joint by the time variable. Notice that, in contrast
with the general case (20), both equations are solvable, i.e.{

q′ = M1(t)g2(p, t)
p′ = 0 ⇒

q(t) = q0 +
∫ t

t0
M1(τ )g2(p0, τ )dτ

p(t) = p0
,

and similarly for the other equation. In our presentation we have considered the case where the time in g2(p, t), g1(q, t) is
kept frozen.
The solution approximation provided by the classical composition method ψ (1)

h allows one to recover the whole
separability of the system since it maintains the time variable frozen in both the forcing terms. The resulting algorithm
is given by

P0 = pn, Q0 = qn, T A0 = tn, T B0 = tn,
Do i = 1,m+ 1
Pi = Pi−1 + h biM2(T Ai−1) g1(Qi−1, T

A
i−1), T Bi = T

B
i−1 + h bi,

Qi = Qi−1 + h aiM1(T Bi ) g2(Pi, T
B
i ), T Ai = T

A
i−1 + h ai,

enddo
pn+1 = Pm+1, qn+1 = Qm+1, tn+1 = T Am+1 = T

B
m+1 = tn + h.

(26)
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Under the assumption that M2(t) is exactly integrable, the alternative numerical scheme, denoted by ψ
(2)
h , is obtained by

replacing Pi in (26) with

Pi = Pi−1 +
∫ TBi

TBi−1

M2(s)ds g1(Qi−1, T Ai−1). (27)

On the other hand, supposing that the exact integral is available forM1(t), the algorithmψ
(3)
h is obtained by replacing Qi

in (26) with

Qi = Qi−1 +
∫ TAi

TAi−1

M1(s)ds g2(Pi, T Bi ). (28)

Finally, ifwe assume that bothM1(t) andM2(t) are exactly integrable, it is possible to build the alternative numerical scheme,
denoted by ψ (4)

h , by replacing both Pi and Qi in (26) with relationships defined in (27) and (28), respectively.

2.2. Nyström-like problems

In the class of the near-separable problems, let us focus on what we are going to refer as a Nyström-like problem:

q′ = M(t)p, p′ = g1(q, t). (29)

We remark that a Nyström problem is recovered when M(t) = I and g1 does not explicitly depend on time; therefore,
f [A](x) = A g [A](x) = (p, 0) and f [B](x) = B g [B](x) = (0, g1(q)), where we can take for example A, B as identity matrices.
In this case, the specific structure of f [A] simplifies the analysis of accuracy for the composition method (3); indeed, as
mentioned before, [DB, [DB, [DB,DA]]] = 0. Therefore, for orders p > 4, a significant reduction holds both in the error terms
and in the number of order conditions satisfied by the coefficients ai, bi. In this respect, Runge–Kutta Nyström methods
represent highly efficient numerical integrators provided in the literature in order to discretize the problem. The following
question remains: is it possible to split system (29) appropriately such that the nested commutators still vanish?
Under the assumption that time is accounted for, the classical splitting ψ (1)

h can be exploited in the solution
approximation: it recovers the separability of variables (q, tA) and (p, tB) in the system

q′ = M(tB)p, t ′A = 1,
p′ = g1(q, tA), t ′B = 1.

Unfortunately, by performing the Lie derivatives DA1 and DB1 related to the enlarged vector fields F
(A1) and F (B1) as in

(21), it is possible to prove that [DB1 , [DB1 , [DB1 ,DA1 ]]] does not nullify any longer. For this reason, it is expected that this
approach cannot gain in applying numerical integrators suitably built for Nyström problems. Moreover, we notice thatψ (2)

h

is equivalent to ψ (1)
h , whereas ψ

(4)
h corresponds to ψ (3)

h ; thus, the unique alternative splitting is given by ψ
(3)
h , which is

related to the integration of system

q′ = M(tA)p, t ′A = 1,
p′ = g1(q, tA).

It is possible to verify that [DB3 , [DB3 , [DB3 ,DA3 ]]] vanishes: this feature suggests that the above system structure is Nyström-
like and it makes the described approach able to recover all the advantages of using Runge–Kutta Nyström methods. We
are going to point out this issue in the framework of time-dependent Hamiltonian systems, where the use of the Poisson
brackets allows us to get the previous results in an easier way.

3. Separable time-dependent Hamiltonian systems

The previous analysis applies to separable Hamiltonian systems with Hamiltonian function H(q, p, t) = H1(q, p, t) +
· · ·+Hk(q, p, t), where q, p ∈ Rd represent the coordinates and associated conjugate momenta, respectively. For simplicity
in the presentation we consider the case of a Hamiltonian separable into kinetic (quadratic in momenta) and potential
components, i.e.

H(p, q, t) =
1
2
pTM(t)p+ V (q, t).

MT = M , and the evolution depends on both maps M : R → Rd×d and V : Rd × R → R. This class of problem, with
a time-dependent kinetic part, can be found, for example, in quantum mechanics [21–23] or in celestial mechanics [24].
According to the canonical equations

q′(t) =
∂H
∂p
, p′(t) = −

∂H
∂q
,
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the problem represents a specific case of Nyström-like problem (29).We extend the phase space by introducing the variables
λA, λB, conjugate with respect to tA, tB, in the enlarged Hamilton function H̃ = H(A1)(p, λA, tB) + H(B1)(q, tA, λB) which is
split by defining

H(A1)(p, λA, tB) =
1
2
pTM(tB)p+ λA, H(B1)(q, tA, λB) = V (q, tA)− λB (30)

(here (q, tA, λB) can be seen as coordinates and (p, λA, tB) their associated momenta). In this way we obtain the canonical
equations

q′ =
∂H(A1)

∂p
, t ′A =

∂H(A1)

∂λA
= 1,

p′ = −
∂H(B1)

∂q
, t ′B = −

∂H(B1)

∂λB
= 1,

which are equivalent to the first splitting procedure (21); we remark that the relationships λ′B =
∂H(A1)
∂tB

and λ′A = −
∂H(B1)
∂tA

are struck out since they have no relevance to our purposes. We evaluate the Poisson brackets, and thus we obtain

{H(B1),H(A1)} = V Tq (q, tA)M(tB)p+ VtA(q, tA)−
1
2
pTM ′(tB)p,

{H(B1), {H(B1),H(A1)}} = V Tq (q, tA)M(tB)Vq(q, tA)− 2V
T
q (q, tA)M

′(tB)p+
1
2
pTM ′′(tB)p,

{H(B1), {H(B1), {H(B1),H(A1)}}} = −3V Tq (q, tA)M
′(tB)Vq(q, tA)+ 3V Tq (q, tA)M

′′(tB)p−
1
2
pTM ′′′(tB)p,

where (Vq(q, tA), VtA(q, tA)) represents the gradient of the function V . Observe that the error depends on the derivatives
of M(t). As mentioned, due to the relationship holding between Poisson and Lie brackets, this result can be extended
to the corresponding commutator of the Lie derivatives on the vector fields F (A1) and F (B1) in order to verify that
[DB1 , [DB1 , [DB1 ,DA1 ]]] does not vanish. Again, we point out that no advantage is expected when Runge–Kutta Nyström
integrators are applied to approximate the above problem, unless M is constant (M ′ = M ′′ = M ′′′ = 0), as previously
mentioned.
On the other hand, as an alternative, we are going to focus on the other approach related to formulation (23); then, the

treatment of the time variable as a newcoordinate leads to the enlargedHamilton function H̃ = H(A3)(p, tA, λA)+H(B3)(q, tA),
which we split into the following parts:

H(A3)(p, tA, λA) =
1
2
pTM(tA)p+ λA, H(B3)(q, tA) = V (q, tA),

whose canonical equations are

q′ =
∂H(A3)

∂p
, t ′A =

∂H(A3)

∂λA
= 1,

p′ = −
∂H(B3)

∂q
,

where λ′A = −
∂H(A3)
∂tA
−

∂H(B3)
∂tA

is disregarded since it does not take part in our numerical integration. In this case, in the
evaluation of the Poisson brackets we have

{H(B3),H(A3)} = V Tq (q, tA)M(tA)p+ VtA(q, tA),

{H(B3), {H(B3),H(A3)}} = V Tq (q, tA)M(tA)Vq(q, tA) ≡ V̂ (q, tA). (31)

Then, since both H(B3) and {H(B3), {H(B3),H(A3)}} are functions depending only on the coordinates, (q, tA), they commute,
i.e.

{H(B3), {H(B3), {H(B3),H(A3)}}} = 0.

In addition, the term (31) can be added to the flow associated toH(B3) allowing one to build splittingmethodswith a reduced
number of flows. In (24), one can replace the flows ϕ[B3]bih

by the more general maps ϕ[C3]
bih,cih3

, which correspond to the h-flow
for the autonomous Hamiltonian

H(C3) = biH(B3) + cih2{H(B3), {H(A3),H(B3)}}. (32)

If the computational cost to compute ∇V̂ (q, tA) is not significant (once ∇V (q, tA) has been already computed) the schemes
obtained are usually more efficient (see [9,10,14]).



S. Blanes et al. / Journal of Computational and Applied Mathematics 235 (2010) 646–659 653

Fig. 1. Efficiency comparison between algorithms SRKNb,111 and SRKN
b,3
11 at different choices for parameters ε, δ.

By exploiting the relation between Poisson and Lie brackets, it follows that the third Lie commutator [DB3 , [DB3 ,
[DB3 ,DA3 ]]], related to vector fields F

(A3) and F (B3) given in (23), nullifies. Therefore, as we already remarked, in this frame-
work it should be convenient to use numericalmethods suitably built for solvingNyströmproblems. In order to test the effec-
tiveness of the procedureswehave provided,we illustrate somenumerical exampleswhere the issues discussed so far can be
confirmed.

Example 3. Consider the well-known Duffing oscillator (see [25])

q′ = e−εtp, p′ = −eεt(q3 − q− δ cos(ωt)).

This scalar problem is related to the time-dependent Hamilton function

H =
1
2
e−εtp2 + eεt

(
1
4
q4 −

1
2
q2 − qδ cos(ωt)

)
,

which can be split according to the different rules we have just discussed.

In our tests, we start from the Runge–Kutta Nyström SRKNb11 scheme provided in [8]: it is a symmetric 11-stage
Runge–Kutta method with general fourth order, which gains an accuracy of the sixth order when it is applied to solve
Nyström problems. We use its coefficients ai, bi in ψ

(1)
h and ψ (3)

h in order to build the corresponding numerical schemes
SRKNb,111 and SRKN

b,3
11 , respectively.

The integration is performed in the interval [0, 10π ], with initial step h = π
8 , by defining initial conditions q(0) = 1.75

and p(0) = 0. Moreover, as is usual, the efficiency for every method considered is expressed in terms of the maximal error
versus the total number of function evaluations.
In Fig. 1, we compare the performance and the efficiency of both the schemes SRKNb,111 and SRKN

b,3
11 we are interested in.

In particular, two different choices for parameters ε and δ are considered. First, the time dependence is disregarded and we
suppose that ε = δ = 0; therefore, the Nyström structure is recovered on the problem at hand and both the numerical
schemes reduce to the classical Runge–Kutta Nyström SRKNb11. In Fig. 1 we observe that algorithms SRKN

b,1
11 and SRKN

b,3
11

behave in the same way as a method with the sixth order of accuracy.
As a second choice, we set ε = 1/20 and δ = 1/4 in order to account for time dependence. In [19] the authors already

proved that the classical splitting SRKNb,111 loses the extra gain in order, achieved on Nyström structures, and it is featured
by fourth-order behaviour. These results are in agreement with the tests shown in Fig. 1. In contrast, we stress that in the
same figure it is evident how scheme SRKNb,311 outperforms splitting SRKN

b,1
11 since it is able to preserve the sixth order of

accuracy; indeed, this algorithm relies on the use of ad hoc Runge–Kutta coefficients for solving a problem with a suitable
structure.
The performance of the new scheme SRKNb,311 is similar to the one obtained in [19] (for this problem and when the CPU

time for computing the time dependent functions are not significant). Its main advantage is that it is possible to use the
coefficients ai, bi from any splitting methods for Nyström problems in a straightforward way and without the need to look
for additional order conditions for each splitting method we intend to use.
We have seen that order reduction can happen for Nyström problems because we are applying Nyström methods to

problems which have lost this particular structure. We have shown a procedure to recover this structure and then to avoid
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this loss of accuracy. This fact can also happen for other families ofmethodswhere an order reduction or, at least, a significant
loss of accuracy may occur. This is the case of perturbed or near-integrable systems, which are now considered.

4. Perturbed systems

Let us consider a perturbed non-autonomous system

x′ = f [A](x, t)+ εf [B](x, t). (33)

The standard splitting (19) applied to the enlarged system corresponds to

d
dt

(x
tA
tB

)
=

f [A](x, tB)1
0

+
εf [B](x, tA)0

1

 , (34)

which, as previously, is separable, but the parameter ε can not be factorized in the second term. This is also the case for
the split (18). Splitting methods tailored for near-integrable problems have shown to be highly efficient for autonomous
perturbed problems. However, thesemethods lose their excellent performanceswhen applied to a general separable system.
The near-integrable structure is recovered if we consider the time as a new coordinate as follows (which corresponds to the
case (23)):

d
dt

(
x
tA

)
=

(
f [A](x, tA)
1

)
+ ε

(
f [B](x, tA)
0

)
. (35)

This split requires one on the one hand to solve the non-autonomous problem x′ = f [A](x, t) exactly (or numerically with
sufficient accuracy) and, on the other, to solve the autonomous problem x′ = εf [B](x, tA) (where tA has been frozen). This
procedure can be of interest for problems where, for instance, f (x, t) is close to being linear, where f [A](x, t) corresponds to
the linear part (accurate and relatively fast methods exist for this problem) and εf [B](x, tA) is a small nonlinear part.
In Hamiltonian formalism, this problem would correspond to the case H(q, p, t) = H0(q, p, t) + εH1(q, p, t). Let us

consider, for example, the case H0 = T (p, t) + V0(q, t) with T = 1
2p
TM(t)p (we assume that H0 is integrable or easy to

integrate numerically) and H1 = V1(q, t).
The standard procedure given by (34) corresponds to considering the enlarged Hamiltonian system

H̃ =
(
T (p, tA)+ V0(q, tA)+ λB

)
+

(
εV1(q, tB)+ λB

)
= H(A1) + H(B1). (36)

The scheme given by (35) corresponds to considering the Hamiltonian

H̃ =
(
T (p, tA)+ V0(q, tA)+ λA

)
+ εV1(q, tA) = H(A3) + H(B3). (37)

Then, one has to evolve separately the flow associated to the autonomous Hamiltonian H(B3) where the time is frozen, and
to solve accurately the evolution for H(A3), which is equivalent to considering the evolution for the non-autonomous system

H0(q, p, t) = T (p, t)+ V0(q, t).

Then, we can choose coefficients ai, bi for splitting methods addressed for near-integrable problems (see [11]). Notice
also that

{H(B3), {H(B3),H(A3)}} = ε2(V1)Tq (q, tA)M(tA)(V1)q(q, tA) ≡ ε
2V2(q, tA), (38)

i.e. V2(q, tA) is a function depending only on coordinates, similarly to V1(q, tA), and this term can be added to the flow
associated to H(B3) in order to construct H(C3) as described in Section 3.
In addition, it isworthmentioning that, since the time has been considered as a new coordinate in an enlarged system, the

system can be treated as autonomous, and the processing technique can also be used, allowing one to obtain an additional
improvement in the numerical integration (see [15,6,7]). A processed method is given by the composition

ψh =
(
ϕ
[P]
h

)−1
◦ ϕ
[K ]
h ◦ ϕ

[P]
h , (39)

where ϕ[K ]h is the kernel and ϕ[P]h ,
(
ϕ
[P]
h

)−1
are the pre- and post-processor or corrector, respectively. For N steps, we have

ψNh =
(
ϕ
[P]
h

)−1
◦

(
ϕ
[K ]
h

)N
◦ ϕ
[P]
h , (40)

so the computational cost is dominated by the cost of the kernel. Then, we can build an accuratemethod,ψh, at the hopefully
low cost of the kernel, ϕ[K ]h .
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Fig. 2. Efficiency comparison between algorithms SRKN11 and SNI5 .

We illustrate with a simple example the application of these schemes and their relative performance.

Example 4. Let us consider the Hamiltonian

H(q, p, t) =
1
2
p2 +

1
2
f (t)q2 + ε

s∑
j=1

cos(q− ωjt), (41)

where q, p ∈ R, which describes the motion of a charged particle in a magnetic field perturbed by s electrostatic plane
waves, each with the samewavenumber and amplitude, but with different temporal frequenciesωj. We set f (t) = 1+g(t),
where the case g = 0 corresponds to the problem analysed in [26]. In our experiments, we consider the more general case
g(t) 6= 0, and we also illustrate the performance of the proposed schemes.

We analyse the splittings (36) and (37). In the last case, the evolution of the Hamiltonian H(A3) requires one to solve the
linear system for q, p

d
dt

(
q
p

)
= M(t)

(
q
p

)
with M(t) =

(
0 1
−f (t) 0

)
(42)

with sufficient accuracy. This can be easily accomplished using a high-order numerical method for this part (or dividing the
step for its integration).
For the numerical integration of this problem, we consider (in addition to SRKN11) the symmetric five-stage fourth-order

(8, 4) BAB method (SNI5) given in [11] and designed for near-integrable systems. This is a method which also cancels the
error terms of order O(εhn) up to n = 8.
We take f (t) = 1+ 1

2 cos(
3
2 t), ε =

1
100 , and the remaining parameters and initial conditions as given in [26]:

q0 = 0, p0 = 11.2075, ωj = jω0, ω0 = 7, s = 3.

We integrate the system along the interval t ∈ [0, 20π ] and measure the exact solution numerically (using an accurate
numerical method and taking a sufficiently small time step) at the following instants: tn = n 2π7 , n = 1, 2, . . . , 70. In order
to analyse the performance of the numerical methods, we choose a time step given by hm = 2π

7m , with m ∈ N, and we can
compare the approximation obtained with the ’’exact’’ solution at the previous mesh. Then, the average value

Em =

(
1
N

N∑
n=1

(q(tn)− qn)2 + (p(tn)− pn)2
)1/2

,

with N = 70, is taken as the resulting error. Fig. 2 shows the efficiency plots for the sixth-order Nyström method SRKN11
and the fourth-order near-integrable method SNI5, plotting the error versus the number of flows ϕ[B]. In this numerical
experiment, the flows associated with the linear part are computed up to round-off accuracy, so the error corresponds to
the composition scheme.
We observe that, for this near-integrable problem, methods tailored for this structure are superior. In addition, it is

evident from the figure that considering the time as a parameter in the standard form does not reduce the order of the
method SNIb,15 (it is still of fourth order) but its accuracy decays considerably.
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Table 1
Coefficients of the processor for the kernel (43) for a near-integrable system.

y1 = 0.1659120515409654 z1 = 0.9125829692505096
y2 = 0.1237659000825160 z2 = 0.3605243318856133
y3 = −0.0250397323738759 z3 = −0.7354063037876117
y4 = −0.2269372219010943 z4 = −1/2

Fig. 3. Efficiency comparison between algorithms SRKN11 , SNI5 and PM-NI1 when the time-dependent linear part is integrated using the fourth-order
integrators (44) (labelled withM4) or accurately up to round-off error (this extra cost is not reflected in the plots).

To illustrate how the processing technique can be used to solve this problem, we consider a one-stage fourth-order
processed method for Nyström and near-integrable problems which uses one modified potential (the processor is taken, in
this case, as appropriate for near-integrable problems) and is given by the composition (39), where

ϕ
[K ]
h ' ϕ

[A3]
h/2 ◦ ϕ

[C3]
h,h3/24 ◦ ϕ

[A3]
h/2 , (43)

ϕ
[P]
h = ϕ

[A3]
z4h
◦ ϕ
[B3]
y4h
◦ ϕ
[A3]
z3h
◦ ϕ
[B3]
y3h
◦ ϕ
[A3]
z2h
◦ ϕ
[B3]
y2h
◦ ϕ
[A3]
z1h
◦ ϕ
[B3]
y1h
,(

ϕ
[P]
h

)−1
= ϕ

[B3]
−y1h
◦ ϕ
[A3]
−z1h
◦ ϕ
[B3]
−y2h
◦ ϕ
[A3]
−z2h
◦ ϕ
[B3]
−y3h
◦ ϕ
[A3]
−z3h
◦ ϕ
[B3]
−y4h
◦ ϕ
[A3]
−z4h

.

We take the coefficients from [6] corresponding to a fourth-order method; these also cancel the error terms at orders εh5
and εh6 (for the convenience of the reader, the coefficients are collected in Table 1). Themethodwill be denoted by (PM-NI1).
More elaborated sets of coefficients (which cancel more nested commutators of order εhn) can be found in [15].
Next, we analyse how the error changes when the flow associated with H(A3) is approximated instead of being computed

with accuracy up to round-off error. To approximate this linear problem, we have considered the fourth-order commutator-
free Magnus integrator given by the following product of exponentials:

ϕ
[A3]
h = exp

(
h
2
(αM1 + βM2)

)
exp

(
h
2
(βM1 + αM2)

)
, (44)

with Mi = M(tn + cih), c1 = 1
2 −

√
3
2 , c2 =

1
2 +

√
3
2 , and α =

1
2 −

√
3
3 , β = 1 − α (for more details as well as how to

consider different quadrature rules, see [27,18] and references therein). We have chosen this scheme because it has shown
a high performance for time-dependent linear problems and at the same time it can be used for solving nonlinear problems.
The results are shown in Fig. 3. We also show the results obtained by the fourth-order processed method (43), where the
number of evaluations corresponds to the flow ϕ[C3] in the kernel. From the figure, the superiority of the methods which
incorporate themost information on the scheme is clear. PM-NI1 is addressed for Nyström problems and for near-integrable
systems; it usesmodified potentials (cost-free for this problem) and it exploits the processing technique. It is also important
to mention that the loss of accuracy, when the flow ϕ[A3]h is approximated using a fourth-order method, can be significant.
Then, it is important to analyse if it is possible to approximate this part using low-cost schemes and without losing much
accuracy.
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5. The integral approximation

The approach described so far can be extended to the general case when the explicit linear time dependence in (20)
cannot be treated by the exact integration of A(t) or B(t). In a more general framework, the exact integral solution can be
replacedwith a first-order approximationwithout any loss of accuracy. In this respect, eachΘ(i)

h = ϕ
[Ai]
h ◦ϕ

[Bi]
h and its adjoint

Θ
(i)∗
h = ϕ

[Bi]
h ◦ ϕ

[Ai]
h can be considered as the basis for the composition method

Ψ
(i)
h = Θ

(i)∗
αmh ◦Θ

(i)
βmh ◦Θ

(i)∗
αm−1h

◦ · · · ◦Θ
(i)
β2h
◦Θ

(i)∗
α1h
◦Θ

(i)
β1h
, (45)

with suitable coefficients αj, βj. The resulting algorithms are in a close connection withψ
(i)
h and, in the case when am+1 = 0,

the equivalence is obtained by the following choice for the method parameters: β1 = b1, αm = bm+1 and αi = ai − βi,
βi+1 = bi+1 − αi for i = 1, . . . ,m − 1. It is known that the accuracy can be retained whenever both exact and numerical
flows are combined so that they appear in a composition of methods with their corresponding adjoint ones (see [1] for
more details). We exploit this property with the aim of formulating composition schemes for the case at hand. Notice that,
since the classical splitting approach does not require explicit time integration, scheme ψ (1)

h is not modified, while the
other approaches are formulated by mixing numerical and exact flows. Indeed, we denote byΦ[Ai]h andΦ[Bi]h any first-order
integrator to y′ = F (Ai)(y) (i = 3, 4) and y′ = F (Bi)(y) (i = 2, 4), respectively, and we limit ourselves to the indices
corresponding to distinct cases where the time integrals are needed. The basis of eachmodified composition method can be
recast as follows:

Θ
(2)
h = ϕ

[A2]
h ◦ Φ

[B2]
h , Θ

(2)∗
h = Φ

[B2]∗
h ◦ ϕ

[A2]
h ,

Θ
(3)
h = Φ

[A3]
h ◦ ϕ

[B3]
h , Θ

(3)∗
h = ϕ

[B3]
h ◦ Φ

[A3]∗
h ,

Θ
(4)
h = Φ

[A4]
h ◦ Φ

[B4]
h , Θ

(4)∗
h = Φ

[B4]∗
h ◦ Φ

[A4]∗
h ;

then, by means of a composition as in (45), the corresponding modified methods Ψ̃ (i)
h are defined as

Ψ̃
(2)
h = Φ

[B2]∗
αmh ◦ ϕ

[A2]
amh ◦ · · · ◦ ϕ

[A2]
a2h
◦ Φ
[B2]
β2h
, ◦Φ

[B2]∗
α1h
◦ ϕ
[A2]
a1h
◦ Φ
[B2]
β1h
,

Ψ̃
(3)
h = ϕ

[B3]
bm+1h

◦ Φ
[A3]∗
αmh ◦ Φ

[A3]
βmh ◦ · · · ◦ ϕ

[B3]
b2h
◦ Φ
[A3]∗
α1h
◦ Φ
[A3]
β1h
, ◦ϕ

[B3]
b1h
,

Ψ̃
(4)
h = Φ

[B4]∗
αmh ◦ Φ

[A4]∗
αmh ◦ Φ

[A4]
βmh ◦ · · · ◦ Φ

[B4]∗
α1h
◦ Φ
[A4]∗
α1h
◦ Φ
[A4]
β1h
, ◦Φ

[B4]
β1h
.

In the case of near-separable problems, Ψ̃ (2)
h is built by replacing Pi in (26) with

Pi = Pi−1 + h
(
αi−1M2(T Bi−1)+ βiM2(T

B
i )
)
g1(Qi−1, T Ai−1), (46)

where we set α0 = 0. In a similar way, Ψ̃
(3)
h is obtained by replacing Qi in (26) with

Qi = Qi−1 + h
(
βiM1(T Ai−1)+ αiM1(T

A
i )
)
g2(Pi, T Bi ). (47)

Finally, Ψ̃ (4)
h arises from (26) with Pi and Qi replaced by (46) and (47), respectively. The following example illustrates the

effectiveness of this procedure.

Example 5. We consider the Duffing oscillator as a test problem. We focus our attention on splitting procedureψ (3)
h , which

has revealed itself to be very efficient in the treatment of this kind of problem, and on the scheme SRKNb,311 . In this framework,
we replace the exact flows by the approximated ones exploiting formula (47), and we denote the resulting algorithm by
Mod1SRKN

b,3
11 . In Fig. 4, it is evident that the advantages due to the Nyström-like structure are lost and the method recovers

the fourth order for problems with generic structure. We use the second-order approximation defined by

Qi = Qi−1 + h
(
βiM1

(
T Ai−1 +

hβi
2

)
+ αiM1

(
T Ai −

hαi
2

))
g2(Pi, T Bi ); (48)

then the resulting method is denoted by Mod2SRKN
b,3
11 ; in Fig. 4 we numerically show how it is able to preserve the sixth

order of accuracy.

As a further test, we account for the sixth-order ten-stage method named S10 in [8]; then we exploit its coefficients in
ψ
(3)
h and we obtain the algorithm denoted by S

3
10. Then the same coefficients are employed in Ψ̃

(3)
h with the approximation

of the first order and the resulting algorithm is denoted byMod1S310. As is shown in Fig. 4, the sixth order of accuracy of the
original scheme is preserved when the exact integrals are replaced with their first-order approximations.
We conclude that replacing the exact integration with a first-order quadrature rule retains the general accuracy of the

original method but it loses the further gain in order of the Nyström schemes. More accurate quadrature rules have to be
adopted in order to recover their extra accuracy.
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Fig. 4. Efficiency comparison among algorithms S310 ,Mod1S
3
10 , SRKN

b,3
11 ,Mod1SRKN

b,3
11 andMod2SRKN

b,3
11 at ε = 1/20, δ = 1/4.

6. Conclusions

Wehave considered splittingmethods for the numerical integration of non-autonomous separable differential equations.
Splitting methods are frequently used as geometric numerical integrators, and they have been designed for autonomous
separable systems. A substantial number of methods tailored for different structures of the equations have recently
appeared, showing excellent performances in many cases. When these methods are used on non-autonomous problems,
usually their performance diminishes considerably, and they can even lose the order of accuracy observed for the
corresponding autonomous problems, as shown by several numerical examples.
We have presented a simple alternative which, for many relevant cases, allows one to retain the high performance of

the splitting methods using the same schemes as for the autonomous problems. We have analysed in detail near-separable
systems, Nyström-like problems and near-integrable systems, as well as their corresponding Hamiltonian problems. If the
time functionswhich appear on the vector fields are taken as coordinates in an appropriate way, it is possible to use splitting
methods in those problems without losing their good performances. This technique is applied to different problems and its
performance is illustrated with several numerical examples.
For those problems where the techniques proposed in this work do not allow one to recover the full structure of the

associated autonomous problem, we recommend considering the more elaborate numerical methods based on Magnus
series proposed for general non-autonomous dynamical systems (see [27]), as well as for Hamiltonian and separable
dynamical equations (see [19,18] and references therein). They require one to choose one particular set of coefficients for a
splitting method and to look for additional complementary coefficients obtained from new order conditions.
High-order splitting methods have been used in recent years for the numerical integration of an important number of

evolutionary PDEs such as Maxwell equations [28,29] or linear and nonlinear Schrödinger equations [9,14,30]. In [30] the
sixth-order Nyström splitting scheme SRKNb11 was used, showing a high performance on the Gross–Pitaevskii equation, and
for the linear equation, in [9,14] we can findmethods up to order eight which use themaps ϕ[C]

bih,cih3
. In a similar way as in the

examples presented in this work, the performance of thesemethods deteriorates if they are applied to the non-autonomous
case when some of the parameters are explicitly time dependent. Exactly the same procedures as presented in this work
allow one to recover the high performance the splitting methods show for the autonomous case, for which the methods
were originally designed.
Finally, before concluding this work, it is worth mentioning that the new autonomous systems (in the enlarged phase

space) could in some cases have new algebraic structures not considered in this work, which could be interesting to
analyse [4], as well as the structure preservation of the new approach.
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