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a b s t r a c t

The analysis of heat conduction through a solid with heat generation leads to a linear
matrix differential equation with separated boundary conditions. We present a symmetric
second order exponential integrator for the numerical integration of this problem using
the imbedding formulation. An algorithm to implement this explicit method in an efficient
way with respect to the computational cost of the scheme is presented. This method can
also be used for nonlinear boundary value problems if the quasilinearization technique is
considered. Some numerical examples illustrate the performance of this method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, we consider the numerical integration of the linear matrix differential equation with separated boundary
conditions originated by the spatial heat conduction through a solid with local areas of heat generation. Let us denote by z
the direction of the heat flow and by Z the total length of the solidmedium. If we consider that the flow in other directions is
much smaller, the problem can be approximated in one dimension. Then, we define a control volume of length1z and cross
sectional area A, where we can perform an energy balance in order to derive a conservation equation for thermal energy
in terms of temperature. This analysis leads to a boundary value problem (BVP) which describes the temperature along the
length of the body in the direction of the flow, see [1]. After rescaling t = z/Z , the non-autonomous and non-homogeneous
BVP is given by

T ′′(t) + p(t)T ′(t) + q(t)T (t) = f (t);
K11T (0) + K12T ′(0) = γ1, K21T (1) + K22T ′(1) = γ2


(1)

where T (t) is the temperature, f (t) is the heat generation, and p(t), q(t) are the advection and convection coefficients,
respectively, that can depend on the local position t and its cross section A at this point. The first term in the equation
corresponds to the conduction in the direction of flow.With appropriate coefficients andboundary conditions, the system (1)
describes also a material process in which a solid body is moving out of a hot region and the heat flow is mainly oriented
towards the direction of the motion of the body, like a long slab of steel emerging from a furnace or a metal rod undergoing
continuous hardening, for example, see [2] for details.

On the other hand, it is known that many relevant engineering problems can be modelled by a second order nonlinear
differential equation, say

T ′′
= f (t, T , T ′), 0 ≤ t ≤ 1,
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subject to similar linear boundary conditions as in (1). Nonlinear BVPs can be numerically solved by quasilinearization. It
reduces to solving iteratively the following problems for the unknown function Tn+1(t) under the assumption that Tn(t) is
known:

T ′′

n+1 −


∂ f
∂T ′


n
T ′

n+1 −


∂ f
∂T


n
Tn+1 = F(t, Tn(t), T ′

n(t))

subject to boundary conditions

K11Tn+1(0) + K12T ′

n+1(0) = γ1, K21Tn+1(1) + K22T ′

n+1(1) = γ2,

where T0(t), T ′

0(t) correspond to an initial guess, and


∂ f
∂T ′


n,


∂ f
∂T


n denote the derivatives where the functions T (t), T ′(t)

are substituted by Tn(t), T ′
n(t), and

F = f −


∂ f
∂T ′


n
T ′

n −


∂ f
∂T


n
Tn.

This linear BVP is solved repeatedly until convergence (e.g. given a tolerance, ϵ, the iteration is repeated until
max0<t<1 |Tn+1(t) − Tn(t)| < ϵ). The solution obtained is a second order approximation of the nonlinear BVP.

This quasilinearization technique is, in practice, one of the recommended approaches of implementation because it leads
to a modular program design. Once we have a program module to solve linear problems with a given method, it can be
invoked repeatedly for each iteration of a nonlinear problem by first linearizing it [3].

Thiswork is addressed to building an algorithm for linear problemswhich are difficult to solve from thenumerical point of
view. In particular, we are interested in stiff problems. In those cases, standard explicit methods usually suffer from stability
problems and are useless. Implicit methods are, however, computationally expensive and the use of variable time steps is a
more challenging task.We consider explicitmethods using the imbedding formulation. This requires us to numerically solve
a set of non-homogeneous and non-autonomous linear IVPs forward and backward in time. We are interested in symmetric
second order methods since they are appropriate for solving the nonlinear BVPs and, if a very high accuracy is desired, the
extrapolation technique can also be used. We present symmetric second order exponential integrators which show a high
performance for these problems. The scheme proposed can also be trivially usedwith a variable time step as well as in those
cases where the functions p(t), q(t) and f (t) are only known on a given mesh.

2. The matrix boundary value problem

In order to address the problem (1), we consider the numerical integration of a general linear two point boundary value
problem of the form

y′(t) = S(t)y(t) + h(t); B0y(0) = γ1, B1y(1) = γ2; 0 ≤ t ≤ 1. (2)

Here y(t), h(t) ∈ Cn, S(t) ∈ Cn×n, B0 ∈ Cp×n, B1 ∈ Cq×n, γ1 ∈ Cp, γ2 ∈ Cq, with p + q = n, and we assume that
rank(B0) = p and rank(B1) = q. We consider the case q ≤ p because the case p < q can be treated in a similar way. Notice
that the limit cases p = 0 or q = 0 correspond to initial and final value problems respectively. Let us denote

y(t) =

[
y1(t)
y2(t)

]
, S(t) =

[
A(t) B(t)
C(t) D(t)

]
, h(t) =

[
f1(t)
f2(t)

]
.

Note that problem (1) corresponds to the particular scalar case when y1(t) = T (t), y2(t) = T ′(t), A(t) = 0, B(t) = 1,
C(t) = −q(t), D(t) = −p(t), f1(t) = 0 and f2(t) = f (t), B0 = [K11 K12], B1 = [K21 K22]. For stiff problems it is convenient
to consider the imbedding formulation which we briefly introduce. Let us consider the change of variables

y(t) = Z(t)w(t) =

[
Ip X
0 Iq

] [
w1(t)
w2(t)

]
. (3)

By the imbedding formulation [4,5], the two-point boundary value problem can be replaced by a set of initial value
problems (IVPs). This procedure leads to a matrix Riccati differential equation (RDE) that is coupled with other equations.
Thus, in the same way as in [5], the original BVP can be solved as follows:
(I) Solve, from t = 0 to t = 1, the IVPs

X ′(t) = B(t) + A(t)X(t) − X(t)D(t) − X(t)C(t)X(t), X(0) = −K−1
11 K12.

(II) Taking into account (3) and the initial condition of the step I, solve, from t = 0 to t = 1, thew1-equation

w′

1(t) = [A(t) − X(t)C(t)]w1(t) − X(t)f2(t) + f1(t); w1(0) = K−1
11 γ1.

(III) Next, solve from t = 1 to t = 0, thew2-equation

w′

2(t) = [D(t) + C(t)X(t)]w2(t) + C(t)w1(t) + f2(t),
with the starter final condition [K21X(1) + K22]w2(1) + K21w1(1) = γ2.

(IV) Finally, recover y(t) = Z(t)w(t), with Z(t) given by (3).
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3. Exponential integrators for the matrix RDE

From [6], in a simple way, the study of our matrix RDEs reduces to the study of the IVP

Y ′(t) =

[
V ′(t)
W ′(t)

]
= S(t)Y (t), Y (0) =

[
X0
Iq

]
, S(t) =

[
A(t) B(t)
C(t) D(t)

]
(4)

with Y ∈ Cn×q and S ∈ Cn×n. Then, the solution of the RDE is given by X(t) = V (t)W−1(t), with V ∈ Cp×q,W ∈ Cq×q, in the
region whereW (t) is invertible. IfW (t) has no inverse in some point of the interval [0, 1], the error for X(t)will cause large
errors in w1 and w2 which are then propagated, leading to large errors for the solutions y1 and y2, because the equations
are coupled. However, this problem can be solved easily by covering the interval [0, 1] by a finite set of intervals where the
problem can be reformulated with appropriate permutation matrices, see Lemma 3.1 of [5] for more details. This multiple
imbedding implies that for each subinterval one has to solve a different linear differential equation where the inverse of the
matrix appearing in (4) is far from being singular.

Now, let us present an explicit symmetric second order Lie group integrator to solve (4) numerically. If we denote by
Φ(t, t0) the fundamental solution of (4), then

exp
∫ t+h

t
S(t)dt


= 8(t + h, t) + O(h3)

corresponds to the first order approximation (second order in the time step, h) for most exponential methods like e.g. the
Magnus, Fer orWilcox expansions, see [7] and the references therein for details. Here, it suffices to approximate the integral
by a second order symmetric rule, like the trapezoidal rule so

9(t + h, t) ≡ exp

h
2
(S(t + h) + S(t))


= 8(t + h, t) + O(h3).

The non-homogeneous problem can be treated in a similar way.

4. Solving the thermal energy equation

Applying the exponential integrator method presented in the above section to our system of coupled IVPs presented at
the end of Section 2, we obtain[

Wn+1
Vn+1

]
= exp


h
2
(S(tn+1) + S(tn))

 [
Wn
Vn

]
⇒ Xn+1 = Vn+1W−1

n+1

where Xn = X(tn) + O(h3), tn = nh. In this way, the matrix functions A(tn), B(tn), C(tn), D(tn) are computed at the same
mesh points as the approximations Xn to X(tn). The second step is the integration of thew1-equation by a symmetric second
order exponential integrator for non-homogeneous linear equations

w1,n+1 = exp

h
2


An+1 + An − XnCn − Xn+1Cn+1

 
w1,n +

h
2
gn


+

h
2
gn+1,

where gn = −Xnf2,n + f1,n. Next, we approximate the non-homogeneousw2-equation backward in time by

w2,n = exp


−h
2


Dn+1 + Dn + CnXn + Cn+1Xn+1

 
w2,n+1 −

h
2
hn+1


−

h
2
hn,

where hn = Cnw1,n + f2,n. Finally, the solution given by y(t) = (w1(t) + X(t)w2(t),w2(t)), is approximated at the mesh
points ti = t0 + ih, i = 0, 1, . . . ,N , by y1,n = w1,n + Xnw2,n, y2,n = w2,n, n = 0, 1, . . . ,N . A variable step procedure can
also be used.

Let us now consider some numerical examples to compare the performance of this new algorithm with respect to the
results obtained by finite differences on some problems where explicit shooting methods are badly conditioned and cannot
be used.

Example 4.1 (Radiation Fin of Trapezoidal Profile). The temperature distribution associated to a radiation fin in a one-
dimensional form of the energy equation is given by [1]

d2T
dR2

+


1

R + ρ
−

tanα

(1 − R) tanα + θ


dT
dR

−
βT 4

(1 − R) tanα + θ
= 0 (5)

for 0 ≤ R ≤ 1, and boundary conditions T (0) = 1, T ′(1) = 0. Here, α, β, ρ and θ are parameters which depend on the
temperature at the boundary, the emissivity of the fin, Planck’s constant, the heat conductivity, the radius of the base and
the tip, and the angle of inclination of the top surface (see [1, page 86]). We consider the following values: α = 30°, β = 0.2,
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Fig. 1. Left panel: average error versus the number of evaluations for the finite differences (FD) and the exponential integrator when considering the
imbedding formulation (EXP). Right panel: Solution, T (R), of the nonlinear BVP (5).

Fig. 2. Left panel: solution, Tb(t), of the problem (7) for b = 10 and b = 20. Right panel: maximum error, in logarithmic scale, versus the number of
evaluations for the following second order time-symmetric methods: finite differences (FDb) and the exponential integrator (IEb) and Runge–Kutta with
the trapezoidal rule (IRb) when considering the imbedding formulation.

ρ = 0.25, θ = 0.05, which correspond to a not very stiff problem. The corresponding linearized equation is given by the
recursive scheme

T ′′

n+1 +


1

R + ρ
−

tanα

C(R)


T ′

n+1 −
4βTn(R)3

C(R)
Tn+1 = −

3βTn(R)4

C(R)
(6)

with C(R) = (1 − R) tanα + θ , and the boundary conditions: Tn+1(0) = 1, T ′

n+1(1) = 0. At each iteration we solve the
non-autonomous and non-homogeneous linear BVP (6). The function Tn(R) is known in a mesh (for simplicity, we take an
equispaced mesh, but an adaptive mesh can also be used) and then we use both the second order finite difference method
adapted to the matrix linear problem (2) and the second order exponential method. This way provides new solutions for
Tn+1(R) at the same mesh. The iteration stops when we reach convergence (to compare Tn+1(R) with Tn(R) on the mesh)
and this solution corresponds to a second order (in the time step) approximation. We consider as the exact solution the
numerical solution obtained using a very small time step. Fig. 1 shows the results obtained. For this non-stiff problem the
imbedding formulation with the exponential method is still superior to finite differences.

Example 4.2. Let us now consider a homogeneous problem where the convection is proportional to the local temperature
and grows with the time. Let us consider also that the solid is a flat plate and then, by [1], the coefficient p(t) = 0. In
particular, we consider the following thermal energy equation:

T ′′(t) = (1 + t2)T (t); T (0) = 0, T (b) = 1; 0 ≤ t ≤ b. (7)

The solution of this problem is T (t) = et
2/2(C1 + C2 erf (t)) with appropriate values of the constants C1, C2, and then, for

large values of b, the problem is very stiff (standard explicit shooting methods fail to solve this problem for b > 9 [4]). In
Fig. 2 we show the solution for b = 10 and b = 20.



Author's personal copy

1862 E. Ponsoda et al. / Mathematical and Computer Modelling 54 (2011) 1858–1862

We compute the maximum error of the solution on the mesh for different values of the time step (a constant time
step is used for the comparison, but a variable time step could be used for the exponential integrators in the imbedding
formulation). We compare the results obtained by the second-order finite difference method (FDb) and the exponential
integrator in the imbedding formulation (IEb) for an integration until the final time b. To show the interest of the exponential
methods for the integration of the IVPs, we repeated the computation in the imbedding formulation, but the exponential
method is replaced by the implicit trapezoidal Runge–Kutta method (IRb). In Fig. 2 we show the results obtained for b = 10
and b = 20. The superiority of the imbedding formulation is manifest (but only when the IVPs are solved using the
exponential integrator) and it increases with the final time b. This relative performance of the exponential method increases
when the extrapolation technique is used to increase the order of accuracy of all methods.

We have presented a simple time-symmetric exponential integrator for BVPs in the imbedding formulation. This
formulation is of interest for stiff problems and the methods proposed can be easily used for solving nonlinear BVPs when
the quasilinearization technique is used. The numerical examples illustrate the interest of this technique and clearly show
its superiority when the problem is very stiff.
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