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We consider the numerical integration of the Gross-Pitaevskii equation with a potential trap given by a
time-dependent harmonic potential or a small perturbation thereof. Splitting methods are frequently used with
Fourier techniques since the system can be split into the kinetic and remaining part, and each part can be solved
efficiently using fast Fourier transforms. Splitting the system into the quantum harmonic-oscillator problem and
the remaining part allows us to get higher accuracies in many cases, but it requires us to change between Hermite
basis functions and the coordinate space, and this is not efficient for time-dependent frequencies or strong
nonlinearities. We show how to build methods that combine the advantages of using Fourier methods while
solving the time-dependent harmonic oscillator exactly (or with a high accuracy by using a Magnus integrator
and an appropriate decomposition).
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I. INTRODUCTION

The numerical integration of the Gross-Pitaevskii equation
(GPE),

i
∂

∂t
ψ(x,t) =

(
− 1

2μ
� + V (x,t) + σ (t)|ψ(x,t)|2

)
ψ(x,t),

x ∈ Rd , describing the ground state of interacting bosons
at zero temperature (the Bose-Einstein condensates), has
attracted a great deal of interest [1–3] after the initial
experimental realizations [4]. We present an efficient way
to solve a special class of GPE, namely that of weakly
interacting bosons in a single time-dependent trap. To be more
specific, the potential trap V is taken to be a perturbation
of the (time-dependent) d-dimensional harmonic oscillator,
i.e., V (x,t) = xT M(t)x + εVI (x,t), where M(t) ∈ Rd×d is a
positive-definite matrix and εVI (x,t) is a small perturbation.
The real scalar function σ originates from the mean-field
interaction between the particles and corresponds to repulsive
or attractive forces for positive or negative values of σ (t),
respectively [5]. Notice that the noninteracting case, σ ≡ 0,
corresponds to the linear Schrödinger equation.

Several methods have been analyzed to compute both
the time evolution and the ground state of the GPE in
the course of the past decade [1–3,6,7], among them finite
differences, Galerkin spectral methods, and pseudospectral
methods for Fourier or Hermite basis expansions. It has been
concluded [2] that these pseudospectral methods perform best
for a wide parameter range for the GPE. The Fourier-type
methods can be implemented with fast Fourier transform
(FFT) algorithms since the trapping potential V causes the
wave function to vanish asymptotically, thus allowing us
to consider the problem as periodic on a sufficiently large
spatial interval. Their advantages are high accuracy with a
moderate number of mesh points and low computational cost.
For harmonic-oscillator (HO) problems, however, the exact
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solution is known, and by expanding the solution in Hermite
polynomials, highly accurate results are obtained if the HO is
solved separately [2,3,6,7].

It is claimed [2] that either Hermite or Fourier pseudospec-
tral methods are the most efficient, with the choice depending
on the particular parameter set. Motivated by these results,
we show how both methods are combined to retain both the
accuracy of the Hermite method and the speed of the Fourier
transforms, i.e., to rewrite the Hermite method as a single
simple pseudospectral Fourier scheme. We have found that
this approximation performs, for the studied problem class,
always equal to or better than the original Fourier method,
and therefore has to compete with Hermite expansions only.
Hermite schemes suffer from large computational costs when
the number of basis terms in the expansions is altered along
the integration or taken very large, which is the case for
time-dependent trap frequencies M(t) or strong nonlinearities
σ (t). It is in this setup where our method substantially improves
the Hermite performance, and it can indeed be regarded as the
optimal choice for the number of Hermite basis functions (for
an equidistant grid) at each time step.

For ease of notation, we restrict ourselves to the one-
dimensional problem

i
∂

∂t
ψ = H0(t)ψ + [εVI (x,t) + σ (t)|ψ |2]ψ, (1.1)

where

H0(t) = 1

2μ
p2 + 1

2
μω2(t)x2 (1.2)

and p = −i ∂
∂x

. The boundary conditions imposed by the trap
require the wave function to go to zero at infinity, and up
to any desired accuracy we can assume ψ(x,t) and all its
derivatives to vanish outside a finite region, say [a,b], which
we divide using a mesh (usually with N = 2k points to allow a
simple use of the FFT algorithms). Then, the partial differential
equation (1.1) transforms into a system of ordinary differential
equations (ODE’s),

i
d

dt
u(t) = Ĥ0(t)u(t) + [εVI (X,t) + σ (t)|u(t)|2]u(t), (1.3)
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and the harmonic part becomes

Ĥ0(t) = T + 1
2μω2(t)X2, (1.4)

with u ∈ CN , where ui(t) � ψ(xi,t), xi = a + ih, i =
0,1, . . . ,N − 1, h = (b − a)/N , X = diag{x0, . . . ,xN−1},
and T denotes a discretization of the kinetic part.

This system of nonlinear ODE’s can be numerically solved
by standard all-purpose ODE methods. However, because of
the particular structure of this problem, different numerical
methods can differ considerably in accuracy as well as in
computational cost and stability. In addition, the structural
properties of the system lead to the existence of several
preserved quantities such as the norm and energy (for the
autonomous case).

The accurate preservation of these quantities as well as
the error propagation and performance of splitting methods
explain why they are frequently recommended for the time
integration [2,3,6], and make them the subject of investigation
in this work.

II. SPLITTING METHODS

Let us consider the separable system of ODE’s,

u′ = A(u) + B(u), u(t0) = u0 ∈ CN, (2.1)

where we assume that both systems

u′ = A(u), u′ = B(u) (2.2)

can either be solved in closed form or accurately integrated.
If ϕ

[A]
t , ϕ

[B]
t represent the exact flows associated with (2.2),

then to advance the solution one time step, h, we can use, for
example, the composition ψ

[1]
h = ϕ

[A]
h ◦ ϕ

[B]
h (i.e., u(t0 + h) �

ψ
[1]
h (u0) = ϕ

[A]
h [ϕ[B]

h (u0)]), which is known as the first-order
Lie-Trotter method. A method has order p if ψ

[p]
h = ϕh +

O(hp+1), where ϕt denotes the exact global flow of (2.1).
Sequential application of the two first-order methods ψ

[1]
h and

its adjoint ψ
[1]∗
h = ϕ

[B]
h ◦ ϕ

[A]
h with a half time step yields the

second-order time-symmetric methods

ψ
[2]
h,A = ϕ

[A]
h/2 ◦ ϕ

[B]
h ◦ ϕ

[A]
h/2, (2.3)

ψ
[2]
h,B = ϕ

[B]
h/2 ◦ ϕ

[A]
h ◦ ϕ

[B]
h/2 (2.4)

(referred to as ABA and BAB compositions). The contraction
via the (one-parameter-) group property of the flows that
eliminated one computation is called the first same as last
(FSAL) property, and it can also be used with higher-order
m-stage compositions

ψ
[p]
h = ϕ

[A]
amh ◦ ϕ

[B]
bmh ◦ · · · ◦ ϕ

[A]
a1h

◦ ϕ
[B]
b1h

(2.5)

if am = 0 or bm = 0 and repeated application of the scheme
without requiring output. For linear problems, it is usual
to replace the flow maps by exponentials (for nonlinear
problems, the same is possible using exponentials of Lie
operators). In this notation, the equation iu′ = A(u) + B(u),
whose formal solution for the evolution operator is denoted by
φ

[A+B]
t = e−it(A+B), is approximated for one time step, h, by

the order p composition (2.5), or, equivalently,

ψ
[p]
h ≡ e−ihamA e−ihbmB · · · e−iha1A e−ihb1B. (2.6)

We keep in mind that, in a nonlinear problem, if B depends on
u, it has to be updated at each stage because u changes during
the evolution of e−ihaiA.

There exist many different splitting methods that are
designed for different purposes, depending on the structure
of the problem, the desired order, the required stability, etc.
[8–14].

When H0 is the dominant part, it is worthwhile to take
a closer look at the split (1.1). This would correspond to
‖B‖ 	 ‖A‖, and for this case, when facing autonomous
problems, there exist tailored methods that have shown
a high performance in practice. Writing the equation as
iu′ = (A + εB)u (with ε a small parameter), it is clear that
the local error of the second-order methods (2.3) or (2.4)
comes from the commutators at third order [A,[A,εB]] and
[εB,[A,εB]], where [A,B] := AB − BA, and for simplicity,
we have denoted A = A(u) · ∇, B = B(u) · ∇, and we can say
that the local error is of order O(εh3 + ε2h3). The coefficients
ai,bi in the general composition (2.6) can be chosen to cancel
the dominant error terms, say, the O(εhr ) terms for relatively
large values of r . Then, one can denote the effective order of
a method by (r,p) with r � p when the local error is given by
O(εhr+1 + ε2hp+1). The method is of order p, but in the limit
ε → 0 it is considered to be of order r � p. Using this split
allows us to gain a factor ε in accuracy even for general splitting
methods where r = p. In [11], several methods of order
(r,2) for r � 10 are obtained with all coefficients ai,bi being
positive, and some other schemes of order (r,4) for r = 6,8
are presented. For near-integrable systems, these last methods
are the most efficient and stable. Despite the gain of accuracy,
the split into a dominant part and a small perturbation is left
unconsidered when it leads to involved or computationally
costly algorithms. This issue is addressed in this work.

To take into account the time dependence in the vector fields
in (1.1), a more detailed analysis is required. For simplicity in
the presentation, we consider a linear problem, but the same
results are valid for a nonlinear problem. The general separable
equation

iu′ = A(t)u + εB(t)u, (2.7)

with |ε| 	 1, can be solved by considering the time as two
new independent coordinates{

iu′ = A(t2)u

t ′1 = 1
,

{
iu′ = εB(t1)u

t ′2 = 1
. (2.8)

If we consider the symmetric second-order operator splitting
method, we have

φh = e−i h
2 εB(tn+h)e−ihA(tn+ h

2 )e−i h
2 εB(tn) + O(h3), (2.9)

where φh denotes the exact evolution operator for one time
step. Notice that the local error is not proportional to ε and
this split does not take advantage of the near-integrability of
the problem. This result is proved in [15], where it is shown
that near-integrability is recovered if we take the time as a new
variable as follows:{

iu′ = A(t1)u

t ′1 = 1
, iu′ = εB(t1)u. (2.10)
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TABLE I. Algorithm for the numerical integration of the system
(2.10) by the composition (2.5).

Algorithm for one time step tn → tn + h

t [0] = tn
do i = 1,m

solve : u′ = B(u,t [i−1]), t ∈ [t [i−1],t [i−1] + bih]
solve : u′ = A(u,t), t ∈ [t [i−1],t [i−1] + aih]

t [i] = t [i−1] + aih

enddo
tn+1 = t [m]

The symmetric second-order operator splitting now reads

φh = e−i h
2 εB(tn+h)e−iÃ(tn+h,tn)e−i h

2 εB(tn) + O(εh3), (2.11)

where exp[−iÃ(tn + h,tn)] denotes the exact flow of the
nonautonomous equation iu′ = A(t)u from tn to tn + h. Notice
that the error is a factor ε more accurate, and thus considerably
larger time steps can be used. This result was proved in [15]
for separable systems of ODE’s. However, it is also valid
for nonautonomous separable operators in partial differential
equations (PDE’s), and we illustrate the performance of this
split in numerical examples.

Both schemes (2.9) and (2.11) are time-symmetric, and
higher-order methods can be easily obtained by composition
or by extrapolation (multiproduct expansion). It is clear that
much more accurate results are obtained by taking (2.11) as
the basic method.

To build methods from low to moderate orders, however, it
is more efficient to consider a composition method designed
for near-integrable systems, following the scheme shown in
Table I.

We show that the exact solution of the nonautonomous
problem, in our setting the dominant part H0 of (1.1),

i
∂

∂t
ψ =

(
1

2μ
p2 + 1

2
μω2(t)x2

)
ψ, (2.12)

is easily computed for a time step using Fourier transforms.
Before giving the details on the time integration, some remarks
on the formal solution are necessary.

It is well known that H0 is an element of the Lie algebra
spanned by the operators {E = x2/2,F = p2/2,G = 1

2 (px +
xp)}, where μ = 1 for simplicity, and its commutators are

[E,F ] = iG, [E,G] = 2iE, [F,G] = −2iF.

This is a three-dimensional Lie algebra, and the solution,
ψ(x,t) = U (t,0)ψ(x,0), of (2.12) can be expressed as a single
exponential using the Magnus series expansion [16,17] or as
a product of exponentials [18]. It is possible to formulate the
evolution operator U (t,0) in many different ways, the most
appropriate depending on the particular purpose, e.g., using
the Magnus expansion

U (t,0) = exp[f1(t)E + f2(t)F + f3(t)G] (2.13)

for certain functions fi(t) [19]. Approximations of (2.13) for
one time step, h, on the other hand, are easily obtained, e.g., a
fourth-order commutator-free method is given by [20]

U (t + h,t) = exp

[
h

2

(
1

2
p2 + ω2

L

1

2
x2

)]

× exp

[
h

2

(
1

2
p2 + ω2

R

1

2
x2

)]
+ O(h5), (2.14)

where

ω2
L = αω2

1 + βω2
2, ω2

R = βω2
1 + αω2

2

with ωi = ω(tn + cih), c1 = 1
2 −

√
3

6 , c2 = 1
2 +

√
3

6 , and α =
1
2 − 1√

3
, β = 1 − α. It can be considered as the composition

of the evolution for half time step of two oscillators with
averaged frequencies, using the fourth-order Gauss-Legendre
quadrature points to evaluate ω(t). Different quadrature rules
can also be used and correspond to different averages along the
time step, see [17,20]. In the limit when ω is constant, the exact
solution is recovered. Higher-order approximations are avail-
able, if more accurate results are desired, by approximating
the functions fi in (2.13) via truncated Magnus expansions.

Our objective is to obtain a factorization of the solution that
only involves terms proportional to E or F since they are easy
to compute, as we show in the following paragraph.

Starting from (2.14) or high-order approximates of (2.13),
the main result of this work is the natural decomposition for
the application of Fourier spectral methods.

A. Hamiltonians for spectral methods

We now analyze how to compute the evolution of different
parts of the Hamiltonian by spectral methods. The spatial
derivative (or kinetic part) associated with the semidiscretized
problem (1.3) can be solved in the momentum space by noting
that

e−itT u = F−1
N e−itDNFN u,

where DN is diagonal and FN denotes the discrete Fourier
transform of length N , whose computation can be accom-
plished by the FFT algorithm with O(N log N ) floating point
operations. The exponentials in e−ihDN need to be computed
only once and can be reused at each step such that the cost of
the action of e−ihDN corresponds to N complex products.

For the remaining part, the following well-known result is
very useful:

Lemma II.1. If F is real-valued, the equation

i
∂

∂t
φ(x,t) = F (x,|φ(x,t)|)φ(x,t) (2.15)

leaves the norm invariant, |φ(x,t)| = |φ(x,0)|, and then

φ(x,t) = e−itF (x,|φ(x,0)|)φ(x,0). (2.16)

On the other hand, it is well known that the solutions of the
linear Schrödinger equation with the harmonic potential

i
∂

∂t
φ(x,t) = 1

2
(p2 + x2)φ(x,t) (2.17)
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can be expressed in terms of Hermite polynomials,

φ(x,t) =
∞∑

n=0

cne
−iEnthn(x), (2.18)

where

En = n + 1

2
, hn(x) = 1

π1/4
√

2nn!
Hn(x)e−x2/2 (2.19)

and Hn(x) are the Hermite polynomials. The weights cn can be
computed from the initial conditions, cn = ∫

hn(x)φ(x,0) dx.
The previous results show how to compute individual parts

of the equation and thus permit different ways of splitting the
system in two solvable parts,

iψt = (A + B)ψ. (2.20)

We consider the following cases:
(i) Fourier (F) split:

A = 1

2
p2, B(t) = ω(t)

2
x2 + εVI (x,t) + σ (t)|ψ |2. (2.21)

We take the time as a new coordinate, as in (2.10), and evolve
it with A, which is now autonomous and exactly solvable, and
freeze the time in B, which is then solved using the result from
Lemma II.1. Here, A and B are diagonal in the momentum and
coordinate spaces, respectively, and we can change between
them using the Fourier transforms.

(ii) Harmonic oscillator (HO) split: Letting for a moment
ω = 1, the Hermite expansion then suggests a split,

A = 1
2 (p2 + x2), B(t) = εVI (x,t) + σ (t)|ψ |2, (2.22a)

where the solution for the equation iu′ = Au can be approxi-
mated using a finite number of Hermite basis functions, i.e.,

φM (x,t) =
M−1∑
n=0

cne
−iEnthn(x). (2.22b)

Since B is diagonal in coordinate space, it will act as a
simple multiplication if we choose a number of Hermite
basis functions and evaluate them at the points of a chosen
mesh (e.g., using the Gauss-Hermite quadrature [21] or on
equidistant grid points [2]). This split can be of interest if
all contributions from B(t) are small with respect to A and
methods for near-integrable systems are used. If the frequency
is time-dependent, the corresponding split is

A(t) = 1
2 [p2 + ω2(t)x2], B(t) = εVI (x,t) + σ (t)|ψ |2.

(2.23)

In this case, it is convenient to take the time t as a new
coordinate, as shown in (2.10). The solution of iu′ = A(t)u, in
the algorithm in Table I, can be approximated by the Magnus
expansion, e.g., (2.13) or (2.14), but these factorizations
are not appropriate for use with spectral methods since it
would require two sets of basis functions and additional
transformations.

In general, the split (i) can be considered faster and simpler
since A ≡ T can be computed in the momentum space, and
one can easily and efficiently change from momentum to
coordinate space via FFT’s. The choice (ii), on the other hand,
allows us to take advantage of the structure of a near-integrable

system if, roughly speaking, ‖B‖ < ‖A‖, but it requires us to
solve the equation for the (time-dependent) harmonic potential
exactly (or with high accuracy). The evolution of the constant
oscillator is easily computed using Hermite polynomials (see
[2,3,21]), but the evolution for the explicitly time-dependent
problem is more involved.

B. Solving the harmonic oscillator by Fourier methods

We propose a method that combines the advantages of
both splittings. It retains the advantages of the HO split
(ii) while being as fast to compute as the F split in (i).
For this purpose, we briefly review some basic concepts of
Lie algebras.

Given X,Y as two elements of a given Lie algebra, it is well
known that

eXYe−X = Y + [X,Y ] + 1
2 [X,[X,Y ]] + · · · .

Given X(x),P (p) and an analytic function F (x,p), we are
interested in the following adjoint actions:

e−itXF (x,p)eitX = F (x,p + tX′), (2.24a)

e−itP F (x,p)eitP = F (x − tP ′,p), (2.24b)

where X′ = dX/dx, P ′ = dP/dp. In classical mechanics,
this corresponds to a kick and a drift.

As we have seen, the exponentials exp(αx2/2) and
exp(βp2/2) can be easily computed by Fourier spectral
methods. It is then natural to ask whether it is possible to
write the solution of (2.12) as a product of exponentials that
are solvable by spectral methods. The answer is positive and
it is formulated as follows.

Let us first consider the pure harmonic oscillator, whose
result was obtained in [22], and for which we present a proof
that applies equally to the general case.

Lemma II.2. Let A1 = 1
2p2, B1 = 1

2x2, and

g(t) = sin(t), f (t) = [1 − cos(t)]/ sin(t). (2.25)

Then, the following property is satisfied for |t | < π :

e−it(A1+B1) = e−if (t)A1 e−ig(t)B1 e−if (t)A1 (2.26)

= e−if (t)B1 e−ig(t)A1 e−if (t)B1 . (2.27)

Proof. A constructive way to derive the functions f,g makes
use of the parallelism with the one-dimensional classical
harmonic oscillator with Hamiltonian H = 1

2p2 + 1
2q2 and

Hamilton equations

d

dt

{
q

p

}
=

(
0 1

−1 0

){
q

p

}
= (A + B)

{
q

p

}
, (2.28)

where

A ≡
(

0 1

0 0

)
, B ≡

(
0 0

−1 0

)
. (2.29)

The Lie algebra generated by the matrices A,B is the
same as the Lie algebra associated with the operators
A1,B1 for the Schrödinger equation with the harmonic
potential (2.17).

046711-4



FOURIER METHODS FOR THE PERTURBED HARMONIC . . . PHYSICAL REVIEW E 83, 046711 (2011)

The exact evolution operator of (2.28) is

O(t) =
(

cos(t) sin(t)

− sin(t) cos(t)

)
, (2.30)

which is an orthogonal and symplectic 2 × 2 matrix. For the
splitted parts, the solutions are easily computed to

ef (t)A =
(

1 f (t)

0 1

)
, eg(t)B =

(
1 0

−g(t) 1

)

and then, equating the symmetric composition

ef AegBef A =
(

1 − fg 2f − f 2g

−g 1 − fg

)

to (2.30), we obtain (2.25), which is valid for |t | � π .
The decomposition (2.27) is derived analogously. Using
the Baker-Campbell-Haussdorf-formula, it is clear that both
results remain valid, up to the first singularity at t = ±π ,
when replacing the matrices A,B by the corresponding linear
operators A1,B1, since all computations are done in identical
Lie algebras.

Given the functions f,g, we can prove the lemma directly by
recalling that two operators are identical on a sufficiently small
time interval if they satisfy the same first-order differential
equation with the same initial conditions [23]. We thus verify
that the right-hand side of (2.26) also solves the propagator
equation

iU ′ = (A1 + B1)U, U (0) = I (2.31)

and is therefore identical to the propagator on the left-hand
side. Now setting

Ũ (t) = e−if (t)A1e−ig(t)B1e−if (t)A1

and plugging it into (2.31) yields

(A1 + B1)Ũ
!= (ḟ A1 + e−if A1 ġB1 eif A1

+ e−if A1 e−igB1 ḟ A1 eigB1 eif A1 )Ũ .

Using (2.24a) and (2.24b), we obtain two independent non-
linear differential equations for f (t) and g(t) with initial
condition f (0) = g(0) = 0 to satisfy Ũ (0) = I . It is then easy
to check that f,g given in (2.25) solve these equations. As a
result, we have that Ũ (t) = U (t) locally in a neighborhood of
the origin and (2.27) is proved identically.

For practical purposes, the singularities occur at sufficiently
large times and hence do not impose limits for the time steps
of numerical methods.

It is immediate to generalize this result to the equation

i
∂

∂t
ψ(x,t) =

(
1

2μ
p2 + μ

ω2

2
x2

)
ψ(x,t),

μ,ω > 0 by replacing (2.25) with

g = 1

μω
sin(ωt), f = μω

1 − cos(ωt)

sin(ωt)
.

This result is valid for |t | < t∗ ≡ π/ω.
The following theorems extend this idea to decompositions

of operators that appear after the approximation of the time-
dependent parts via (2.13) or by the composition (2.14).

Theorem II.3. Let α,β,γ be constants, η =
√

αγ − β2, and

g(t) = γ /η sin(ηt),

f (t) = 1

g(t)

(
1 − cos(ηt) + β

η
sin(ηt)

)
, (2.32)

e(t) = 1

g(t)

(
1 − cos(ηt) − β

η
sin(ηt)

)
.

Then, the following decomposition holds for 0 � t < π/η:

e−i t
2 [αx2+β(xp+px)+γp2] = e−if (t) 1

2 x2
e−ig(t) 1

2 p2
e−ie(t) 1

2 x2
.

(2.33)

Proof. The proof follows the lines of the proof of
Lemma II.2. The evolution operator associated with the
classical Hamiltonian H = 1

2 (αx2 + 2βxp + γp2) is given by(
cos(ηt) + β

η
sin(ηt) γ

η
sin(ηt)

−α
η

sin(ηt) cos(ηt) − β

η
sin(ηt)

)
, (2.34)

and equality to the right-hand side of (2.33) is verified by
straightforward computation of the matrix exponentials. The
solution is valid until the first singularity at t = π/η. Using
(2.24a) and (2.24b), it can be checked that both sides of (2.33)
satisfy the same differential equation and initial conditions.
Now, the initial conditions become f (0) = −e(0),g(0) = 0
because the loss of symmetry in the decomposition has to be
taken into account.

Theorem II.4. Let ωk ∈ R, ck = cos(ωkt/2), sk =
sin(ωkt/2) for k = L,R, and

g(t) = sLcR/ωL + cLsR/ωR,

f (t) = 1

g(t)

(
1 − cLcR + ωL

ωR

sLsR

)
, (2.35)

e(t) = 1

g(t)

(
1 − cLcR + ωR

ωL

sLsR

)
.

Then, the decomposition

e−i t
2 ( 1

2 p2+ω2
L

1
2 x2)e−i t

2 ( 1
2 p2+ω2

R
1
2 x2)

= e−if (t) 1
2 x2

e−ig(t) 1
2 p2

e−ie(t) 1
2 x2

(2.36)

is satisfied for 0 � t < t∗, where t∗ is the smallest positive
root of g(t).

The proof is similar to the previous one.

III. THE HERMITE-FOURIER METHODS

With the presented exact decompositions at hand, we now
solve the discretized GPE (1.3) by splitting methods using the
symmetric compositions (2.3) and (2.4). Let us first consider
the case ω = 1 and take the HO split A = A1 + B1,

ψ
[2]
h,A = e−ih(A1+B1)/2 e−ihB e−ih(A1+B1)/2, (3.1)

ψ
[2]
h,B = e−ihB/2 e−ih(A1+B1) e−ihB/2. (3.2)

Replacing the exponentials e−ih(A1+B1) by (2.26) or (2.27), we
obtain four different methods whose computational costs differ
considerably. At first glance, using the FSAL property, both
(3.1) and (3.2) are equivalent from a computational point of
view and require one exponential of B and another of A1 + B1
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per step. However, a significant difference arises when we plug
in the decompositions (2.26) or (2.27). Only the combination
(3.2) with (2.27) yields a method that involves only one FFT
and one inverse FFT call per step

ψ
[2]
h = e−ihB/2e−ih(A1+B1)e−ihB/2

= e−ihB/2e−if (h)B1e−ig(h)A1e−if (h)B1e−ihB/2

= e−i(hB/2+f (h)B1)e−ig(h)A1e−i(hB/2+f (h)B1) (3.3)

and solves exactly the harmonic oscillator for |h| < h∗. For any
other combination, more kinetic terms have to be computed
per step since the FSAL property cannot be exploited to the
full extent, and this results in more costly [24] methods for the
same accuracy.

The general composition (2.6) can be rewritten in the same
way by replacing each flow e−iaiA in (2.6) by the composition
(2.27)

�h ≡ e−i(hbmB+αmB1) e−ig(amh)A1 e−i(hbmB+αm−1B1) · · ·
× e−i(hb1B+α1B1) e−ig(a1h)A1 e−iα0B1 , (3.4)

where αk = f (ak+1h) + f (akh), k = 0,1, . . . ,m + 1 with
a0 = am+1 = 0. This method is valid for |aih| < h∗, i =
1, . . . ,m and requires only m calls of the FFT and its inverse,
but reaches the same accuracy as if the Hermite functions were
used.

In the more general case with a time-dependent frequency,
ω(t), starting from the HO splitting, the time-dependent part
is first approximated by Magnus expansions (2.13) or (2.14).
Theorems II.3 and II.4 then provide decompositions to write
the product of exponentials in a similar way as in (3.4), but
now αk = f (ak+1h) + e(akh) and it is valid for |aih| < t∗, i =
1, . . . ,m, where t∗ is the first zero of g(t). At each stage, one
has to compute f (aih),g(aih),e(aih) from ω(t).

As in the previous case, it only requires m calls of the
FFT and its inverse, like the standard Fourier pseudospectral
methods. For stability reasons, it seems convenient to look
for splitting methods whose value of maxi{|ai |} is as small as
possible.

IV. NUMERICAL EXAMPLES

We analyze first the performance of the methods considered
in this work for the one-dimensional problem (1.1) with μ =
ω2 = 1, and the pure harmonic trap, i.e., VI = 0.

To illustrate the validity of the decomposition presented in
Lemma II.2, we first consider the linear problem (σ = 0). We
take the ground state at t = 0 as an initial condition whose
exact solution is given by

ψ(x,t) = 1

π1/4
e−it/2e−x2/2.

We discretize on the interval [−10,10] to ensure the wave
function and its first derivatives vanish up to round off at the
boundaries, and sample it at N = 1024 equidistant grid points.
We integrate, with only one time step, from t = 0 to T for
T ∈ [−π,π ], i.e., forward and backward in time. We measure
the integrated error in the wave function, ‖uex(T ) − ua(T )‖2,
where ua(T ) denotes the approximate numerical solution
obtained using the split (2.27), and uex(T ) is the exact solution
at the discretized mesh. The result of this comparison is

−2 0 2
−15

−10

−5

0

T

lo
g 10

||Ψ
(T

)−
φ(

T
)|

| 2

3 3.05 3.1
−15

−10

−5

0

T
ππ−π

FIG. 1. (Color online) Error in logarithmic scale for the integra-
tion of the ground state of the harmonic potential using the split (2.27)
for T ∈ [−π,π ] (integration forward and backward in time). The left
and right panels show the 2-norm error and a zoom about T = π ,
respectively.

illustrated in Fig. 1 (left). The split (2.27) reproduces, for
|T | < π , the exact solution up to round off, as expected. The
right panel in Fig. 1 displays a zoom near a singularity where
the error grows rapidly due to double-precision arithmetic.

We analyze how the approximation properties of the Her-
mite decomposition (2.22b) strongly depend on the function in
question and on the chosen number of basis functions, M . We
compute the M required to reach round-off precision for the
evolution of a displaced ground state as an initial condition,
ψδ(x,0) = e−(x−δ)2/2/π1/4 from t = 0 to T = 10 in one time
step. From initial conditions computed on a mesh, this can be
accomplished as follows [2]:

uex(T ) = e−iT (A1+B1)u0 ∼ KT e−iT D1K u0, (4.1)

where D1 = diag{ 1
2 , 3

2 , . . . , 2M−1
2 }, M is the number of basis

elements considered, and Ki,j = hi−1(xj ), i = 1, . . . ,M, j =
1, . . . ,N = 512 with hn(x) given in (2.18), x ∈ [−10,10]. For
δ = 1

10 , round-off accuracy is achieved with M = 8, while
for δ = 2 it is necessary to take M = 29. We observe that
the Hermite decomposition is very sensitive to the initial
conditions [21]. The Hermite basis works efficiently as far
as the initial conditions as well as the evolution thereof can be
accurately approximated using a few number of basis elements,
and one has to keep in mind that, for nonlinear problems, the
number of basis functions necessary to reach a given accuracy
can vary along the time integration.

Next, we study the following values for the nonlinearity
parameter: σ = 10−2,1,102. The case σ = 10−2 illustrates
the performance of the proposed methods if applied to
problems (linear or nonlinear) that are small perturbations
of the harmonic potential, whereas the values σ = 1,102 are
large enough to demonstrate the nonlinearity effects on the
approximation properties of the methods. Physically, σ is
proportional to the number of particles in a Bose-Einstein
condensate and to the interaction strength [5].

For all cases, we choose the initial condition ψ(x,0) =
ρe−(x−1)2/2, with ρ a normalizing constant. We show in Fig. 2
the value of |ψ(x,t)|2 at the initial and final time. The spatial
interval is adjusted to ensure the wave function vanishes (up
to round off) at the boundaries, here [−20,20] for σ = 0.01
and [−30,30] for both σ = 1 and 100, where the wave
function moves faster (we only show the interval x ∈ [−5,5]).
One can appreciate that for strong nonlinearities, the wave
function can penetrate the potential barrier considerably, and
one expects that an accurate approximation of these wave
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FIG. 2. (Color online) Exact evolution at t = T (solid red line)
from the initial conditions given by ψ(x,0) = ρe−(x−1)2/2 (dashed
blue line). The number of grid points is given by N .

functions requires a large number of Hermite functions when
using (4.1), which renders this procedure inappropriate.

A. HO split versus F split

We analyze now the advantages of the HO split versus the
F split as given in (2.23) and (2.21).

In a first experiment, we fix the symmetric second-order
BAB composition (3.2) and apply it for both splits. For
the HO split, we compute the harmonic part either with
the decomposition (2.27) or in the Hermite basis (4.1) with
different numbers of basis terms.

The parameters, initial conditions, and final times are taken
as previously for Fig. 2. Given a splitting method X, we denote
by XF ,XH , and XH M its implementations with the F split,
the HO split using the Hermite-Fourier method, and the HO
split using M Hermite basis functions in (4.1), respectively.
We measure the error versus the number of exponentials that
can be considered proportional to the computational cost, and
we plot the results in Fig. 3. As expected, HO splits are
advantageous if the system is close to a harmonic oscillator,
i.e., for σ = 0.01,1, and if the initial conditions are accurately
approximated by a few terms in the Hermite expansion. On
the other hand, for strong nonlinearities σ = 100, the Hermite
polynomial-based HO split shows a poor performance, cf.
the large number of basis terms in the right panel of Fig. 3.
We stress that if this technique is used for nonlinearities, the
number of basis terms should be increased along the time
integration, and fixing it bounds the maximally achievable

TABLE II. Coefficients for several splitting methods.

The six-stage fourth-order: RKN64

b1 = 0.082 984 406 417 4052 a1 = 0.245 298 957 184 271
b2 = 0.396 309 801 498 368 a2 = 0.604 872 665 711 080
b3 = −0.039 056 304 922 348 6 a3 = 1/2 − (a1 + a2)
b4 = 1 − 2(b1 + b2 + b3) a4 = a3, a5 = a2, a6 = a1

b5 = b3, b6 = b2, b7 = b1

The four-stage (8,2) method: NI4

b1 = 1/20 a1 = 1/2 − √
3/28

b2 = 49/18 a2 = 1/2 − a1

b3 = 1 − 2(b1 + b2) a3 = a2, a4 = a1

b4 = b2, b5 = b1

The five-stage (8,4) method: NI5

b1 = 0.811 862 738 544 516 a1 = −0.007 586 913 118 774 47
b2 = −0.677 480 399 532 169 a2 = 0.317 218 277 973 169
b3 = 1/2 − (b1 + b2) a3 = 1 − 2(a1 + a2)
b4 = b3, b5 = b2, b6 = b1 a4 = a2, a5 = a1

accuracy and its limit depends on the initial condition and the
strength of the nonlinearity.

The Hermite-Fourier method proposed in this work [using
the composition (2.27)] is clearly superior for weak perturba-
tions, and it maintains a similar performance to the F split for
strong nonlinearities.

Finally, we analyze the performance of different higher-
order splitting methods, which are useful when high accuracies
are desired. The following methods (whose coefficients are
collected in Table II for the convenience of the reader) are
considered:

(i) RKN64 [the six-stage fourth-order method from [9]].
This is a partitioned Runge-Kutta-Nyström method and it is
designed for the case in which [B,[B,[B,A]]] = 0, being the
case for both the F split and the HO split.

(ii) NI(8,2) [the four-stage (8,2) BAB method from [11]].
This method is addressed to perturbed systems. One expects a
high performance if the contribution from B is small.

(iii) NI(8,4) [the five-stage (8,4) BAB method from [11]].

1.5 2 2.5 3 3.5
−6

−5

−4

−3

−2

−1

0

1
σ=0.01, T=100, N=512

log
10

(No. of BC)

lo
g 10

||Ψ
(T

)−
φ(

T
)|

| 2

LF
F

LF
H

LF
H

 10

LF
H

 30

2 2.5 3 3.5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
σ=1, T=100, N=1024

log
10

(No. of BC)

lo
g 10

||Ψ
(T

)−
φ(

T
)|

| 2

LF
F

LF
H

LF
H

 10

LF
H

 30

2.8 3 3.2 3.4 3.6
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

σ=100, T=10, N=1024

log
10

(No. of BC)

lo
g 10

||Ψ
(T

)−
φ(

T
)|

| 2

LF
F

LF
H

LF
H

100

LF
H

150

FIG. 3. (Color online) Error vs the number of basis changes (BC), i.e., Fourier or Hermite transforms, in logarithmic scale for different
splittings for the leapfrog method (2.4).
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FIG. 4. (Color online) Comparison of second-order (upper panel)
and fourth-order (lower panel) methods for the different splittings and
decompositions discussed in the text and σ = 0.01. The curves for
LFH and LFH 30 overlap in the lower panel; the dashed curves are
identical with the solid ones that correspond to the same composition
method X, i.e., XH overlaps with XH 50.

We analyze in Figs. 4–6 the three problems specified in
Fig. 3. In the upper panels, the leapfrog methods (LF) are
compared with the second-order NI(8,2) methods. In the lower
panels, we compare the RKN64 methods against the (8,4)
methods jointly with the best among the previous second-order
methods.

For a weak nonlinearity, when the system can be considered
as a perturbed harmonic oscillator, we clearly observe that
the HO split is superior to the F split. In this case, with a
relatively small number of Hermite functions, it is possible
to approach accurately the solution, but this procedure has a
limited accuracy that can deteriorate along the time integration
and depends on the initial conditions. In addition, the methods
addressed to perturbed problems show the best performance:
The (8,2)H method performs best among the compared
methods when a relatively low accuracy is desired and the
(8,4)H method takes its place for higher accuracies.

2.5 3 3.5 4 4.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
σ=1, T=100, N=1024

log
10

(No. of BC)

lo
g 10

||Ψ
(T

)−
φ(

T
)|

| 2

LF
F

LF
H

LF
H

 30

(8,2)
F

(8,2)
H

(8,2)
H

 30

2.5 3 3.5 4
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

σ=1, T=100, N=1024

log
10

(No. of BC)

lo
g 10

||Ψ
(T

)−
φ(

T
)|

| 2

LF
H

(8,4)
F

(8,4)
H

(8,4)
H

 80

RKN64
F

RKN64
H

RKN64
H

 80

FIG. 5. (Color online) Same as Fig. 4 for σ = 1. In the up-
per panel, LFH and (8,2)H coincide with LFH 30 and (8,2)H 30,
respectively.

Figure 5 shows the results for σ = 1. It is qualitatively
similar to the previous case, yet the HO split does not
outperform the plain F split (2.21) as significantly as before.
Nevertheless, it is important to observe that, again, the best
result is obtained for the HO split. Notice that a higher number
of Hermite basis functions is necessary to achieve the same
accuracy as the Hermite-Fourier decomposition.

Figure 6 shows the results for σ = 100. The HO split
cannot be expected to be particularly useful because the
system is far from being a harmonic oscillator. From Fig. 2,
we expect a great number of Hermite basis functions to be
required for a sufficiently accurate expansion. The results in
Fig. 6 demonstrate this rather intuitive expectation, i.e., almost
negligible precision despite the large number of basis terms
M = 150. Remarkably, the proposed HO decomposition does
not show these limitations and reaches the precision of the
F split (2.21) because we are solving the harmonic potential
exactly up to spectral accuracy. For this problem, we observe
that the LF method has the best performance when a relatively
low accuracy is desired, the (8,4) method shows the best
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FIG. 6. (Color online) Same as Fig. 4 for σ = 100. F splittings
(blue dashed) overlap the corresponding (solid red) Fourier-Hermite
curves.

performance for medium accuracies, and the RKN64 is the
method of choice for higher accuracies.

B. Time-dependent harmonic oscillator perturbed by weak
quartic anharmonicity

We consider now a harmonic oscillator with time-dependent
frequency and perturbed by a weak static quartic anharmonic-
ity,

i
∂

∂t
ψ =

(
1

2
p2 + 1

2
ω2(t)x2

)
ψ + εQ

1

4
x4ψ. (4.2)

We first consider the case ω2(t) = A[1 + ε cos(wt)] with
w = 1/2, A = 4, ε = 0.1, εQ = 0.01. As reference, we take a
highly accurate numerical approximation as the exact solution
and restrict the spatial domain to [−20,20] for all experiments
in this subsection. We compare the Hermite-Fourier method
with the plain Fourier split, since Hermite polynomials are not
appropriate in a time-dependent setting. For fast oscillating
systems and if high accuracy is needed, the two-exponential
fourth-order approximation of the harmonic oscillator (2.14)

can be improved by taking, for example, a higher-order
Magnus expansion (2.13). As we have seen, the solution of

iU ′ =
(

1

2
p2 + 1

2
ω2(t)x2

)
U (4.3)

can be written as

U (t,0) = e−i t
2 [αx2+β(xp+px)+γp2], (4.4)

and we have considered, for example, a sixth-order Magnus
integrator [17] to approximate the evolution operator for one
fractional time step, aih, i.e., U (t,t + aih). This is equivalent
to taking in (4.4) t = aih, and the parameters α,β,γ are
given by

α = 1

18
(5ω1 + 8ω2 + 5ω3) + (aih)2

486

×
[

17

4

(
ω2

1 + ω2
3

) + 8ω2
2 + ω1ω2 + ω2ω3 − 37

2
ω1ω3

]
,

β = aih

√
5

3
(ω3 − ω1)

[
1

12
+ (aih)2

3240
(5ω1 + 8ω2 + 5ω3)

]
,

γ = 1 + (aih)2

54
(ω1 − 2ω2 + ω3)

with ωi = ω(tn + cih), i = 1,2,3, and c1 = 1/2 − √
15/10,

c2 = 1/2, c3 = 1/2 + √
15/10, corresponding to a sixth-order

Gaussian quadrature rule. The obtained operator is then
decomposed according to Theorem II.3.

The results are given in Fig. 7 and corroborate the
superiority of the HO split.
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FIG. 7. (Color online) Comparison of Fourier and Fourier-
Hermite splittings for two fourth order methods. The (red) dashed line
indicates the two-exponential approximation (2.14), the (green) solid
line corresponds to the sixth-order Magnus approximation presented
in the text (4.4). The inset shows the evolution of the harmonic trap
frequency ω(t)2 and the parameters used for the Hamiltonian are
w = 1/2, A = 4, ε = 0.1, εQ = 0.01.
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FIG. 8. (Color online) Compare Fig. 7. The parameters used are
w0 = 4, A = 0.25, and B = 2 with a small anharmonicity εQ = 0.01.

Another interesting example is given by an intense short
pulse modeled via

ω(t) = w0

(
1 + At

cosh2[B(t − 2)]

)
.

Varying the parameters A and B, the pulse can be sharpened
while keeping its time average and hence its strength relative
to the anharmonicity constant. Figure 8 shows the results
obtained for a relatively slow variation of the harmonic
potential, for the parameters w0 = 4,A = 0.25, B = 2. Again,
the advantageousness of the presented decomposition can be
appreciated. It is already noticeable that the error introduced
by the time dependence becomes dominant, and this effect
increases for more rapidly varying potentials, e.g., for B � 1.

In that case, higher-order approximations of the Magnus
expansion are necessary to maintain the benefits of the Hermite
composition.

V. CONCLUSIONS

We have presented Fourier methods for the numerical
integration of perturbations of the time-dependent harmonic
oscillator that are useful for both the Gross-Pitaevskii equation
as well as for the linear Schrödinger equation. Fourier methods
have shown a high performance in solving many different
problems, which can be split into the kinetic part and a
remainder that is diagonal in the coordinate space. We
have extended the Fourier methods to perturbations of the
time-dependent harmonic potential, and we refer to them as
Hermite-Fourier methods. They solve the linear Schrödinger
equation with a time-dependent harmonic potential to the
desired order using corresponding Magnus expansions and
up to the accuracy given by the spatial discretization. These
methods are fast to compute since FFT’s can be applied
and show a high accuracy when the problem is a small
perturbation of the harmonic potential. The methods presented
in this work extend to perturbed harmonic potentials in linear
quantum mechanics, cf. Sec. IV B, where it is straightforward
to generalize the results to higher dimensions.
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