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We present a practical algorithm based on symplectic splitting methods intended for 
the numerical integration in time of the Schrödinger equation when the Hamiltonian 
operator is either time-independent or changes slowly with time. In the later case, 
the evolution operator can be effectively approximated in a step-by-step manner: first 
divide the time integration interval in sufficiently short subintervals, and then successively 
solve a Schrödinger equation with a different time-independent Hamiltonian operator in 
each of these subintervals. When discretized in space, the Schrödinger equation with 
the time-independent Hamiltonian operator obtained for each time subinterval can be 
recast as a classical linear autonomous Hamiltonian system corresponding to a system of 
coupled harmonic oscillators. The particular structure of this linear system allows us to 
construct a set of highly efficient schemes optimized for different precision requirements 
and time intervals. Sharp local error bounds are obtained for the solution of the linear 
autonomous Hamiltonian system considered in each time subinterval. Our schemes can 
be considered, in this setting, as polynomial approximations to the matrix exponential in 
a similar way as methods based on Chebyshev and Taylor polynomials. The theoretical 
analysis, supported by numerical experiments performed for different time-independent 
Hamiltonians, indicates that the new methods are more efficient than schemes based on 
Chebyshev polynomials for all tolerances and time interval lengths. The algorithm we 
present automatically selects, for each time subinterval, the most efficient splitting scheme 
(among several new optimized splitting methods) for a prescribed error tolerance and 
given estimates of the upper and lower bounds of the eigenvalues of the discretized version 
of the Hamiltonian operator.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

When investigating the dynamical behavior of quantum systems of low to moderate dimension, very often it is necessary 
to solve numerically the time-dependent Schrödinger equation (h̄ = 1)

ih̄
∂

∂t
ψ(x, t) = Ĥ(t)ψ(x, t), ψ(x,0) = ψ0(x). (1)
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Here Ĥ(t) is a time-dependent Hamiltonian operator, ψ : Rd × R −→ C is the wave function representing the state of the 
system, and ψ0(x) is the initial state.

We assume that the Hamiltonian operator changes slowly with time, so that the evolution operator can be effec-
tively approximated in a step-by-step manner. We first subdivide the time integration interval in a number of sufficiently 
short subintervals of length τ , and then compute approximations ψk = ψ(·, tk) of the wave function at times tk = kτ , 
k = 1, 2, 3, . . ., by successively solving (1) but now with a time-independent Hamiltonian operator Hk in each of these 
subintervals [tk−1, tk]. As suggested in [10], it is natural to choose the matrix Hk corresponding to a first order Magnus 
approximation [20], namely,

Hk = 1

τ

tk∫
tk−1

Ĥ(t)dt. (2)

Typically, Ĥ(t) = T̂ + V̂ (t), with the kinetic energy operator T̂ = −�/(2μ) for a reduced mass μ > 0 and a time-dependent 
potential V̂ (t), in which case, Hk = T̂ + V k , where V k is the average of V̂ (t) over the interval [tk−1, tk]. Of course, consid-
ering higher order Magnus approximations is also possible [4], and particularly interesting if the Hamiltonian operator Ĥ(t)
does not vary very slowly with time. See for instance [5,16] for other alternatives for the case of strongly time-dependent 
Hamiltonian operators.

When discretized in space, the Schrödinger equation with the time-independent Hamiltonian operator obtained for each 
time subinterval [tk−1, tk] can be recast as a classical linear autonomous Hamiltonian system corresponding to a system of 
coupled harmonic oscillators. Several techniques can be used for the space discretization, depending on the particular prob-
lem one aims to analyze: finite difference schemes, spectral methods based on collocation with trigonometric polynomials, 
Galerkin method with a Hermite basis, etc., both in one or more dimensions (see [19] and references therein). The space 
discretization process restricts the energy range of the approximation and imposes an upper bound to the high frequency 
components represented by the discrete solution.

In any event, once this process has been carried out, one is led to compute uk ∈ C
N for k = 1, 2, 3, . . ., where the 

sequence {uk} now represents a fully discretized version of the wave function ψ(x, t) at the time grids points tk and the N
space grid points, with N usually a large number. Here, uk = u(tk), k = 0, 1, 2, . . ., where u(t) is the solution of

i
d

dt
u(t) = H̃(t) u(t), u(0) = u0 ∈C

N , (3)

H̃(t) is a piecewise constant N × N matrix,

H̃(t) = Hk for t ∈ [tk−1, tk],
and each Hk is a discretized counterpart of the averaged Hamiltonian operator (2). The N × N matrices Hk (and in particular 
its discrete spectra) depends of course on the particular space discretization carried out. We will hereafter assume that each 
Hk is a real symmetric matrix which implies that it can be diagonalized with real eigenvalues.

As H̃(t) is piecewise constant, the initial value problem (3) can be exactly solved in terms of matrix exponentials e−i τ Hk , 
and we are led to compute uk for k = 1, 2, . . . as

uk = e−i τ Hk uk−1. (4)

However, computing e−i τ Hk by diagonalizing the constant matrix Hk (usually, of large dimension and large norm) might be 
exceedingly costly for some problems.

In the present work, we focus on developing efficient approximations to e−i τ H v for arbitrary N × N real symmetric 
matrices H and arbitrary vectors v ∈ C

N by only performing matrix–vector products of the form H v . Our final goal is to 
produce an efficient algorithm that computes e−i τ H v for given τ ∈ R and v ∈ C

N within a prescribed error tolerance with 
a minimum number of matrix–vector products H v . This algorithm is based on symplectic splitting methods.

Of course, the error coming from the approximation to the exponential in (4) is only one of the contributions to the 
error of the global process of constructing the approximation {uk} to the solution of the original problem (1). In addition, 
the space discretization error and the error of the first order Magnus approximation should also be taken into account. 
Depending on the magnitude of the two later error contributions, one should choose more or less stringent error tolerances 
for the approximate computation of the expressions e−i τ Hk uk−1 in (4).

Our approach for approximating e−i τ H v is closely related to other polynomial approximations of the form

e−i τ H v ≈ Pm(τ H)v, (5)

where Pm(y) is a polynomial in y that approximates the exponential e−i y . Here also multiplications of the matrix H with 
vectors v are only involved, and these can be evaluated in complex variables with the complex-to-complex Fast Fourier 
Transform (FFT) algorithm [7,14,15,17]. Different choices for such Pm(y) are available, namely truncated Taylor or Cheby-
shev series expansion of e−i y for an appropriate real interval of y, or a Lanczos approximation, where the polynomial is 
determined by a Galerkin approximation on the Krylov space spanned by v, H v, . . . , Hm−1 v [25].
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The main difference of our procedure with respect to the polynomial approximation (5) is the following. Whereas in (5)
the approximation of e−i τ H v is obtained by computing products of the form H v , where v ∈ C

N , with symplectic splitting 
methods one writes v = q + ip, q, p ∈R

N , and the algorithm proceeds by successively computing real matrix–vector products 
Hq and Hp with different weights. In this way, the real and imaginary parts of e−i τ H v are approximated in a different 
way, with a considerably reduced computational cost. More specifically, if a spatial discretization based on Fourier spectral 
methods is considered, then the cost of computing H v , v ∈ C

N , amounts essentially to one complex-to-complex FFT and its 
inverse, whereas in the case of H v , v ∈ R

N , one has to evaluate one real-to-complex FFT and its inverse complex-to-real 
FFT, and this process requires half the computing time of the fully complex case.

Although initially motivated by the integration in time of the Schrödinger equation (1), the algorithm proposed in this 
paper can indeed be applied to approximate e−i τ H v for any real symmetric matrix H and any complex vector v under the 
same assumptions as the Chebyshev method. As a matter of fact, the theoretical analysis carried out here and supported 
by numerical experiments performed for different real symmetric matrices H , indicates that our new symplectic splitting 
schemes for approximating e−i τ H v are more efficient than schemes based on Chebyshev polynomials for all tolerances 
and values of τ . The algorithm we present automatically selects the most efficient splitting scheme (among several new 
optimized splitting methods) for a prescribed error tolerance, values of τ , and given estimates of the upper and lower 
bounds of the eigenvalues of the matrix H , Emin and Emax. As a result, it turns out to be between 1.4 and 2 times faster 
than the Chebyshev method for the same accuracy. In addition, the favorable geometric properties of symplectic splitting 
methods [3] result (compared to Chebyshev) in reduced energy and unitarity errors for large values of τ . The computation 
of the coefficients of the schemes, which constitutes a non-trivial task by itself, is largely based on the stability and error 
analysis of splitting methods carried out in [2,3].

In recent years several efficient numerical integration techniques for the time integration of the linear and nonlinear 
Schrödinger equation have been proposed and analyzed. We can mention, in particular, the so-called unitary split operator 
algorithms, which take advantage of the usual separation of the Hamiltonian into kinetic and potential energy, H = T + V , 
to construct compositions of the form e−ibmτ V e−iamτ T · · · e−ib1τ V e−ia1τ T , where {ai, bi} are appropriately chosen real coef-
ficients [12,29,23,30]. In the context of disordered systems, the resulting discrete nonlinear Schrödinger equation has been 
integrated by high order symplectic schemes in [22] and [26]. In this last reference, methods designed by the present 
authors for near integrable Hamiltonians [1] have been shown to be quite efficient for this problem. However, all the theo-
retical results concerning the error analysis of unitary split operator methods we have found in the literature, in contrast to 
Chebyshev based methods or symplectic splitting methods, depend on some assumptions on the smoothness of the initial 
state.

The plan of the paper is the following. Since our procedure, in contrast with the above mentioned techniques, may be 
considered as an alternative to the Chebyshev method, in Section 2 we summarize the main features of the schemes based 
on this polynomial approximation of e−iτ H v . In Section 3 we perform an error analysis of symplectic splitting methods 
in this context, and the actual algorithm is presented in Section 4. Next, the efficiency of our algorithm for approximating 
e−iτ H v is compared with Chebyshev (and Taylor as a reference) in Section 5 on a pair of selected numerical examples 
involving constant matrices H .

2. Polynomial approximations

2.1. General considerations

As we have seen, to get the solution of the discretized version (3) of the Schrödinger equation (1), one has to compute 
uk = u(tk) for k = 1, 2, 3, . . .. This is done by successively evaluating in (4) the product of a matrix exponential e−i τ Hk

with a vector uk−1 ∈ C
N . Here, τ is the length of the subintervals [tk−1, tk]. In what follows, we focus on the approximate 

computation of e−i τ H v for given N × N real symmetric matrix H , complex vector v ∈C
N , and τ ∈R. We will refer to τ as 

the target time-step.
Assume that Pm(y) is an mth degree polynomial approximating the function e−i y in some sense. Then, e−i τ H v can be 

approximated by Pm(τ H) v , with an error that is bounded (in Euclidean norm) as

‖Pm(τ H) v − e−i τ H v‖ ≤ ‖Pm(τ H) − e−i τ H‖‖v‖
≤ max

j=0,1,...,N−1
|Pm(τ E j) − e−i τ E j | ‖v‖

in terms of the (real) eigenvalues E0, . . . , E N−1 of H . Assuming that the spectrum σ(H) = {E0, . . . , E N−1} is contained in an 
interval of the form [Emin, Emax], then

‖Pm(τ H) − e−i τ H‖ ≤ sup
τ Emin≤y≤τ Emax

|Pm(y) − e−i y|.

There are several possibilities to estimate Emax and Emin for different classes of matrices (see e.g. [11,21,31,32]). If H
can be decomposed as the sum H = T + V of two symmetric matrices with known lower and upper bounds for their 
eigenvalues, Emin (resp. Emax) can be simply obtained as the sum of the lower (resp. upper) bounds of the eigenvalues of 
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T and V . This happens, in particular, when the Hamiltonian operator Ĥ = −�/(2μ) + V̂ is discretized by spectral Fourier 
collocation with N Fourier modes, in which case

Emin = min
x

V (x), Emax = 1

2μ

N2

4
+ max

x
V (x). (6)

In any case, once Emin and Emax have been determined, we introduce

α = Emax + Emin

2
, β = Emax − Emin

2
, H = H − α I, (7)

so that the spectrum of the shifted operator H is contained in an interval centered at the origin, σ(H) = {E0 − α, . . . ,
E N−1 − α} ⊂ [−β, β]. We thus have

e−i τ H v = e−i τ α e−i τ H v. (8)

Hence, we will hereafter assume without loss of generality that our problem consists in approximating e−i τ H v for a real 
symmetric matrix H with σ(H) ⊂ [−β, β]. In that case,

‖Pm(τ H) − e−i τ H‖ ≤ εm(β τ ) (9)

where

εm(θ) ≡ sup
−θ≤y≤θ

|e−i y − Pm(y)|. (10)

2.2. Taylor polynomial approximation

The mth degree Taylor polynomial P T
m(y) corresponding to e−i y is of course

P T
m(y) ≡

m∑
k=0

(−i)k

k! yk, (11)

and Horner’s algorithm provides an efficient way to compute the approximation v∗ = P T
m(τ H)v of e−i τ H v , namely

y0 = v

do k = 1,m

yk = v − i
τ

m + 1 − k
H yk−1

enddo
v∗ = ym.

(12)

The process requires storing three complex vectors (or equivalently, 6 real vectors).
An error estimate of the form (9) can be obtained with εm(θ) in (10) replaced by its upper bound

εT
m(θ) ≡ θm+1

(m + 1)! . (13)

Since m! ∼ √
2πm (me)m for large values of m [24], we can write

εT
m(θ) ∼ 1

e
√

2πm

(
θ e

m

)m+1

.

In consequence, we cannot expect to have a reasonably accurate approximation P T
m(τ H)v of e−i τ H v unless

m > e θ = eβ τ .

In other words, increasing the value of the target time-step τ and/or refining the spatial discretization (so that β gets larger) 
requires evaluating a higher degree Taylor polynomial.
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Fig. 1. Comparison of the required minimum polynomial degree m as function of θ = βτ for Taylor (dashed line) and Chebyshev (continuous line) for 
different values of error tolerance: tol= 10−4, 2 ×10−7, 10−11. Diamonds, squares and circles stand for the computational cost (equivalent to a polynomial 
approximation of degree m) for error tolerances below 10−4, 2 × 10−7 and 10−11, respectively, obtained with symplectic splitting schemes in Table 1.

2.3. Chebyshev polynomial approximation

The Chebyshev polynomial expansion scheme, proposed for the first time in the context of the Schrödinger equation 
in [27], constitutes a standard tool to approximately compute (4). A detailed analysis of the procedure, including error 
estimates for the problem at hand, can be found in [19]. For completeness, we review here some of its main features.

The mth degree truncation of the Chebyshev series expansion of e−i y in the interval y ∈ [−θ, θ] is given by

P C
m,θ (y) ≡ J0(θ) + 2

m∑
k=1

(−i)k Jk(θ) Tk(y/θ), (14)

where for each k, Jk(t) is the Bessel function of the first kind [24] and Tk(x) is the kth Chebyshev polynomial generated 
from the recursion

Tk+1(x) = 2xTk(x) − Tk−1(x), k ≥ 1 (15)

and T0(x) = 1, T1(x) = x. According with the analysis in [19], e−i τ H v can be approximated by P C
m,βτ (τ H)v with an error 

estimate of the form (9), where εm(θ) in (10) is replaced by its upper bound

εC
m(θ) ≡ 4

(
e1−θ2/(2m+2)2 θ

2m + 2

)m+1

. (16)

In Fig. 1 we depict the minimum degree m as a function of θ = βτ of Chebyshev approximations for prescribed tolerances 
tol= 10−4, 2 × 10−7, 10−11, so that εC

m(βτ ) ≤ tol (continuous lines) in comparison with the corresponding degree m for 
Taylor approximations (dashed lines) such that εT

m(βτ ) ≤ tol. Notice that Chebyshev always gives a similar accuracy with 
a lower degree polynomial (hence, with less computational cost), with a gain in efficiency of up to a factor of two for 
sufficiently large values of θ = βτ .

Once the degree of the polynomial m has been chosen, given a certain error tolerance, target time-step τ , and bound β
of σ(H), one has to compute P C

m,βτ (τ H) v as efficiently as possible. This can be done with the Clenshaw recursive algorithm 
as follows: first evaluate the coefficients ck = (−1)k Jk(βτ ) for k = 0, 1, . . . , m and then compute recursively

dm+2 = 0, dm+1 = 0

do k = m,m − 1, . . . ,1,0

dk = ck v + 2
β

Hdk+1 − dk+2

enddo
v∗ = d0 − d2,

(17)

which produces v∗ ≡ P C
m,βτ (τ H) v ≈ e−i τ H v as output. Clenshaw algorithm keeps only four complex vectors in memory,1

but the whole procedure has to be carried out for each value of m. Since the coefficients ck are relatively small as k grows, 
the Clenshaw algorithm is stable and so it is possible to work with polynomials of very high degree (even in the thousands) 
provided the Bessel functions are accurately computed.

1 If the vectors are written in their real and imaginary part, and the algorithm is carried out in real variables, then the algorithm needs to store only 
seven real vectors instead of eight.
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3. Symplectic splitting methods

3.1. General considerations

An alternative to Chebyshev polynomial approximations of e−i τ H v first considered in [9,10] consists in applying specially 
designed splitting methods to numerically integrate the system

i
d

dt
u = Hu, (18)

recast in a more suitable form: By considering

z =
(

Re(u)

Im(u)

)
∈R

2N ,

equation (18) is equivalent to

d

dt
z = (A + B)z, (19)

where

A =
(

0 H
0 0

)
, B =

(
0 0

−H 0

)
. (20)

Thus, computing v∗ = e−i τ H v , where v = q + ip and v∗ = q∗ + ip∗ , is equivalent to evaluating(
q∗
p∗

)
= eτ (A+B)

(
q
p

)
.

The matrix exponential eτ (A+B) can be written as O (τ H) in terms of the orthogonal and symplectic matrix

O (y) =
(

cos(y) sin(y)

− sin(y) cos(y)

)
. (21)

To introduce general symplectic splitting methods in this setting, let us first show how the well known Strang splitting 
can be used to approximate e−i τ H v . Let m be a sufficiently large positive integer, so that for �τ = τ/m, we consider the 
approximation

e�τ(A+B) ≈ e
�τ
2 A e�τ B e

�τ
2 A .

It is then clear that

eτ (A+B) =
(

e�τ (A+B)
)m

≈
(

e
�τ
2 A e�τ B e

�τ
2 A

)m

= e
�τ
2 A

(
e�τ B e�τ A

)m−1
e�τ B e

�τ
2 A,

or equivalently,

O (τ H) = eτ (A+B) ≈ K (τ H) = eτ am+1 A eτ bm B eτ am A · · · eτ b1 B eτ a1 A, (22)

with

(a1,b1,a2, . . . ,am,bm,am+1) =
(

1

2m
,

1

m
,

1

m
, . . . ,

1

m
,

1

m
,

1

2m

)
. (23)

Due to the nilpotent structure of the matrices A and B in (20), the exponentials in the definition (22) of K (τ H) take a 
particularly simple form, namely

eτ a j A =
(

I a j τ H
0 I

)
, eτ b j B =

(
I 0

−b j τ H I

)
. (24)

This analysis shows that the approximation (22) can be used to approximately compute v∗ = e−i τ H v with the following 
procedure, similar in nature and equivalent in computing time to the Horner (12) and Clenshaw (17) algorithms: Given 
v ∈C

N ,
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q := Re(v),

p := Im(v),

do k = 1,m

q := q + ak τ H p

p := p − bk τ H q

enddo
q := q + am+1 τ H p

v∗ := q + ip,

(25)

producing v∗ ≈ e−i τ H v as output. Notice that it only requires storing three real vectors of dimension N (namely q, p, and 
w = Hp or w = Hq) instead of seven real vectors for the Clenshaw algorithm and six real vectors for the Horner algorithm. 
It is worth remarking that, since eA and eB are symplectic matrices, K (τ H) is also symplectic.

In practice, and in the same way as other polynomial approximations, it is convenient to apply Algorithm (25) with the 
original H replaced by the shifted version H considered in (7) (and then make use of the equality (8)), so that the spectrum 
of H is contained in an interval of the form [−β, β] with β as sharp as possible. Therefore, in what follows we always 
assume that σ(H) ⊂ [−β, β].

Although Algorithm (25) with coefficients (23) can be used in principle to approximate e−i τ H v , we next show that, 
for given values of m and θ = βτ , much better approximations can be obtained if other sequences of coefficients 
(a1, b1, a2, . . . , am, bm, am+1) are chosen instead. To see how this can be done, an error estimate of the corresponding ap-
proximation (22) is necessary first.

3.2. Error analysis

For a given finite sequence of real numbers

(a1,b1,a2, . . . ,am,bm,am+1), (26)

Algorithm (25) produces an approximation of the form(
q∗
p∗

)
= K (τ H)

(
q
p

)
≈ eτ (A+B)

(
q
p

)
,

or equivalently, q∗ + i p∗ ≈ e−i τ H (q + i p), with

K (τ H) =
(

K11(τ H) K12(τ H)

K21(τ H) K22(τ H)

)
. (27)

Here K11(y), K22(y) are even polynomials of degree 2m, K12(y) and K21(y) are odd polynomials of degree 2m − 1 and 
2m + 1 respectively, and det K (y) = K11(y)K22(y) − K12(y)K21(y) ≡ 1. It is important to remark that for a given posi-
tive integer m, compared to Horner’s (12) and Clenshaw’s (17) algorithms, the degree of the polynomials involved in an 
m-stage splitting method (26) is twice the degree of the corresponding Taylor and Chebyshev polynomials, with the same 
computational cost.

3.2.1. Error estimates for a single application of a splitting method
We next focus on obtaining upper bounds for the error

‖(q∗ + i p∗) − e−i τ H (q + i p)‖ =
∥∥∥∥K (τ H)

(
q
p

)
− O (τ H)

(
q
p

)∥∥∥∥
≤ ‖K (τ H) − O (τ H)‖ ‖q + i p‖

in Euclidean norm. Since H is assumed to be a real symmetric matrix, it can be diagonalized as

H = P T

⎛⎜⎜⎜⎝
E0 0 · · · 0
0 E1 · · · 0

0 0
. . . 0

0 · · · 0 E N−1

⎞⎟⎟⎟⎠ P ,

where P is an orthogonal N × N matrix. We thus have

K (τ H) − O (τ H) = P T E P ,
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where E is the block-diagonal matrix (with 2 × 2 matrices at the diagonal)⎛⎜⎜⎜⎝
K (τ E0) − O (τ E0) 0 · · · 0

0 K (τ E1) − O (τ E1) · · · 0

0 0
. . . 0

0 · · · 0 K (τ E N−1) − O (τ E N−1)

⎞⎟⎟⎟⎠ ,

and therefore

‖K (τ H) − O (τ H)‖ ≤ ‖E‖ = max
j=0,1,...,N−1

‖K (τ E j) − O (τ E j)‖.

Since |E j | ≤ β , j = 0, 1, . . . , N − 1, we finally arrive at

‖(q∗ + i p∗) − e−i τ H (q + i p)‖ ≤ ε(β τ )‖q + i p‖, (28)

where

ε(θ) = sup
−θ≤y≤θ

‖K (y) − O (y)‖. (29)

By taking into account that det K (y) ≡ 1, the 2-norm of the 2 × 2 matrix K (y) − O (y) can be explicitly computed to give

‖K (y) − O (y)‖ =
√

(C(y) − cos(y))2 + (S(y) − sin(y))2 +
√

C(y)2 + S(y)2 − 1,

where

C(y) = 1

2
(K11(y) + K22(y)), S(y) = 1

2
(K12(y) − K21(y)). (30)

Notice that det K (y) ≡ 1 implies

C(y)2 + S(y)2 − 1 = 1

4
(K11(y) − K22(y))2 + 1

4
(K12(y) + K21(y))2

and thus C(y)2 + S(y)2 − 1 ≥ 0 for all real values of y.

3.2.2. Error estimates for several steps of a splitting method
Ideally, given a positive integer m and θ = β τ > 0, one would like to determine a sequence (26) of real numbers 

so that ε(θ) is minimized. The error bound ε(θ) being small implies that the (2m)th degree polynomial C(y) (resp. the 
(2m + 1)th degree polynomial S(y)) is a good polynomial approximation of cos(y) (resp. sin(y)) for y ∈ [−θ, θ], which 
implies that increasingly large values of θ = β τ will require longer sequences of coefficients (that is, larger values of m), 
and consequently more computational work. The situation here is in complete analogy with what happened to Taylor and 
Chebyshev polynomial approximations in the previous section.

By applying the methodology exposed in [3] we have determined several sequences (26) of length 2m + 1 of (near-to-
optimal) coefficients for m up to 60. The procedure is described in detail in Appendix A. As shown there, the task is by 
no means trivial, and severe technical difficulties arise when trying to extend the procedure to arbitrarily large values of 
θ = β τ (and hence arbitrarily long sequences of coefficients). This is in contrast with Taylor and Chebyshev approximations.

This drawback can always be circumvented by approximating the solution z(τ ) = O (τ H)z(0) of the system of ordinary 
differential equations (19) in the standard step-by-step way. In our case, approximating z(τ ) in n substeps of length

�τ = τ

n

simply consists in approximating O (τ H)z(0) = O (n �τ H)z(0) = O (�τ H)nz(0) by the vector K (�τ H)nz(0), where K (y)

is a 2 × 2 matrix with polynomial entries (defined in terms of the sequence (26) as before) that should approximate the 
rotation matrix O (y) for y ∈ [− β τ

n , β τ
n ].

Clearly, the resulting procedure for approximating e−i τ H v can be written as an algorithm of the form (25), corresponding 
to a sequence of coefficients (with a (2m)-periodic pattern) of length 2nm + 1. The corresponding error can be estimated as

‖(q∗ + i p∗) − e−i τ H (q + i p)‖ ≤ ‖K (�τ H)n − O (n�τ H)‖‖q + i p‖
≤ ε(n)(β �τ)‖q + i p‖, (31)

where

ε(n)(θ) = sup ‖K (y)n − O (n y)‖.

−θ≤y≤θ
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Table 1
Relevant parameters of several symplectic splitting methods especially designed to approximate e−i τ H v with one or more substeps of scaled length 
θ/m = β �τ/m. Here y∗ stands for the stability threshold and ε(θ), μ(θ), ν(θ), and δ(θ) (for θ = β�τmax) are the coefficients (appearing in the error 
estimates obtained in Subsection 3.2) given in (29), (32), and (35) respectively.

M(θ/m)
m m θ = β�τmax y∗/m ε(θ) μ(θ) ν(θ) δ(θ)

M(0.5)
10 10 5 0.63 3.6 × 10−8 8.7 × 10−11 9.8 × 10−8 3.6 × 10−8

M(0.9)
10 10 9 0.94 3.4 × 10−5 2.9 × 10−5 1.1 × 10−5 6.0 × 10−6

M(0.6)
20 20 12 0.79 1.6 × 10−13 1.4 × 10−13 5.8 × 10−14 2.5 × 10−14

M(1)
20 20 20 1.1 4.1 × 10−7 1.8 × 10−8 4.8 × 10−7 4.0 × 10−7

M(0.75)
30 30 22.5 0.84 8.1 × 10−15 3.3 × 10−16 1.5 × 10−14 7.9 × 10−15

M(1)
30 30 30 1.0 4.1 × 10−10 1.9 × 10−10 3.1 × 10−10 2.6 × 10−10

M(1.3)
30 30 39 1.36 2.3 × 10−5 5.2 × 10−6 2.2 × 10−5 2.0 × 10−5

M(1)
40 40 40 1.1 1.8 × 10−12 4.9 × 10−14 2.4 × 10−12 1.8 × 10−12

M(1.2)
40 40 48 1.26 2.1 × 10−8 2.1 × 10−8 5.3 × 10−10 4.7 × 10−10

M(1.4)
40 40 56 1.48 1.48 × 10−5 4.0 × 10−6 1.7 × 10−5 1.7 × 10−5

M(1)
50 50 50 1.07 4.5 × 10−15 4.5 × 10−15 2.0 × 10−17 1.8 × 10−17

M(1.1)
50 50 55 1.13 4.5 × 10−13 4.2 × 10−13 4.1 × 10−14 3.5 × 10−14

M(1.2)
50 50 60 1.26 5.4 × 10−11 2.7 × 10−11 3.8 × 10−11 3.4 × 10−11

M(1.3)a
50 50 65 1.32 1.2 × 10−8 1.2 × 10−8 8.3 × 10−10 7.6 × 10−10

M(1.3)b
50 50 65 1.32 5.9 × 10−7 9.5 × 10−11 6.1 × 10−7 5.9 × 10−7

M(1.1)
60 60 66 1.15 7.2 × 10−15 7.2 × 10−15 2.6 × 10−17 2.2 × 10−17

M(1.2)a
60 60 72 1.3 1.5 × 10−12 1.1 × 10−12 8.3 × 10−13 7.5 × 10−13

M(1.2)b
60 60 72 1.26 4.2 × 10−11 6.5 × 10−14 4.6 × 10−11 4.2 × 10−11

M(1.3)
60 60 78 1.36 1.2 × 10−9 7.8 × 10−11 1.2 × 10−9 1.2 × 10−9

M(1.4)a
60 60 84 1.41 8.4 × 10−8 2.4 × 10−8 7.4 × 10−8 7.1 × 10−8

M(1.4)b
60 60 84 1.46 2.9 × 10−6 3.7 × 10−9 2.9 × 10−6 2.9 × 10−6

Strang 1 1 2 1.8 × 10−1 4.7 × 10−2 1.5 × 10−1 1.3 × 10−1

Strang 1 1.4 2 5.1 × 10−1 1.5 × 10−1 4.0 × 10−1 4.0 × 10−1

Strang 1 1.9 2 1.34862 0.606472 2.4894 1.1746

Our goal is then to minimize ε(n)(θ). A reasonable requirement is that K (y)n be bounded for all n. This only happens 
in general for a certain range of values of y. One thus defines the stability threshold y∗ as the largest non negative real 
number such that K (y)n is bounded independently of n ≥ 1 for all y ∈ (−y∗, y∗) [2]. In particular, for the sequence (23)
corresponding to the application of m steps of the Strang splitting, the stability threshold is y∗ = 2m. As a matter of fact, 
2m is precisely the maximal stability threshold a sequence of coefficients (26) of length 2m + 1 can achieve [13].

From the analysis carried out in [3], it is possible to show that

‖K (y)n − O (n y)‖ ≤ 2| sin(n(arccos(C(y)) − y)/2)| +
√

S(y)2

1 − C(y)2
− 1 + 1

2

(
S(y)2

1 − C(y)2
− 1

)
,

provided that y ∈ [−y∗, y∗]. This implies that, if β �τ ≤ y∗ , then

‖K (�τ H)n − O (n�τ H)‖ ≤ sup
−β �τ≤y≤β �τ

‖K (y)n − O (n y)‖ = ε(n)(β �τ)

≤ nμ(β �τ) + ν(β �τ), (32)

where

μ(θ) = sup
−θ≤y≤θ

|arccos(C(y)) − y|, (33)

ν(θ) = sup
−θ≤y≤θ

√
S(y)2

1 − C(y)2
− 1 + 1

2

(
S(y)2

1 − C(y)2
− 1

)
. (34)

As mentioned before, we have determined several optimized splitting methods of m stages (determined by a sequence 
of coefficients (26) of length 2m + 1) for m up to 60. The relevant parameters of such splitting methods are collected in 
Table 1. In this table, M(γ )

m refers to a method of m stages, with error coefficients ε(θ), μ(θ), ν(θ) optimized for θ = γ m. 
For instance, method M(1.3) can be used to approximate e−iτ H v with an error bounded (according to (28) and Table 1) 
60
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by 1.2 × 10−9‖v‖ provided that τ ≤ 78/β . Furthermore, e−iτ H v can be approximated by applying n substeps of length 
�τ = τ/n ≤ �τmax := 78/β of method M(1.3)

60 with an error bounded (according to (32)) by

(7.8n × 10−11 + 1.2 × 10−9)‖v‖.
In some cases two methods with the same values of m and γ = θ/m have been collected, in which case they are labeled 

a and b. For instance, methods M(1.4)a
60 and M(1.4)b

60 are both designed to approximate e−iτ H v with n substeps of length 
�τ = τ/n ≤ �τmax := 84/β of the method. However, they differ in the actual error estimate (32): in the first case, the error 
is bounded (provided that β|τ | ≤ 84n) by (2.4n × 10−8 + 7.4 × 10−8)‖v‖, while the second one admits the error estimate 
(3.7n × 10−9 + 2.6 × 10−6)‖v‖. This means that method M(1.4)a

60 will be more efficient if β|τ | ≤ 10 452, and the opposite 
otherwise.

Thus, given the upper bound β of the spectral radius of H and the target time-step τ , if one wants to approximate 
e−i τ H v by applying n substeps of method M(1.4)a

60 , one should choose the smallest positive integer n such that

τ

n
≤ �τmax := 84

β
, that is, n = Ceiling[τβ/84].

For instance, suppose the target time-step τ and the bound β are such that τβ = 1000. Then, clearly, n = 12, so that 12 
substeps of scheme M(1.4)a

60 have to be applied with �τ = 1000/(12β) 
 83.3/β to achieve the target time-step τ . In this 
way one gets an approximation with estimated error of size 3.62 × 10−7 ‖v‖ with a computational work (2nm = 2 × 12 ×
60 = 1440 real matrix–vector products of the form H v) comparable to the use of a Chebyshev polynomial approximation of 
degree 720. In contrast, to guarantee a similar precision with Chebyshev, a polynomial of degree at least 1135 is required, 
since this is the minimum value of m such that εC

m(1000) ‖v‖ ≤ 3.62 × 10−7 ‖v‖, with εC
m(θ) given in (16).

It is worth remarking the error coefficients for Strang splitting method (23) with the same value of γ = θ/m = 1.4 (also 
collected in Table 1) are much larger than for methods M(1.4)a

60 and M(1.4)b
60 .

3.2.3. Error estimates for combined splitting methods
Sometimes it is just more efficient to apply a combination of two different methods instead of n substeps of the same 

scheme. For instance, suppose that τβ = 177 and we have an error tolerance of tol = 10−7. If we use M(1.4)a
60 then 

τβ/84 
 2.1 so that, according with the previous considerations, method M(1.4)a
60 has to be used with n = 3 substeps 

of size �τ = 59/β , much smaller than the value �τmax = 84/β for which the scheme has been designed. This would 
result in an approximation fulfilling the required error tolerance obtained with 360 real matrix–vector products of the 
form H v . A better strategy would be the following: apply two substeps of scheme M(1.4)a

60 with �τmax = 84/β to approx-
imate w = e−i 2�τmax H v and then approximating e−i (τ−2�τmax) H w by using some other method with less stages. More 
generally, we take n = Floor[τβ/84] substeps of length �τmax = 84/β to get w = e−i n�τmax H v and then we approximate 
e−i (τ−n�τmax) H w with another method of Table 1 involving less stages.

To decide which method has to be used for this last substep, we need an error estimate for the approximation obtained 
with such a combination of two methods. Assume that we apply n substeps of length �̂τ of a method characterized by a 
2 × 2 matrix K̂ (y) with polynomial entries, followed by a step of length �τ of a method characterized by the matrix K (y), 
where τ = n�̂τ +�τ . From the preceding considerations, it is enough to estimate ‖K (�τ H)K̂ (�̂τ H)n − O (τ H)‖. This can 
be done in terms of the functions μ̂(θ), ν̂(θ) associated to K̂ (y) as defined in Subsection 3.2.2, and the error function ε(θ)

associated to K (θ) as in Subsection 3.2.1, together with the following function associated to K (y):

δ(θ) = sup
−θ≤y≤θ

‖K (y)‖ − 1. (35)

Indeed, one obtains the following error estimate:

‖K (�τ H)K̂ (�̂τ H)n − O (τ H)‖ ≤ ‖K (�τ H) − e−i �τ H‖‖O (n�̂τ H)‖
+ ‖K (�τ H)‖‖K̂ (�̂τ H)n − O (n�̂τ H)‖

≤ ε(�τβ) + (1 + δ(�τβ))(n μ̂(�̂τ β) + ν̂(�̂τ β)).

Since, as it can be noticed in Table 1, δ(θ) 
 ε(θ) � 1, then we can take simply

‖K (�τ H)K̂ (�̂τ H)n − O (τ H)‖ � ε(�τ β) + n μ̂(�̂τ β) + ν̂(�̂τ β). (36)

It is worth remarking that such an approximation will require 2(nm̂ + m) + 1 real matrix–vector products of the form H v , 
and thus is equivalent in complexity to the application of a (Chebyshev or Taylor) polynomial approximation of degree 
nm̂ + m.



406 S. Blanes et al. / Journal of Computational Physics 303 (2015) 396–412
4. The final algorithm

Once a set of symplectic splitting methods constructed for providing approximations under different conditions are avail-
able (methods collected in Table 1) we still have to design a strategy to select the most appropriate scheme or combination 
of schemes to approximate e−i τ H v with the desired accuracy and a as small as possible computational cost.

The user has to provide the values for Emin and Emax, a subprogram to compute the product H v for a given real vector v , 
the target time-step τ and the desired error tolerance tol. The procedure then implements the shifting (7), computes the 
value of β and determines the normalized Hamiltonian H .

Next, the algorithm determines the most efficient method (or composition of methods) among the list of available 
schemes which provides the desired result: it chooses the cheapest method with error bounds below such tolerance and, 
if several methods with the same computational cost (same value of m) satisfy this condition, the algorithm chooses the 
scheme with the smallest error bound. This can be achieved if one starts the search from the methods with the smallest 
value of m and, for each value of m, proceeds by decreasing accuracy, i.e. by increasing the value of θ = β�τmax. For a given 
value of β τ and tol the algorithm checks for each method if β τ ≤ θ and, if this condition is satisfied, then it examines if 
ε(θ) < tol. This procedure corresponds to the sequence of methods collected in Table 1 from top to bottom.

When applying our algorithm in the context of the time integration of the Schrödinger equation with Hamiltonian 
operators that changes (slowly) with time, βτ will be typically relatively small, and some of the methods from the table 
will satisfy both conditions for β τ and tol. However, for other applications (in particular when solving the Schrödinger 
equation with time-independent Hamiltonian operators), it may happen that none of the methods from the table satisfy 
both conditions for β τ and tol. Then the time integration is split, i.e. β τ is divided and a composition of one or several 
methods is used instead.

Due to the high performance of the methods with the largest number of stages (in this case 60) the algorithm examines 
the cost of n steps for the six 60-stage methods where n = Floor[β τ/�τmaxβ] and the last step is carried using one 
method from the list of methods. It chooses the cheapest methods with the smaller error bound among the composition of 
methods which provide the desired accuracy.

In this way, if we denote by K (γ )
m the matrix associated to method M(γ )

m , then the resulting splitting method corresponds 
to the composition

K (γ2)
m (�τβ)

(
K̂ (γ1)

60 (�̂τβ)
)n1

, (37)

where the algorithm chooses the methods (labeled by γ1, γ2, m), the time steps, �τ, ̂�τ , and the value of n1, where n1 = 0
if the method uses just one step. If n1 > 0 the error bound is given by (36) while for n1 = 0 the error bound is just ε(τ β).

This strategy has been implemented as a Fortran code which is freely available for download at the website [28], together 
with some notes and examples illustrating the whole procedure.

In order to compare the efficiency of the resulting algorithm with the polynomial approximations based in Taylor and 
Chebyshev with the error estimates collected in Table 1 we have represented in Fig. 1 the computational work (equivalent to 
a polynomial approximation of degree m) required for different tolerances and values of βτ . Diamonds, squares and circles 
correspond to the error tolerances 10−4, 2 · 10−7 and 10−11, respectively, obtained with one or several steps of schemes 
in Table 1. Notice that our algorithm based on symplectic splitting methods provide better accuracy with a considerably 
reduced computational effort.

Some comments are in order here. First, if the present algorithm to compute e−iτ H v is used in the context of the 
time integration of the Schrödinger equation with a time-dependent Hamiltonian, as outlined in the Introduction, the value 
of τ = tk+1 − tk needs to be relatively small. Otherwise the Magnus approximation may not be sufficiently accurate. In 
that case we suggest to choose τ in such a way that βτ ≤ 84 (or 78 or 72, depending on the required accuracy in the 
approximation) so that the algorithm uses only one step for its computation. For instance, if τ = 160/β and tol = 10−6, 
then the algorithm will use two substeps of length �τ = τ/2 of the method M(1.4)a

60 with the same matrix Hk to advance the 
solution of (3) from time t = tk−1 to t = tk . However, the same computational effort and precision for the evaluation of the 
exponentials will result if one halves the length of the time-step, while the error associated to the Magnus approximation 
will be smaller in that case (about four times smaller in the case of the first order Magnus approximation). Second, if the 
space discretization has an increasingly high resolution, then the dimension of the resulting matrix H increases accordingly 
and βτ may take large values. Our algorithm has also been designed to cover this situation, as the examples in the next 
section illustrate.

5. Numerical examples

Next we apply the algorithm based on symplectic splitting methods presented in Section 3 to two different examples 
and compare its main features with Chebyshev and Taylor polynomial approximations. For the first example, previously con-
sidered in [19] to illustrate Chebyshev and Lanczos approximations, we provide in addition the codes we have produced to 
generate the results and figures collected here. These can be found at [28]. The second example illustrates the performance 
of the methods on a one-dimensional Schrödinger equation with a smooth potential.
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Fig. 2. Different approximations to e−iτβH v , with H given in (38)–(39), v a random vector, β = 1 and τβ = 20 versus the degree of the polynomials, m. 
The figure shows the relative error in energy (dashed lines), the error in unitarity (solid lines) and error bounds (dotted lines) for Chebyshev and Taylor 
methods. The results for the first two splitting methods with βτmax ≥ βτ = 20, M(1)

20 and M(0.75)
30 , are also shown: relative error in energy (filled squares), 

error in unitarity (filled squares) and error bounds (crosses).

Example 1. The problem consists in computing u(τ ) = exp(−iτ H̃)v with v ∈ C
N a unitary random vector and the tridiagonal 

matrix

H̃ = 1

2

⎛⎜⎜⎜⎜⎜⎝
2 −1

−1 2 −1
. . .

−1 2 −1
−1 2

⎞⎟⎟⎟⎟⎟⎠ ∈R
N×N . (38)

The eigenvalues of H̃ verify 0 ≤ Ek ≤ 2 for all k, so that we can take Emin = 0, Emax = 2, and thus α = β = 1 in (7). In 
consequence, the problem reduces to approximate

e−iατ e−iβτ H v, where H = H̃ − I. (39)

We take N = 10 000 for the numerical experiments, but the results are largely independent of N (this is so even for the 
simplest, scalar case N = 1).

Both Chebyshev and Taylor methods have been implemented in such a way that only real valued matrix–vector products 
are used (we always separate into the real and imaginary parts, i.e. Hu = H(q + i p) = Hq + i Hp), so that Chebyshev requires 
to store only 7 real vectors instead of 4 complex vectors.

We take as final time τ = 20 and measure the error in energy, the error in the preservation of unitarity and the tolerance 
for different values of m, the degree of the corresponding polynomials. The results are shown in Fig. 2 with the following 
notation: dashed lines for the relative error in energy, solid lines for the error in unitarity, and dotted lines for the theoretical 
error bounds of the approximate solutions.

From the figure it is clear that the theoretical error bounds for the Taylor method are quite accurate for this example 
(since the bounds for Emin and Emax are sharp) and that for the effective time-step τβ considered, the error is exceedingly 
large for m below reaching the super linear convergence regime. This is not the case for the Chebyshev method (notice that 
the estimate (16) is valid only for m > τβ) since the coefficients ck of the polynomial (17) do not grow as much as in Taylor. 
We also depict the results achieved by the first two splitting methods with τmaxβ ≥ τβ = 20, M(1)

20 and M(0.75)
30 . For these 

schemes the corresponding relative error in energy is represented by filled squares, the error in unitarity by filled circles 
and the error bounds by crosses.

The relative performance of different numerical integrators is usually tested by measuring the error of the methods 
versus their computational cost. However, the splitting methods we are considering in this work are designed to achieve 
a given tolerance, whereas their computational cost is determined through the error bound estimate. For this reason, we 
believe it is more appropriate to measure the cost of the methods for different values of the tolerance. In particular, we take 
tol = 10−k , k = 1, 2, . . . , 12 and final integration times τ = 20, 50, 100, 200, 500, 1000. Fig. 3 shows the results obtained 
with Chebyshev (line with squares) and the algorithm based on splitting schemes (line with circles) as a function of m. Even 
when high accuracy is required over long integration times (the most advantageous situation for Chebyshev approximations), 
the new algorithm requires a smaller value of m and therefore less computational effort. Notice how the algorithm selects 
the value of m to achieve the desired tolerance.

Fig. 4 shows the corresponding results for the relative error in energy versus m for the same example. Similar results 
are obtained for the error in unitarity or the two-norm error for which the error bounds apply (in this case one should 
compute numerically the exact solution and compare with the approximations obtained for each value of tol).
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Fig. 3. Degree m of the polynomials to achieve tolerances tol= 10−k , k = 1, 2, . . . , 12 for different values of βτ (β = 1 for this problem) as determined by 
the error bound formulas using the Chebyshev method (squares) and the algorithm based on splitting methods (circles).

Fig. 4. Same as Fig. 3 but replacing the value of the tolerance tol by the relative error in energy.

Example 2 (Pöschl–Teller potential). To illustrate how the methods work on a more realistic case, we consider the well known 
one-dimensional Pöschl–Teller potential, which is an anharmonic quantum potential

V (x) = − a2

2μ

λ(λ − 1)

cosh2(ax)
,

with a > 0, λ > 1. It has been frequently used in polyatomic molecular simulation and is also of interest in supersymmetry, 
group symmetry, the study of solitons, etc. [6,8,18]. The parameter λ gives the depth of the well, whereas a is related to 
the range of the potential. The energies are

Ek = − a2

(λ − 1 − k)2, with 0 ≤ k ≤ λ − 1.

2μ
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Table 2
Bounds to the spectral radius and shifting for the Pöschl–Teller potential with the parameters considered in the text, when the space interval x ∈ [−5, 5] is 
split into N parts.

N Emin Emax α β

64 −0.65988 0.11583 −0.27202 0.38785
128 −0.65988 0.46333 −0.098275 0.5616
256 −0.65988 1.8533 0.59672 1.2566
512 −0.65988 7.4133 3.3767 4.0366

1024 −0.65988 29.653 14.496 15.156

Table 3
Number of matrix–vector products (in bold) and actual errors given by the Taylor, Chebyshev and our algorithm 
for different τ β and tolerances tol.

Taylor Chebyshev Symplectic

τ β = 26.4648 104 51 30
tol= 10−9 3.4 × 10−12 3.7 × 10−12 4.2 × 10−11

τ β = 507.254 1836 587 370
tol= 10−6 2.5 × 10−8 3.4 × 10−15 4.4 × 10−9

We take the following values for the parameters (in atomic units, a.u.): reduced mass μ = 1745 a.u., a = 2, λ = 24.5
(leading to 24 bounded states), and x ∈ [−5, 5]. Moreover, to apply a pseudo spectral space discretization we assume pe-
riodicity of the potential in this range. The resulting V (x) is thus continuous and very close to differentiable for all x ∈ R. 
Table 2 collects the bounds to the spectral radius (obtained according to (6)) and the corresponding shifting for the Pöschl–
Teller potential when the space interval x ∈ [−5, 5] is split into N parts and for different values of N . Notice how sensibly 
Emax depends on the space discretization.

We take as initial condition a Gaussian function, ψ(x, 0) = σ e−(3x)2
, where σ is a normalizing constant, so the function 

and all its derivatives of practical interest vanish up to round off accuracy at the boundaries. The initial conditions contain 
part of the continuous spectrum, but this fact is largely irrelevant due to the smoothness of the periodic potential and wave 
function.

Suppose that one is interested in solving the corresponding semi discretized problem in time with the following require-
ments:

(I) N = 128, τ = 15π , tol= 10−9. In this case τβ = 26.4648.
(II) N = 512, τ = 40π , tol= 10−6. Now τβ = 507.254.

We have to determine first, of course, the degree m of the polynomial from the corresponding error bounds (for Taylor 
the time interval is divided by two in (I) and by 36 in (II) to avoid exceedingly large round off errors). Table 3 shows the 
number of matrix–vector products used by each method (in bold) and the 2-norm error for each method (compared with 
the exact solution obtained numerically with very high accuracy). In the first case our algorithm makes the computations 
in a single step using M(1)

30 while in the second case it uses 6 steps of the scheme M(1.4)a
60 followed by one step of M(0.5)

10 , 
i.e. the composition (37) is now

K (0.5)
10 (�τβ)

(
K̂ (1.4)a

60 (�̂τβ)
)6

with �̂τ = 84/β and �τ = 40π − 6 ̂�τ , and for a total of 370 products. Again, the algorithm based on symplectic splitting 
methods is able to produce results with the required accuracy with less computational effort.
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Appendix A. Construction of methods

We next describe the algorithm used to determine the coefficients (26) of length 2m + 1 for given m and θ ∈ (0, 2m).
Since all the error estimates in Subsection 3.2 depend exclusively on the even polynomial (of degree 2m) C(y) and the 

odd polynomial (of degree 2m + 1) S(y) given in (30), we first try to determine an appropriate pair of such polynomials 
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satisfying the necessary conditions C(0) = 1 and C(x)2 + S(x)2 − 1 > 0 (for all x ∈ R). Such pair of polynomials is uniquely 
determined by a polynomial P (y) = C(y) + S(y) of degree 2m + 1 satisfying

P (0) = 1,
1

2
(P (y)2 + P (−y)2) − 1 ≥ 0. (40)

Once an appropriate polynomial P (y) = C(y) + S(y) satisfying (40) is chosen, there is only a finite number of corre-
sponding sequences (26), which can be effectively determined [2]. Since all of them share the same error estimates, we 
choose among them a sequence that minimizes

m+1∑
j=1

|a j| +
m∑

j=1

|b j|.

We next focus on the effective construction of the polynomial P (y) = C(y) + S(y) of degree 2m + 1.
On the one hand, in order that the expression 

√
C(y)2 + S(y)2 − 1 featuring in the error estimate (29) be small in the 

interval y ∈ [−θ, θ],
sup

−θ≤y≤θ

| cos(y + e(y)) + sin(y + e(y)) − P (y)| (41)

should be small for some real valued function e(y). On the other hand, minimizing√
(C(y) − cos(y))2 + (S(y) − sin(y))2

in the interval y ∈ [−θ, θ] is, provided that (41) is small enough, essentially equivalent to minimizing

sup
−θ≤y≤θ

|e(y)|. (42)

To reduce the complexity of the final algorithm for determining the polynomial P (y), we will try to minimize instead an 
alternative norm of e(y) that we introduce next. First observe that if

e(y) = ê0 +
∑
j≥1

ê j T j(y/θ) (43)

is the Chebyshev series expansion of the function e(y), then

sup
−θ≤y≤θ

|e(y)| ≤
∑
j≥0

|ê j|. (44)

This suggests that the right-hand side of (44) may be a good alternative to the supremum norm for sufficiently smooth 
functions e(y). For practical considerations, we will minimize instead the following alternative norm of the function e(y)

‖e‖θ ≡
√∑

j≥0

(ê j)
2. (45)

Now, to determine the polynomial P (y) = C(y) + S(y) of degree 2m + 1, we consider, for a given odd integer l such that 
m + 1 ≤ l ≤ 2m, a given set of nodes y1, . . . , yl symmetrically placed in the interval [−θ, θ], and a given odd polynomial 
e(y) of degree l − 2, the polynomial P (y) of degree 2l − 1 interpolating in the Hermite sense the function cos(y + e(y)) +
sin(y + e(y)) for the nodes y1, . . . , yl . In particular, this implies that P (0) = 1 and

C(y)2 + S(y)2 − 1 = 1

2
(P (y)2 + P (−y)2) − 1 = V (y)W (y)2 (46)

where W (y) = (y − y1) · · · (y − yl), and V (y) is an even polynomial of degree 4m −2l +2. Thus, P (y) satisfies the necessary 
condition (40) if and only if V (y) ≥ 0 for all y.

Notice that the interpolation error (41) admits an upper bound of the form

sup
−θ≤y≤θ

| cos(y + e(y)) + sin(y + e(y)) − P (y)| ≤ η

(2l)! sup
−θ≤y≤θ

W (y)2, (47)

where η > 0 is an upper bound of the (absolute value of) the (2l)th derivative of the function cos(y + e(y)) + sin(y + e(y))

in the interval y ∈ [−θ, θ].
For a prescribed set of nodes y1, . . . , yl , we restrict the choice of the odd polynomial e(y) (of degree l − 2) so that the 

Hermite interpolating polynomial P (y) is of degree 2m + 1 (which introduces 2(l − m) − 2 non-linear constraints on the 
non-zero coefficients ê1, ̂e3, . . . , ̂el of the polynomial e(y) given by (43)), and determine e(y) by minimizing the norm ‖e‖θ
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Fig. 5. Graphical representation of sequence (a1,b1,a2,b2, . . . ,a60,b60,a61) of method M(1.4)a
60 in Table 1, obtained with θ = 84 and l = 97.

for that restricted set of odd polynomials e(y) of degree l − 2. This produces a polynomial P (y) for each choice of the set 
of nodes y1, . . . , yl . It then remains to choose, for a prescribed positive odd integer l, such a set of nodes y1, . . . , yl .

The error estimate (47) suggests that a good choice for the interpolating nodes {y1, . . . , yl} may be given by the zeros 
of the Chebyshev polynomial Tl(y/θ) of degree l, which corresponds to minimizing the supremum norm (in the interval 
[−θ, θ]) of the polynomial W (y). Notice that minimizing the alternative norm ‖W ‖θ also gives rise to the same set of 
nodes. It then only remains, for given odd positive number 2m + 1 and for given θ > 0, to determine the number l of 
interpolating nodes, that should satisfy m + 1 ≤ l ≤ 2m. If l is too close to 2m, then, very few degrees of freedom are left 
to minimize ‖e‖θ , and if l is too close to m + 1, then the Hermite interpolating error (41) is too large, causing the norm 
of the function C(y)2 + S(y)2 − 1 not being small enough, in addition to V (y) in (46) typically not being positive. We 
thus proceed by determining P (y) = C(y) + S(y) for different values of l close to (3m + 3)/2, and choosing, among those 
satisfying V (y) ≥ 0, one having the best error coefficient ε(θ) defined in (29).

Unfortunately, choosing the interpolating nodes {y1, . . . , yl} as the zeros of the Chebyshev polynomial Tl(y/θ) of degree 
l typically results in a polynomial P (y) = C(y) + S(y) that does not satisfy the stability condition

|C(y)| ≤ 1, y ∈ [−θ, θ ], (48)

so that the error coefficients μ(θ), ν(θ) are not well defined, and thus the resulting splitting method cannot be reliably used 
in a step-by-step manner for large values of βτ . In order to produce splitting methods satisfying that stability condition 
for given θ , we proceed iteratively to choose the interpolating nodes {y1, . . . , yl} and the corresponding polynomial P (y)

as follows: As a first approximation, we require the set of nodes {y1, . . . , yl} to contain the set { jπ : j ∈ Z, | jπ | ≤ θ}
and determine the remaining nodes by minimizing the norm ‖W ‖θ of W (y) = (y − y1) · · · (y − yl). Once the polynomial 
P (y) = C(y) + S(y) is determined for that set of nodes {y1, . . . , yl}, we compute the set of zeros of C ′(y) = 0 that are 
included in the interval [−θ, θ] (that are typically close to { jπ : j ∈ Z, | jπ | ≤ θ}), and determine the remaining nodes 
by minimizing the norm ‖W ‖θ of W (y) = (y − y1) · · · (y − yl). Successive iteration of this process gives a sequence of 
polynomials P (y) = C(y) + S(y) that converge to a polynomial satisfying the stability condition (48).

As an example, we have obtained the method M(1.4)a
60 in Table 1 by following this procedure for m = 60, θ = 84, and 

l = 97, which has produced a splitting methods with sequence of coefficients (26) plotted in Fig. 5.

References

[1] S. Blanes, F. Casas, A. Farrés, J. Laskar, J. Makazaga, A. Murua, New families of symplectic splitting methods for numerical integration in dynamical 
astronomy, Appl. Numer. Math. 68 (2013) 58–72.

[2] S. Blanes, F. Casas, A. Murua, On the linear stability of splitting methods, Found. Comput. Math. 8 (2008) 357–393.
[3] S. Blanes, F. Casas, A. Murua, Error analysis of splitting methods for the time dependent Schrödinger equation, SIAM J. Sci. Comput. 33 (2011) 

1525–1548.
[4] S. Blanes, F. Casas, J.A. Oteo, J. Ros, The Magnus expansion and some of its applications, Phys. Rep. 470 (2009) 151–238.
[5] S.A. Chin, C.R. Chen, Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials, J. Chem. Phys. 117 (2002) 

1409–1415.
[6] S.-H. Dong, Factorization Method in Quantum Mechanics, Springer, 2007.
[7] M.D. Feit, J.A. Fleck Jr., A. Steiger, Solution of the Schrödinger equation by a spectral method, J. Comput. Phys. 47 (1982) 412–433.
[8] S. Flügge, Practical Quantum Mechanics, Springer, 1971.
[9] S. Gray, D.E. Manolopoulos, Symplectic integrators tailored to the time-dependent Schrödinger equation, J. Chem. Phys. 104 (1996) 7099–7112.

[10] S. Gray, J.M. Verosky, Classical Hamiltonian structures in wave packet dynamics, J. Chem. Phys. 100 (1994) 5011–5022.
[11] T.Z. Huang, R.S. Rau, A simple estimation for the spectral radius of (block) H-matrices, J. Comput. Appl. Math. 177 (2005) 455–459.
[12] T. Jahnke, Ch. Lubich, Error bounds for exponential operator splittings, BIT 40 (4) (2000) 735–744.
[13] R. Jeltsch, O. Nevanlinna, Stability of explicit time discretizations for solving initial value problems, Numer. Math. 37 (1981) 61–91.
[14] D. Kosloff, R. Kosloff, A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics, J. Comput. Phys. 52 

(1983) 35–53.

http://refhub.elsevier.com/S0021-9991(15)00655-5/bib626C616E657331336E666Fs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib626C616E657331336E666Fs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib626C616E657330386F746Cs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib626C616E6573313165616Fs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib626C616E6573313165616Fs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib626C616E65733039746D65s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6368696E3032677361s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6368696E3032677361s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib7368693037666D69s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib666569743832736F74s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib666C75676765373170716Ds1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib677261793936736974s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib677261793934636873s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6875616E673035617365s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6A61686E6B653030656266s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6A656C747363683831736F65s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6B6F736C6F6666383361666Ds1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6B6F736C6F6666383361666Ds1


412 S. Blanes et al. / Journal of Computational Physics 303 (2015) 396–412
[15] R. Kosloff, Time-dependent quantum mechanical methods for molecular dynamics, J. Phys. Chem. 92 (1988) 2087–2100.
[16] D. Lauvergnat, S. Blasco, X. Chapuisat, A simple and efficient evolution operator for time-dependent Hamiltonians: the Taylor expansion, J. Chem. Phys. 

126 (2007) 204103.
[17] C. Leforestier, R.H. Bisseling, C. Cerjan, M.D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R. 

Kosloff, A comparison of different propagation schemes for the time dependent Schrödinger equation, J. Comput. Phys. 94 (1991) 59–80.
[18] R. Lemus, R. Bernal, Connection of the vibron model with the modified Pöschl–Teller potential in configuration, Chem. Phys. 283 (2002) 401–417.
[19] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, European Mathematical Society, 2008.
[20] W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. VII (1954) 649–673.
[21] G. Mazzi, B.J. Leimkuhler, Dimensional reductions for the computation of time-dependent quantum expectations, SIAM J. Sci. Comput. 33 (2011) 

2024–2038.
[22] M. Mulansky, Simulating DNLS models, Technical report, 2013, arXiv:1304.1608.
[23] C. Neuhauser, M. Thalhammer, On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded poten-

tial, BIT 49 (2009) 199–215.
[24] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
[25] T.J. Park, J.C. Light, Unitary quantum time evolution by iterative Lanczos reduction, J. Chem. Phys. 85 (1986) 5870–5876.
[26] Ch. Skokos, E. Gerlach, J.D. Bodyfelt, G. Papamikos, S. Eggl, High order three part split symplectic integrators: efficient techniques for the long time 

simulation of the disordered discrete nonlinear Schrödinger equation, Phys. Lett. A 378 (2014) 1809–1815.
[27] H. Tal-Ezer, R. Kosloff, An accurate and efficient scheme for propagating the time dependent Schrödinger equation, J. Chem. Phys. 81 (1984) 3967–3971.
[28] An efficient algorithm for the time integration of the Schrödinger equation, http://www.gicas.uji.es/software.html.
[29] M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 46 (2008) 

2022–2038.
[30] M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal. 

50 (2012) 3231–3258.
[31] M. Yang, A simple method for estimating the bounds of spectral radius of nonnegative irreducible matrices, Appl. Math. E-Notes 11 (2011) 67–72.
[32] Q. Zhu, G.D. Hu, L. Zeng, Estimating the spectral radius of a real matrix by discrete Lyapunov equation, J. Differ. Equ. Appl. 17 (2011) 603–611.

http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6B6F736C6F66663838746471s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6C6175766572676E61743037617361s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6C6175766572676E61743037617361s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6C65666F72657374696572393161636Fs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6C65666F72657374696572393161636Fs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6C656D75733032636F74s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6C75626963683038667174s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6D61676E757335346F7465s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6D617A7A693131647266s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6D617A7A693131647266s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6D756C616E736B79313373646Ds1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6E657568617573657230396F7463s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6E657568617573657230396F7463s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib6F6C76657231306E686Fs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib7061726B3836757174s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib736B6F6B6F733134686F74s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib736B6F6B6F733134686F74s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib74616C2D657A65723834616161s1
http://www.gicas.uji.es/software.html
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib7468616C68616D6D65723038686F65s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib7468616C68616D6D65723038686F65s1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib7468616C68616D6D6572313263616Fs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib7468616C68616D6D6572313263616Fs1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib79616E67313161736Ds1
http://refhub.elsevier.com/S0021-9991(15)00655-5/bib7A68753131657473s1

	An efﬁcient algorithm based on splitting for the time integration of the Schrödinger equation
	1 Introduction
	2 Polynomial approximations
	2.1 General considerations
	2.2 Taylor polynomial approximation
	2.3 Chebyshev polynomial approximation

	3 Symplectic splitting methods
	3.1 General considerations
	3.2 Error analysis
	3.2.1 Error estimates for a single application of a splitting method
	3.2.2 Error estimates for several steps of a splitting method
	3.2.3 Error estimates for combined splitting methods


	4 The ﬁnal algorithm
	5 Numerical examples
	Acknowledgements
	Appendix A Construction of methods
	References


