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a b s t r a c t

We show how to build explicit symmetric second order methods for solving
ordinary differential equations. These methods are very useful when low accuracy is
required or when higher order ones by extrapolation or composition are desired to
reach high accuracy. The proposed schemes are obtained by using simple splitting
methods on an extended phase space. By construction, the schemes are symmetric
and of second order allowing to recover most well known and frequently used
schemes from the literature. This provides a simple proof on their time symmetric
structure that is very useful when the schemes are used to get higher order methods
by extrapolation or composition. We show how to obtain them in the general case
as well as how to get Nyström methods, methods for stiff problems, Lie group
integrators or symplectic integrators, but the technique can also be used to build
explicit and implicit methods for many other problems.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this letter we consider the numerical integration of the ODE

x′ = f(t, x), x(t0) = x0, (1)

with x ∈ Cd and formal solution given by x(t) = ϕt(x0). In general, standard Runge–Kutta, multistep and
extrapolation methods are the numerical schemes chosen to solve this problem [1–5]. However, when the
ODE has some particular structure, tailored methods are considered. For example:

• If (1) originates from the second order ODE

y′′ = g(t, y), y(t0) = y0, y
′(t0) = y′

0, (2)

Nyström methods are frequently used. If (1) is written as

d

dt

(
y
y′

)
=
(

y′

g(t, y)

)
, (3)

RK, multistep or extrapolation methods can be optimized to solve this problem [2].
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• If the problem (1) is stiff, then appropriate implicit methods are usually required [1,3,4].
• If f(t, x) has a given geometric structure such that the solution has some qualitative properties, i.e. the

map ϕt is a unitary, orthogonal, symplectic, . . . flow then Geometric Integrators are the best choice,
i.e. methods that preserve some of the qualitative properties of the exact flow [6–11].

When low accuracy is desired, first or second order methods in the time step suffice since typically they
allow to use relatively long time steps at a low computational cost. Among them, symmetric second order
methods (when available) are preferred because, in general, provide the best rate between accuracy and
computational cost. In many cases they have also shown better error propagation (this is the case for the
well known Strang, Störmer, Verlett, leap-frog, midpoint, trapezoidal, Crank–Nicolson methods, etc.) but,
obviously, the most appropriate method for solving a given equation depends on each particular problem.

On the other hand, when accurate results are desired, high order methods usually provide the best
performance. Among them, extrapolation and composition methods have shown to be highly competitive.
These schemes are based on a low order method and, either by appropriate linear combination of the methods
used with different time steps with extrapolation [2,12] or by composition of them [6,7,13,14] it is possible
to reach higher order schemes. The best performance is usually reached when the low order scheme is a
symmetric second order method. Obviously, one has to use a basic method that is as accurate, cheap and
stable as possible.

There are in the literature many different symmetric second schemes built for solving a wide class of
problems. To construct second order methods and to prove their time symmetry has been quite cumbersome
in some cases. We present a unified and simplified procedure that allows us to recover most of the schemes
from the literature (built in many cases for autonomous problems), and we extend these schemes to
non-autonomous problems as well as we build new ones.

2. Symmetric second order methods

We first review some of the well known symmetric second order methods from the literature that are also
frequently used to obtain higher order ones. Let ψh be the numerical flow defined by a method to advance
a time step h, i.e. xk+1 = ψh(xk) with xk ≃ x(tk), tk = t0 + kh. If ψ−1

h = ψ−h the method is selfadjoint,
i.e. xk = ψ−h(xk+1), the error can be expanded in terms of even powers of h, and we say the method is
time-symmetric.

• Gragg proved in [15] that the quantity Sh(x) produced by the algorithm (t = t0 + 2nh, ti = t0 + ih)

x1 = x0 + hf(t0, x0)
xi+1 = xi−1 + hf(ti, xi), i = 1, 2, . . . , 2n

Sh = 1
4(x2n−1 + 2x2n + x2n+1), (4)

is consistent and possesses an asymptotic expansion in even powers of h. This led to the construction
of the Gragg–Bulirsch–Stoer-extrapolation algorithm (GBS) [2]. If a method of order 2k is desired
following the sequence n = n1, n2, . . . , nk, the number of evaluations of the vector field, f is (notice
that f(t0, x0) needs to be computed only once) cf = 1 + 2(n1 + n2 + · · · + nk). Gragg’s proof of this
property was very long and complicated, but Stetter [16] had the elegant idea of interpreting (1) as a
one-step algorithm by rewriting (4) in terms of odd and even indices: for this purpose, if one defines
h∗ = 2h, t∗k = t0 + kh∗, u0 = v0 = y0, uk = x2k, vk = 1

2 (x2k−1 + x2k+1), the method (4) can be
rewritten as (

uk+1
vk+1

)
=
(
uk

vk

)
+ h∗

(
f
(
t∗k + h∗

2 , vk + h∗

2 f(t∗k, uk)
)

1
2 (f(t∗k + h∗, uk+1) + f(t∗k, uk))

)
, (5)
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where the symmetry can be checked analytically by exchanging uk+1 ↔ uk, vk+1 ↔ vk, h∗ ↔ −h∗,
t∗k ↔ t∗k + h∗. Then, the known as the smoothing step (that has better stability properties) is given by

Sh(t0 + 2nh) = 1
4(x2n−1 + 2x2n + x2n+1) = 1

2(uk + vk).

• The Gragg’s method can be used to solve (2) if written as (3). One can halve the number of evaluations
of the function g if one adapts the scheme as follows [2]

y1 = y0 + hy′
0

y′
1 = y′

0 + hg(t0, y0)
yi+1 = yi−1 + 2hy′

i−1, i = 1, 3, . . . , 2n− 1
y′

i+1 = y′
i−1 + 2hg(ti, yi), i = 2, 4, . . . , 2n

Sh = 2y2n

S′
h = 1

2(y′
2n−1 + y′

2n+1), (6)

and eliminating the y′
j-values one obtains the equivalent well known formula

yi+2 − 2yi + yi−2 = (2h)2g(ti, yi), (7)

Since only even indices appear, it is natural to write the method as follows

yi+1 − 2yi + yi−1 = h2g(ti, yi), (8)

i = 1, 2, 3, . . . , yi ≃ y(ti), ti = t0 + ih, that has to be initiated with y1 = y0 + h
2 g(t0, y0). This scheme

is clearly time-symmetric and is often called the Störmer–Verlet method. This method has excellent
qualitative properties and low error growth when applied to Hamiltonian systems. It is a symplectic
integrator.

• Splitting methods. Suppose the vector field in (1) is autonomous and can be decomposed into a sum of
two contributions, f(x) = f [1](x) + f [2](x), in such a way that each sub-problem

ẋ = f [i](x), x(t0) = x0 ∈ Cd, i = 1, 2

can be integrated exactly (or, more generally, it is simpler to integrate than the original system), with
solutions x(h) = φ

[i]
h (x0) at t = t0 + h. Then, a consistent and symmetric composition of these flows

provides a symmetric second-order approximation to the exact solution [6,10]. For example

Sh = φ
[1]
h
2

◦ φ[2]
h ◦ φ[1]

h
2
, i.e. x1 = φ

[1]
h
2

(
φ

[2]
h

(
φ

[1]
h
2

(x0)
))

(9)

is a time symmetric second order method. If we define the Lie operators Â[i] ≡ f [i](x) · ∇, i = 1, 2, then
the exact solution is given by ϕh = eh(Â[1]+Â[2]) and the method can formally be written as

Sh = e h
2 Â[1]

ehÂ[2]
e h

2 Â[1]
= eh(Â[1]+Â[2]+h2Ê2+h4E4+··· )

(Êk are error terms that depend on Â[i] but not on h) that is obviously selfadjoint, the error can
be expanded in even powers of h and it is time-symmetric. In the non-autonomous case, f(t, x) =
f [1](t, x) + f [2](t, x), where x(h) = φ

[i]
h (τ, x0) denotes the solution at t = t0 + h of the autonomous

equation, ẋ = f [i](τ, x), with τ a constant parameter (a frozen time), we can consider the time as two
new dependent variables as follows

d

dt

⎛⎝ x
t1
t2

⎞⎠ =

⎛⎝ f [1](t1, x)
0
1

⎞⎠+

⎛⎝ f [2](t2, x)
1
0

⎞⎠ ,
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and the scheme can be written as the sequence

z1 = φ
[1]
h
2

(t0, x0)

z2 = φ
[2]
h (t0 + h

2 , z1)

x1 = φ
[1]
h
2

(t0 + h, z2). (10)

Two consecutive steps of the method to obtain x2 can be written as Sh ◦Sh = φ
[1]
h
2

◦φ[2]
h ◦φ[1]

h ◦φ[2]
h ◦φ[1]

h
2

so only one evaluation of φ[1]
h and φ

[2]
h per step is required except for the first step.

The splitting method, by construction, allows to easily build symmetric second order methods. It requires,
however, that the vector field must be decomposed into solvable parts (or into parts that are easy to
numerically approximate by methods that preserve the whole symmetry).

3. Symmetric second order methods in a extended phase space

In [17] it is shown the interest to consider the independent variable, t, in a non-autonomous vector field,
f(t, x), that is separable into solvable parts, as two or more different dependent variables. On the other hand,
in [16] (see also [2]) it is shown that (4) is consistent with the differential equation

u′ = f(t, v), u(t0) = x0
v′ = f(t, u), v(t0) = x0.

(11)

Notice that both equations share the same t variable in the vector field. Then, the scheme (4) is recovered
when these equations are solved with a particular symmetric second order method. To prove that such scheme
is symmetric is not obvious being also difficult to generalize to other problems. In the conclusions of [16]
the author also claims “It is quite obvious that the results of this paper are not of great practical importance.
Since it is fully explicit Gragg’s algorithm (4) is so ideally suited as a basis for RICHARDSON extrapolation
that no other symmetric two-step algorithm can compete with it”.

However, if we combine both procedures (to duplicate the system and to consider the time as two new
dependent coordinates) we can lead to differential equations with the same solution as desired that are
trivially solvable with splitting methods. This procedure allows to present a unified and simplified procedure
to build methods. We can recover many of the existing methods as well as to build new symmetric schemes
that can be easily adapted to solve different classes of problems, and this is illustrated in several problems.

3.1. Symmetric second order methods for general problems

Let us take in (11) ut ≡ t and vt ≡ t as two new coordinates as follows

d

dt

⎛⎜⎜⎝
u
ut

v
vt

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0

f(ut, u)
1

⎞⎟⎟⎠+

⎛⎜⎜⎝
f(vt, v)

1
0
0

⎞⎟⎟⎠ = f [1](ut, u) + f [2](vt, v),

⎛⎜⎜⎝
u(t0)
ut(t0)
v(t0)
vt(t0)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x0
t0
x0
t0

⎞⎟⎟⎠ , (12)

whose solution is u(t) = v(t) = x(t). This system is separable into two trivially solvable autonomous parts
and splitting methods can be applied. We now show that the composition (10), corresponds to the Gragg’s
method (if one uses n steps of the splitting method). Then, this provides a simple proof to show that the
Gragg’s method is consistent and symmetric, as desired: The scheme (10) applied to solve (12) is given by
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the sequence (from tn to tn+1 with ut,n = vt,n = tn un ≃ u(tn), etc.)

φ
[1]
h
2

:
{
v1/2 = vn + h

2 f(ut,n, un)
vt,1/2 = vt,n + h

2

φ
[2]
h :

{
un+1 = un + hf(vt,1/2, v1/2)
ut,n+1 = ut,n + h

φ
[1]
h
2

:
{
vn+1 = v1/2 + h

2 f(ut,n+1, un+1)
vt,n+1 = vt,1/2 + h

2

i.e.
v1/2 = vn + h

2 f(tn, un)
un+1 = un + hf(tn + h

2 , v1/2)
vn+1 = v1/2 + h

2 f(tn + h, un+1),

that agrees with (5) if we replace tn by t∗k and h by h∗. If we concatenate n steps of the splitting method
we recover the Gragg’s method. Obviously, both un and vn are two different second order approximations
to the exact solution, x(tn) so, its average, i.e. the smoothing, also corresponds to a symmetric second order
approximation. This is a much simpler procedure to build methods and can be extended to solve different
classes of problems as follows.

It is worth to notice that u1 in the first step coincides with the explicit midpoint RK method. However, the
second step to obtain u2 using the midpoint RK method initiates with u1 and does not take into account v1,
breaking the time symmetry of the method. In addition, the vector (un+1, ut,n+1, vn+1, vt,n+1) is obtained
from (un, ut,n, vn, vt,n) through a selfadjoint method but, if we take un = vn = xn then the smoothing
map xn+1 = 1

2 (un+1 + vn+1) = ψh(xn) corresponds to a 3-stage explicit Runge–Kutta method. Then, the
smoothing (although it can be used with extrapolation) makes that the method is not selfadjoint.

3.2. Nyström symmetric second order methods

Let us now consider the second order ODE (2) that we write as a first order ODE as in (3) but as follows

d

dt

⎛⎝ y
yt

y′

⎞⎠ =

⎛⎝ 0
0

g(yt, y)

⎞⎠+

⎛⎝ y′

1
0

⎞⎠ ,

with yt(tn) = tn. The splitting method (9) generates the scheme

φ
[1]
h
2

:
{
y′

1/2 = y′
n + h

2 g(yt,n, yn)

φ
[2]
h :

{
yn+1 = yn + hy′

1/2
yt,n+1 = yt,n + h

φ
[1]
h
2

:
{
y′

n+1 = y′
1/2 + h

2 g(yt,n+1, yn+1)

or yn+1 = yn + hy′
n + h2

2 g(tn, yn)
y′

n+1 = y′
n + h

2 (g(tn, yn) + g(tn + h, yn+1))

that is equivalent to the symmetric second order method (6) or the Störmer–Verlet method (8) that is used
as the basic method for extrapolation (see [2]). The cost of the method, for a sequence of n = n1, n2, . . . , nk

to build a method of order p = 2k by extrapolation is c(1)
N = 1 + n1 + n2 + · · · + nk evaluations of the

function g (since g(tn, yn) can be stored and reused). On the other hand, since the maps φ[1]
h and φ

[2]
h are

qualitatively different, this simple procedure suggests to consider the following sequence Sh = φ
[2]
h
2

◦φ[1]
h ◦φ[2]

h
2that corresponds to the scheme

φ
[2]
h
2

:
{
y1/2 = yn + h

2 y
′
n

yt,1/2 = yt,n + h
2

φ
[1]
h :

{
y′

n+1 = y′
n + hg(yt,1/2, y1/2)

φ
[2]
h
2

:
{
yn+1 = y1/2 + h

2 y
′
n+1

yt,n+1 = yt,1/2 + h
2

or y′
n+1 = y′

n + hg(tn + h
2 , yn + h

2 y
′
n)

yn+1 = yn + h
2 (y′

n + y′
n+1)

that has a slightly reduced cost of c(2)
N = c

(1)
N − 1 evaluations of g when used with extrapolations and does

not need to store the function g that could be more efficient in some cases. Since in this case there is not



46 S. Blanes / Applied Mathematics Letters 98 (2019) 41–48

smoothing, the schemes are selfadjoint. In spite of the methods being not new, this procedure allows to build
new schemes. For example, given the second order damped equation, y′′ +α(t)y′ = g(t, y) if we consider the
split in the extended phase space

d

dt

⎛⎜⎜⎝
y
y1,t

y′

y2,t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0

g(y1,t, y)
1

⎞⎟⎟⎠+

⎛⎜⎜⎝
y′

1
−α(y2,t)y′

0

⎞⎟⎟⎠ ,

where both parts are exactly solvable, one can build a symmetric second order method that only requires
one evaluation of g per step. If one uses the Gragg’s scheme two evaluations per step are required.

3.3. Symmetric second order methods for stiff problems

Many different procedures can be used for solving stiff problems depending on the stiffness of the problem
and the computational cost of the vector field. In [3] a symmetric second order method is used that is
consistent with the system

u′ = f(t, v) + J(u− v), u(t0) = x0

v′ = f(t, u) − J(u− v), v(t0) = x0

with J ≃ f ′(tn, yn), that is very similar to a splitting method as we will see. One can use many different
variants, the most appropriate will obviously depend on the particular problem to be solved. For example,
for mildly stiff problems a simple scheme is obtained if we consider the system

d

dt

⎛⎜⎜⎝
u
ut

v
vt

⎞⎟⎟⎠ =

⎛⎜⎜⎝
f(vt, v)

1
0
0

⎞⎟⎟⎠+

⎛⎜⎜⎝
0
0

f(ut, u) − J(u− v)
1

⎞⎟⎟⎠ ,

where the equation, v′ = f(ut, u) − J(u− v), with ut, u constant, can be solved either exactly

v(t) = etJv(0) + hφ1(hJ)(f(ut, u) − Ju)

where φ1(x) = (ex − 1)/x, or one can use a symmetric implicit method, e.g.

(I − h

2J)vn+1 = (I + h

2J)vn + h(I − h

2J)(f(ut, u) − Ju).

Alternatively, since the vector field can be written as f(t, x) = M(t, x)x, with M a matrix, and this can
be done in many different ways, if there is a decomposition such that M(t, x) is only mildly stiff, one can
consider the system

u′ = M(vt, v)u,
u′

t = 1,
v′ = M(ut, u)v,
v′

t = 1,

(13)

where the splitting methods lead to the scheme

u1/2 = e
h
2 M(tn,vn)un

vn+1 = ehM(tn+ h
2 ,u1/2)vn

un+1 = e
h
2 M(tn+1,vn+1)u1/2.

(14)

If we replace the exact maps by, for example, the midpoint rule (i.e. to approximate the exponentials by the
second order diagonal Padé approximation) we get the scheme(

I − h

4M(tn, vn)
)
u1/2 =

(
I + h

4M(tn, vn)
)
un
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(
I − h

2M(tn + h

2 , u1/2)
)
vn+1 =

(
I + h

2M(tn + h

2 , u1/2)
)
vn(

I − h

4M(tn + h, vn+1)
)
un+1 =

(
I − h

4M(tn + h, vn+1)
)
u1/2,

where higher order methods can be obtained by composition or extrapolation.

3.4. Symmetric second order Lie-group methods

Suppose one knows that the solution of the ODE evolves on a differentiable manifold. For simplicity,
let us consider the manifold is a Lie group of n × n matrices, and thus the vector field is of the form
f(t, x) = M(t, x)x, with M(t, x) ∈ g and g is the linear subspace of the n × n matrices corresponding
to the Lie algebra of the Lie group. Lie-group methods are frequently used to solve these problems [8]. We
can solve the system (13) with the scheme (14) that can be considered as a second order commutator-free Lie
group integrator [18,19]. In the autonomous case, it corresponds to the second order method obtained in [20]
used to build extrapolation methods in Lie groups. To preserve the Lie group structure one has either to
compute very accurately the exponentials or to replace them by approximations that preserve this structure,
like it is the case of diagonal Padés for most Lie groups. For instance, for unitary, orthogonal, symplectic,
. . . groups the scheme (14) is a symmetric second order Lie group integrator. Notice, however, that if one
uses the average solution from un, vn as the smoothing method, the group structure breaks.

3.5. Symmetric second order symplectic methods

Symplectic integrators have been successfully used to numerically solve Hamiltonian systems due to their
qualitative properties and low error propagation [6,7,9,11]. For autonomous non-separable Hamiltonians, it
has been recently proposed to solve another system in an extended phase space where the new Hamiltonian
is separable into solvable parts [21,22] while providing the desired solution. Given the non-autonomous
Hamiltonian H(t, q, p) with q, p ∈ RD and the autonomous separable one

K =
(
H
(
q

(1)
t , Q1,−Q2

)
− q

(2)
t

)
+
(
H
(
p

(2)
t , P2, P1

)
+ p

(1)
t

)
we have that q(1)

t = p
(2)
t = t, q(t) = Q1(t) = P2(t), p(t) = P1(t) = −Q2(t). In this case as well as in Lie

group methods at each step we obtain two approximations to the solution. If the smoothing is considered
the qualitative properties are destroyed because, in general, a linear combination of solutions does not
preserve the group structure. This is also the case for extrapolation, although the qualitative properties
are lost at higher orders than the order of the final method [23,24]. In [22] this is solved by introducing
into the Hamiltonian a new contribution to force that the numerical solutions for the pairs Q1(t), P2(t) and
P1(t),−Q2(t) remain close to each other. For instance, to solve

K =
(
H
(
q

(1)
t , Q1,−Q2

)
− q

(2)
t

)
+
(
H
(
p

(2)
t , P2, P1

)
+ p

(1)
t

)
+ w

2

(
(Q1 − P2)2 + (P1 +Q2)2

)
that is separable into three solvable parts (the last term corresponds to a linear harmonic oscillator) and
the parameter w has to be chosen appropriately for each problem. Non-separable Hamiltonians appear
e.g. when considering variable time-step symplectic integrators using the Sundmann transformation (see [25]
and references therein). Similar terms can also be introduced for solving the Lie group methods. Notice that
the norm ∥un+1 − vn+1∥ can also be used as an indicator of the error of the method.
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