
Applied Numerical Mathematics 163 (2021) 96–107
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Computing the matrix sine and cosine simultaneously with a

reduced number of products

Muaz Seydaoğlu a,c,∗, Philipp Bader b, Sergio Blanes c, Fernando Casas d

a Faculty of Art and Science, Department of Mathematics, 49100 Mus, Turkey
b Departament de Matemàtiques, Universitat Jaume I, 12071 Castellón, Spain
c Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, E-46022 Valencia, Spain
d IMAC and Departament de Matemàtiques, Universitat Jaume I, 12071 Castellón, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 September 2020
Received in revised form 5 December 2020
Accepted 15 January 2021
Available online 19 January 2021

Keywords:
Matrix sine
Matrix cosine
Taylor series
Padé approximation
Matrix polynomials

A new procedure is presented for computing the matrix cosine and sine simultaneously
by means of Taylor polynomial approximations. These are factorized so as to reduce the
number of matrix products involved. Two versions are developed to be used in single
and double precision arithmetic. The resulting algorithms are more efficient than schemes
based on Padé approximations for a wide range of norm matrices.

© 2021 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many dynamical systems are modeled by differential equations in which finding closed solutions is not possible and
so one has to compute approximating solutions. These differential equations usually preserve some underlying geometric
structure which reflects the qualitative nature of the phenomena they describe. It is then relevant that the approximations
share with the exact solution of the differential equation these qualitative properties to render a right description. The de-
sign and analysis of numerical integrators preserving some of these geometric structures constitutes the realm of Geometric
Numerical Integration, an active and interdisciplinary research area and the subject of intensive development during the last
decades [6,11,16,19,21,24].

Exponential integrators can be considered as a class of geometric integrators tailored to stiff and oscillatory equations
[7,8,14,15,17]. For large systems of equations these schemes usually require to compute the action of the exponential of a
matrix on a vector [14,15]. However, for problems of moderate size it may be more appropriate to compute directly the
exponential of the matrices involved.

When the problem is oscillatory, very often the formal solution involves both the sine and cosine of a matrix. Thus, for
example, consider the Schrödinger equation in quantum mechanics,

i
dψ

dt
= H(t)ψ, ψ(t0) = ψ0,

* Corresponding author at: Faculty of Art and Science, Department of Mathematics, 49100 Mus, Turkey.
E-mail addresses: m.seydaoglu@alparslan.edu.tr (M. Seydaoğlu), bader@uji.es (P. Bader), serblaza@imm.upv.es (S. Blanes), casas@uji.es (F. Casas).
https://doi.org/10.1016/j.apnum.2021.01.009
0168-9274/© 2021 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2021.01.009&domain=pdf
mailto:m.seydaoglu@alparslan.edu.tr
mailto:bader@uji.es
mailto:serblaza@imm.upv.es
mailto:casas@uji.es
https://doi.org/10.1016/j.apnum.2021.01.009

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
where H(t) is a Hermitian operator and ψ is a complex wave function. A usual procedure to get numerical approximations
involves first a spatial discretization or working on a finite dimensional representation. In any event, one ends up with a
matrix equation with a similar structure,

i
du

dt
= Au, u(t0) = u0 ∈CN .

If A is a real and constant matrix, the unitary evolution operator is given by

U (t) = e−it A = cos(t A) − i sin(t A). (1)

There are different techniques to compute efficiently the exponential of a matrix [2,3,5,13,22,26–28]. However, using any
of these general algorithms to approximate the unitary matrix e−it A in (1) involves products of complex matrices making
them computationally expensive. Alternatively, we propose an efficient procedure to compute the matrix sine and cosine
that only involves a small number of products of real matrices. The algorithm is used in combination with squaring as

cos(2A) = 2 cos2(A) − I = I − 2 sin2(A), sin(2A) = 2 sin(A) cos(A).

In this way, it only requires two products per squaring (instead of four products when considering the square of complex
matrices), thus making the overall procedure more efficient.

There are other examples where the computation of the sine and cosine of a matrix can be of interest. For example, for
wave equations given by the generic second order system

y′′ + Ay = f (y, t),

with y ∈RN , exponential integrators frequently require to solve separately the linear homogeneous problem

y′′ + Ay = 0, y(0) = y0, y′(0) = y′
0. (2)

Writing (2) as a first order system, the solution is given by(
y(t)
y′(t)

)
= etM

(
y0
y′

0

)
, with M =

(
0 I

−A 0

)
(3)

and

etM =
(

cos(t
√

A) (
√

A)−1 sin(t
√

A)

−√
A sin(t

√
A) cos(t

√
A)

)
≡

(
c(t2 A) s(t, A)

−As(t, A) c(t2 A)

)
. (4)

Notice that the dimension of M is twice the dimension of A and so the cost of matrix-matrix multiplications grows, in
general, by a factor of eight.

On the other hand, a closer look to the functions to be approximated clearly indicates that the algorithm used to eval-
uate the matrix sine and cosine for the unitary matrix (1) should not be used directly for this problem, since it requires
computing first the square root of the matrix, B = √

A, in addition to a multiplication and an inversion of this matrix. As
a matter of fact, an efficient approximation to the exponential (4) was already presented in [4]. We propose in this case
an improved algorithm based on a modification of the methods to compute the matrix sine and cosine with the goal of
computing simultaneously the functions

c(t2 A) ≡ cos(
√

t2 A) and s(t, A) ≡ (
√

A)−1 sin(
√

t2 A).

For the double angle we will take into account that

c(4t2 A) = 2c2(t2 A) − I, s(2t, A) = 2s(t, A)c(t2 A),

thus requiring only two products per squaring. Notice that we do not use the property cos(2A) = I − 2 sin2(A), since the
function sin(A) is not computed in this case.

In summary, the purpose of this paper consists in developing algorithms that allow one to compute cos(A) and sin(A) or
c(t2 A) and s(t, A) simultaneously and providing full accuracy up to single or double precision with a reduced computational
cost. Thus, in particular, we propose an algorithm that, with only six products, reproduces exactly the series defining cos(A)

up to the power A16 and the series of sin(A) up to A17. In this sense, the following definition will be helpful for the rest of
the paper:

Definition 1. We say that a given function f (A) satisfies f (A) =O(An) if it can be written as a convergent Taylor expansion,
f (A) = ∑∞

k=n ck Ak , for ‖A‖ < α, with α a positive constant.
97

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
Thus, our algorithm allows one to write cos(A) with and error O(A18). The same procedure allows one, with one extra
product (seven products in total), to approximate cos(A) and sin(A) with errors O(A26) and O(A25), respectively.

Although one can find in the literature several algorithms to compute cos(A) (see [26] and references therein), only few
of them are designed to do so in a simultaneous way (see [1] and references therein). As our analysis shows and several
numerical examples confirm, the technique we propose here outperform all of them.

2. The algorithms

The search of fast algorithms for evaluating matrix polynomials has received considerable interest in the literature [2,3,
18,20,23,25,29,30]. We next briefly summarize how to approximate the matrix sine and cosine functions by means of certain
polynomials involving a reduced number of matrix products. This reduction essentially follows the same approach used in
[9] to minimize the number of commutators appearing in different Lie-group integrators and was successfully adapted to
the Taylor expansion of the exponential matrix in [2] and especially in [3].

Generally speaking, the strategy consists first in elaborating a recursive procedure to compute the polynomial approxi-
mating the matrix cosine with the minimum number of products and then using these same products to approximate the
matrix sine as accurately as possible in the cheapest possible way.

Clearly, the most economic way to construct polynomials of degree 2k is by applying the following sequence, which
requires the evaluation of only k products. First we form the intermediate matrices

A0 := I, A1 := A,

A2 := z2,0 I + z2,1 A1 + (x1 I + x2 A1)(x3 I + x4 A1),

A4 := z4,0 I + z4,1 A1 + z4,2 A2 + (x5 I + x6 A1 + x7 A2)(x8 I + x9 A1 + x10 A2),

A8 :=
3∑

k=0

z8,2k−1 A2k−1 + (x11 I + · · · + x14 A4)(x15 I + · · · + x18 A4), (5)

...

and finally we take

P2k = A2k ,

where the coefficients zi, j, xk ∈R have to be chosen in such a way that P2k coincides with the desired polynomial. Here the
indices 2k are chosen to indicate the highest attainable power, i.e., A2k ∈ P2k (A), where Pn(x) is the set of polynomials of
degree ≤ n in the variable x. Of course, there are many redundancies in the coefficients since some of them can be absorbed
by others. Thus, for instance, we may take just A2 = A1 A1, since any quadratic polynomial can be written in terms of A0,
A1 and A2. By the same token, we can take A4 = A2(x1 A1 + x2 A2) because any polynomial of degree four can be expressed
in terms of A0, A1, A2 and A4 for an appropriate choice of the coefficients x1 and x2. However, the problem is much more
involved for higher degree polynomials.

According to the previous considerations, any polynomial of degree up to four can be computed with two products,
whereas polynomials up to degree eight can be computed with only three products. This does not mean, however, that all
such polynomials can be written with just three products. Thus, in particular, P7(A) = A7 requires at least four products
where one of the intermediate results must be a polynomial of odd order (e.g. A2 = A2, A3 = A A2, A4 = A2 A2, A7 =
A4 A3 = P7(A)).

When a given polynomial cannot be reproduced by following the previous approach, new terms have to be incorporated.
Thus, in particular

A0 = I, A1 = A, A2 = A2, A3 = A A2

A6 = B3,1 + B3,2 B3,3, B3,i =
3∑

k=0

xi,k Ak (6)

...

and this generalizes the procedure.
We use this technique in the sequel to approximate first cos(A) and sin(A) simultaneously with the minimum number

of products, and then we apply the same procedure to c(t2 A) and s(t, A).
98

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
2.1. Computing cos(A) and sin(A) simultaneously

Let us denote by

T c
2m(A) =

m∑
k=0

(−1)k(A2)k

(2k)! , T s
2m+1(A) = A

m∑
k=0

(−1)k(A2)k

(2k + 1)!
the Taylor polynomial approximations of cos(A) and sin(A) up to order 2m and 2m + 1 in A, respectively, and by T s

2m+1,�

with � > 2m + 1, any polynomial of degree � such that

T s
2m+1,�(A) = T s

2m+1(A) +O(A2m+2).

We next collect the best approximations we have obtained to the cosine and sine functions by polynomial functions when
using an increasing number of products k.

k = 3 products. This constitutes a trivial problem, but it nevertheless illustrates the general procedure. With two products
we can compute T c

4 as

A2 = A2, A4 = A4,

T c
4(A) = I − 1

2! A2 + 1

4! A4,
(7)

and with one extra product we get

T s
5(A) = A(I − 1

3! A2 + 1

5! A4). (8)

k = 4 products. With three products we can compute T c
8 as

A2 = A2, A4 = A2
2, A8 = A4

(
− 1

6! A2 + 1

8! A4

)
,

T c
8(A) = I − 1

2! A2 + 1

4! A4 + A8.

(9)

With one extra product we can approximate the matrix sine, but only up to order seven:

T s
7,9(A) = A

(
I − 1

3! A2 + 1

5! A4 + 6!
7! A8

)
. (10)

According with the previous notation, T s
7,9(A) = T s

7(A) +O(A9).
The order of approximation of the matrix sine can be increased by incorporating one extra product as follows:

A8 = A4

(
− 1

7! A2 + 1

9! A4

)
,

T s
9(A) = A

(
I − 1

3! A2 + 1

5! A4 + A8

)
.

(11)

In this way, sin(A) − T s
9(A) =O(A11).

k = 6 products. The following scheme allows one to express T c
16(A) with only four products:

A2 = A2, A4 = A2
2, A8 = A4(x1 A2 + x2 A4),

A16 = (x3 A4 + A8)(x4 I + x5 A2 + x6 A4 + x7 A8),

T c
16(A) = I − 1

2
A2 + x8 A4 + A16.

(12)

In fact, we get two families of solutions depending on a free parameter that reproduce T c
16(A) in exact arithmetic. Since

floating-point arithmetic has to be used in practice, we choose this free parameter x1 so as to minimize the 1-norm of the
vector (x1, . . . , x8) in order to avoid large round off errors. This results in

x1 = 7

500
, x2 = − 7

60000
, x3 = 1

2500
(−1533 + 7

√
36681),

x4 = −5(124581 + 391
√

36681)

10594584
, x5 = 9775

10594584
, x6 = −5(1001 + √

36681)

508540032
,

x7 = 3125
, x8 = 1549211 + 3246

√
36681

.

(13)
889945056 63063000

99

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
Some of the coefficients are irrational numbers because they correspond to solutions of a nonlinear system of equations.
With two extra products we can approximate the matrix sine up to order O(A19) as follows:

C24 = (z5 I + z5 A2 + z6 A4 + z7 A8 + z8T c
16(A))A8,

T s
17,25(A) = A

(
z0 I + z1 A2 + z2 A4 + z3 A8 + z4T c

16(A) + C24
) (14)

with

z0 = 8887

4794
, z1 = −1897

3196
, z2 = 25259

575280
,

z3 = − 965093875

9674368704
, z4 = −4093

4794
, z5 = 25698275

29023106112
,

z6 = − 3907675

348277273344
, z7 = 11865625

3656911370112
, z8 = 25

308756448
.

(15)

In other words, (14)-(15) approximates the matrix sine up to a higher order than the matrix cosine.
k = 7 products. With five products we can compute T c

24:

A2 = A2, A4 = A2
2, A6 = A4 A2,

C1 = a0,1 I + a1,1 A2 + a2,1 A4 + a3,1 A6, C2 = a0,2 I + a1,2 A2 + a2,2 A4 + a3,2 A6,

C3 = a0,3 I + a1,3 A2 + a2,3 A4 + a3,3 A6, C4 = a0,4 I + a1,4 A2 + a2,4 A4 + a3,4 A6,

A12 = C3 + C2
4, A24 = (C2 + A12)A12

T c
24(A) = C1 + A24.

(16)

The best solution we have obtained is:

a0,1 = 0, a1,1 = 0,

a2,1 = 0.02264979811206039519, a3,1 = −0.00013110924142135755,

a0,2 = 0.55751443809990408029, a1,2 = −0.61577924683458386455,

a2,2 = 0.00747198841446687051, a3,2 = −0.00003362444420476012,

a0,3 = 0.75936877868464999248, a1,3 = −0.01560333979813817129,

a2,3 = 0.00010936989591908396, a3,3 = −1.03893360877457159499 · 10−6,

a0,4 = 0, a1,4 = −0.039649968743474473091,

a2,4 = 0.000155490073503821463, a3,4 = −1.126739663071170022488 · 10−6.

(17)

Although we report here 20 digits for the coefficients, they can be in fact determined with arbitrary accuracy.
With two extra products we can approximate the matrix sine up to order O(A23) as follows:

C48 = (z6 I + z7 A2 + z8 A4 + z9 A6 + z10 A12 + z11T c
24(A))T c

24(A),

T s
23,49(B) = A

(
z0 I + z1 A2 + z2 A4 + z3 A6 + z4 A12 + z5T c

24(A) + C48
)
,

(18)

with

z0 = 0.10090808375109885598, z1 = −0.07668753546445299316,

z2 = 0.00084924846993243257, z3 = −0.00001220406904464391,

z4 = 0.98499703159318860027, z5 = −0.84925233648155398756,

z6 = 1, z7 = 0.00095544138280925799,

z8 = 4.56337109377154270633 · 10−6, z9 = 2.73461259403000427141 · 10−8,

z10 = 0.00048550288474842477 z11 = −4.15891109384923342531 · 10−7.

(19)

2.2. Computing c(t2 A) and s(t, A) simultaneously

Given a real matrix A, let us denote by

P c
m(t2 A) =

m∑
k=0

(−1)k(t2 A)k

(2k)! , P s
m(t, A) = t

m∑
k=0

(−1)k(t2 A)k

(2k + 1)!
the Taylor expansions of the functions

c(t2 A) = cos(
√

t2 A), and s(t, A) = (
√

A)−1 sin(
√

t2 A)
100

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
up to order m in A, respectively. Notice that they are approximations up to order 2m and 2m + 1 in t to the respective
functions. Analogously, we will denote by P s

m,� , � > m, any polynomial of degree � such that P s
m,�(A) = P s

m(A) +O(Am+1).
Next we show how the previous algorithms to approximate the sine and cosine functions can be adjusted to approximate

c(t2 A) and s(t, A). As before, we proceed according with the number of products involved.
k = 3 products. With two products we can compute P c

4(t
2 A):

B = t2 A, B2 = B2, B4 = B2(− 1

6! B + 1

8! B2),

P c
4(B) = I − 1

2! B + 1

4! B2 + B4.

(20)

With the same number of products we can also evaluate P s
3,4(t, A),

P s
3,4(t, A) = t

(
I − 1

3! B + 1

5! B2 − 6!
7! B4

)
, (21)

whereas with one extra product we get

P s
4(t, A) = t

(
I − 1

3! B + 1

5! B2 + B2

(
− 1

7! B + 1

9! B2

))
. (22)

k = 4 products. With three products we can compute P c
8(t

2 A):

B = t2 A, B2 = B2, B4 = B2(x1 B + x2 B2),

B8 = (x3 B2 + B4)(x4 I + x5 B + x6 B2 + x7 B4),

P c
8(B) = y0 I + y1 B + y2 B2 + B8,

(23)

whose coefficients are the same as those given in (13).
With one extra product we can approximate the matrix sine up to order eight as

C12 = (z5 I + z5 B + z6 B2 + z7 B4 + z8 P c
8(B))B4,

P s
8,12(t, A) = t

(
z0 I + z1 B + z2 B2 + z3 B4 + z4 P c

8(B) + C12
)
,

(24)

with the same values for the coefficients zi as before.
k = 5 products. With four products we can compute P c

12(t
2 A):

B = t2 A, B2 = B2, B3 = B2 B,

D1 = a0,1 I + a1,1 B + a2,1 B2 + a3,1 B3, D2 = a0,2 I + a1,2 B + a2,2 B2 + a3,2 B3,

D3 = a0,3 I + a1,3 B + a2,3 B2 + a3,3 B3, D4 = a0,4 I + a1,4 B + a2,4 B2 + a3,4 B3,

B6 = D3 + D2
4

P c
12(B) = D1 + (D2 + B6)B6,

(25)

with solution for the coefficients ai, j given in (17), whereas with one extra product we can approximate P s
11(t, A) as

C24 = (z6 I + z7 B + z8 B2 + z9 B3 + z10 B6 + z11 P c
12(A))P c

12(B),

P s
11,24(t, A) = t

(
z0 I + z1 B + z2 B2 + z3 B3 + z4 B6 + z5 P c

12(B) + C24
)
,

(26)

with the same coefficients as in (19).

2.3. Padé approximations

At this point it is useful to briefly review the schemes presented in [1] to compute the matrix sine and cosine simulta-
neously, since they will be compared in section 4 with our own procedure.

The methods presented in [1] are based on the identities

cos(A) = ei A + e−i A

2
, sin(A) = ei A − e−i A

2i
,

and the use of Padé approximations of the exponential ei A . For instance, taking a diagonal Padé of order eight for approxi-
mating ei A , i.e. r4(i A) = [p4(−i A)]−1 p4(i A) = ei A +O(A9) one gets
101

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
s4 =
A

(
I − 11

8 A2 + 37
1176 A4 − 1

70560 A6
)

I + 1
28 A2 + 3

3920 A4 + 1
8 A6 + 1

2822400 A8
,

c4 = I − 13
28 A2 + 289

11760 A4 − 19
70560 A6 + 19

2822400 A8

I + 1
28 A2 + 3

3920 A4 + 1
8 A6 + 1

2822400 A8
,

with

s4 = sin(A) +O(A9), c4 = cos(A) +O(A10).

It is clear that s4, c4 can be computed simultaneously with 5 products (A2, A4, A6, A8, and the extra product for the numer-
ator in s4) and the computation of two inverse matrices. Since both denominators are the same, only one LU factorization
is necessary. The totals cost is (7 + 1

3) products. Notice that the same order (with very similar accuracy as we will see) is
obtained with our novel approach at the cost of only 4 products (and a smaller number of matrices need to be stored).

3. Error analysis

Next we analyze how to bound the truncation errors of the previously considered Taylor polynomial approximations of
order 2m and 2m̃ + 1 for the cosine and sine functions, respectively. They have the form

cos(A) − T c
2m =

∞∑
k=m+1

α2k A2k, 2m ∈ {4,8,16,24}

sin(A) − T s
2m̃+1,�

=
∞∑

k=m̃+1

α̃2k+1 A2k+1, 2m̃ + 1 ∈ {5,7,17,23} .

(27)

On the other hand, the truncation errors of the approximations of the cosine and sine functions obtained by using Padé
approximants for ei A [1] can be written as

cos(A) − cm =
∞∑

k=m+1

γ2k A2k, sin(A) − sm =
∞∑

k=m

γ̂2k+1 A2k+1. (28)

Clearly, the series (27) and (28) can be bounded in terms of ‖A‖ as

∥∥cos(A) − T c
2m

∥∥ ≤
∞∑

k=m+1

|α2k| ‖A‖2k ,

∥∥∥sin(A) − T s
2m̃+1,�

∥∥∥ ≤
∞∑

k=m̃+1

∣∣α̃2k+1
∣∣‖A‖2k+1 , (29)

and

‖cos(A) − cm‖ ≤
∞∑

k=m+1

∣∣γ2k
∣∣‖A‖2k , ‖sin(A) − sm‖ ≤

∞∑
k=m

∣∣γ̂2k+1
∣∣‖A‖2k+1 . (30)

We denote by θ M
2m the largest value of ‖A‖ such that the bounds (29), (30) do not exceed a prescribed accuracy, u,

for each method M ≡ T c
2m, T s

2m̃+1, cm, sm . To achieve maximum accuracy, we bound the previous forward absolute errors
with the unit round off u = 2−53, u = 2−24 in double and single precision floating-point arithmetic, respectively. We have
truncated the series of the corresponding functions after 150 terms to find θ M

2m . The corresponding values for the new Taylor
approximations of the cosine and sine functions are collected in Tables 1 and 2, together with the total number of matrix
products corresponding to each procedure, �2m . For completeness, we have also included the values of θ M

2m for the Padé
approximations, as given in [1]. In this case we have also added to the total number of matrix products πm the cost of
evaluating two inverse matrices sharing the same LU factorization, i.e. (2 + 1

3) products.
The comparison of the theoretical performance of the new Taylor polynomial approximations T c

2m, T s
2m̃+1 (with orders

{4,8,16,24} and {5,7,17,23} respectively) and the Padé approximations cm, sm [1] (with orders {4,8,16,24}) has been
illustrated in Fig. 1: here we plot ‖A‖ versus the number of matrix products required for each approximation of cos(A) and
sin(A) simultaneously, both in double (left) and single (right) precision. From the figure the improvement achieved by the
proposed Taylor polynomial approximations is apparent.

Remark 2. Notice that the previous error analysis is also valid for the approximations to the function c(t2 A) just by replacing
‖A‖ by t

√‖A‖ in the first expression of eq. (29). Since this result depends on both t and ‖A‖, it is not appropriate to get
error bounds simultaneously for both s(t, A) and As(t, A) of eq. (4). Nevertheless, in the frequent case in which A is a
real and symmetric matrix, then etM in (4) is a symplectic matrix and ‖ sin(t

√
A)‖ ≤ 1. In this case the values of α̃2k+1

appearing in the second expression of (29) are the same when considering the relative error for both functions s(t, A) and
As(t, A).
102

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
Table 1
Number of matrix multiplications �2m and forward absolute error bounds θ M

2m in
double precision floating-point arithmetic, u ≤ 2−53, for the new Taylor algorithms
T c

2m , T s
2m̃+1 and Padé approximations cm , sm [1]. The cost of the computation of two

inverse matrices sharing the same LU factorization, i.e. (2 + 1
3), has been included in

the cost πm for the Padé approximations.

2m̃ 4 6 16 22
2m 4 8 16 24
θ

cm
2m 6.5633e-3 1.3959e-1 1.3879 3.7288

θ
sm
2m 2.4019e-3 1.1213e-1 1.3784 3.7287

πm [1] 5 + 1
3 7 + 1

3 10 + 1
3 12 + 1

3

θ
T c

2m
2m 6.5633e-3 1.1495e-1 9.8108e-1 2.5675

θ
T s

2m̃+1
2m 1.777e-2 8.0438e-2 1.1184 1.97

�2m 3 4 6 7

Table 2
Same as Table 1, but now in single precision floating-point arithmetic.

2m̃ 4 6 16 22
2m 4 8 16 24
θ

cm
2m 1.8687e-1 1.0218 3.8571 7.1575

θ
sm
2m 1.3355e-1 9.9511e-1 3.8569 7.1575

πm [1] 5 + 1
3 7 + 1

3 10 + 1
3 12 + 1

3

θ
T c

2m
2m 1.8709e-1 8.5756e-1 2.9935 5.5555

θ
T s

2m̃+1
2m 3.1386e-1 7.492e-1 3.2152 4.3819

�2m 3 4 6 7

Fig. 1. Orders and corresponding number of products of each method versus ‖A‖ in double and single precision floating-point arithmetic.

4. Numerical experiments

In this section we collect the results we have obtained by measuring the performance of the new Taylor polynomials
(denoted as ‘cosmsinmT’) and the Padé approximations (denoted as ‘cosmsinmP’) [1] to compute the matrix cosine and sine
functions simultaneously. The platform for all numerical experiments is MATLAB R2013a and the matrix 1-norm has been
used in the implementation of the algorithms. The experiments have been carried out for three sets of 2500 matrices of
dimension ≤ N × N each one, with N = 16, 64 and 1024. Each set of 2500 matrices is chosen as follows (the matrices are
adjusted in order to have different norms):

• Matrix gallery (blue): 52 test matrices have been chosen from the MATLAB gallery function [12]. 690 sampled matrices
with different norms were tested. If the gallery does not return valid results for some dimension then the dimension is
reduced. Furthermore, the dimension is reduced to 4 × 4 and 8 × 8 for matrices with norm larger than 104.

• Random matrices (red): Using rand() and randn() functions in MATLAB to randomly generate matrices with entries
drawn from different distributions. 400 matrices normally distributed, 500 matrices uniformly distributed in the interval
103

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
Fig. 2. Comparison of cosmsinmP and cosmsinmT by using results of the cosine function of the matrices of dimensions ≤ 16 ×16. Test Matrices are specified
as Matrix gallery (blue), Random matrices (red) and Special matrices (green). Top left panel: relative errors of the methods. Top right panel: number of
scalings used versus the condition number for each matrix. Bottom left panel: ratio of the costs. Bottom right panel: ratio of the relative errors. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(0, 1) and 501 matrices in the interval (−0.5, 0.5). Additionally, using spdiags() and rand() functions in MATLAB
to construct 400 triangular nilpotent matrices with random rank.

• Special matrices (green): 9 matrices of the form

A =
(

1 λ

0 −1

)
, (31)

where λ = 1, 10, . . . , 108, possibly leading to overscaling (utilization of large value of the scaling parameter s).

The same test matrices as in Remark 5 of [3] have been generated and all matrices are adjusted to have 1-norms on the
interval (10−4, 104.1) in all numerical experiments. Notice that, given a matrix A, we first compute ‖A‖1 in order to decide,
according to the results shown in Table 1 (for double precision) or Table 2 (for single precision), which method is used to
approximate the functions as well as whether the scaling-squaring is required.

The condition numbers of each matrix function are computed by running the function funm_condest1 from the Matrix
Function Toolbox [12]. The reference solutions of the matrix cosine and sine have been calculated with Mathematica with
100 digits of precision. In all cases we have computed the relative error

‖F − f (A)‖2

‖ f (A)‖2
,

where F is an approximated value of f (A). In the following we show the results for double precision (similar results are
obtained for single precision).

The results we have obtained for the 2500 matrices of dimension ≤ 16 × 16 are collected in Figs. 2 and 3. From the
top left of these two figures we observe that in most cases the relative errors of both cosmsinmP and cosmsinmT methods
produced in approximating the matrix cosine and sine functions change between 1.0e − 12 and 1.0e − 15, and they drop
below machine accuracy for a few matrices, whereas the top right panels show that cosmsinmT method involves more
104

Fig. 3. Same as Fig. 2, but for the matrix sine function.

scalings (in particular, cosmsinmT leads to scaling for 1180 matrices, whereas cosmsinmP does so for 741 matrices). On
the other hand, the bottom left panels show that in most cases the ratios of the cost cosmsinmT/cosmsinmP are below 1,
with the new method cosmsinmT requiring fewer matrix products. Finally, it can be seen in the bottom right panels that
the accuracy of both methods is in good agreement with the theoretical results we have obtained (here the values of the
relative errors have been replaced by machine accuracy when they are smaller).

Figs. 4 and 5 show performance profiles [10] for the sets of matrices of dimension ≤ 64 × 64, and ≤ 1024 × 1024,
respectively. A performance profile shows the probability that a measure is within a given factor of the best measure across
all algorithms. Specifically, we show in Fig. 4 the relative errors (for both the cosine and the sine), the number of products
and the computational time for matrices of dimension ≤ 64 × 64, whereas in Fig. 5 we only report the number of products
and the computational times required. The abscissae are the digits of accuracy (for the relative error plots) and the interval
[1, 3] for the number of products and computation times.

From these figures it is clear that, in particular, cosmsinmT method is quite less expensive than cosmsinmP.

5. Conclusions

We have presented a new algorithm to compute the matrix cosine and sine. The algorithm contains several methods
that are optimized for different values of the norm of the matrix and the desired accuracy, and can be combined with the
scaling and squaring technique. Each of these methods is obtained by following a sequence in which each stage uses the
results from all previous ones. An error analysis is also carried out and we have shown both theoretically as well as in the
numerical experiments that the new algorithm is superior to other procedures from the literature that are based on Padé
approximations to the matrix cosine and sine.

The new algorithm only involves matrix-matrix products and does not require to compute the inverse of matrices as
is the case for Padé approximations. The cost of computing the inverse of a dense matrix can be taken as 4/3 the cost of
the product of two dense matrices. However, for sparse matrices, the computational cost of the proposed algorithms grow
almost linearly, whereas the cost of Padé approximations grows much faster because, in general, the inverse of a sparse
matrix is a dense matrix. We thus expect a further increase in the efficiency of the new algorithms in this case.
M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
105

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107

Fig. 4. Performance profiles of cosmsinmP and cosmsinmT by using results of the cosine and sine function of the matrices of dimension ≤ 64 × 64. Top
panels: the percentage of matrices among the test set for which the relative logarithmic errors are lower than the horizontal axis. Bottom left panel: the
percentage of matrices among the test set for which the method under consideration has a number of product lower than factor-times the smallest number
of product across all algorithms. Bottom right panel: Restatement of bottom left panel in terms of the computation times averaged across 10 cycles.

Fig. 5. Same as Fig. 4, bottom panels, for the set of matrices of dimension ≤ 1024 × 1024.
106

M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
Acknowledgements

The work of MS has been funded by the Scientific and Technological Research Council of Turkey (TUBITAK) with Grand
Number 1059B191802292. PB, SB and FC acknowledge financial support from Ministerio de Economía, Industria y Competi-
tividad (Spain) through projects MTM2016-77660-P and PID2019-104927GB-C21 (AEI/FEDER, UE).

References

[1] A.H. Al-Mohy, N.J. Higham, S.D. Relton, New algorithms for computing the matrix sine and cosine separately or simultaneously, SIAM J. Sci. Comput.
37 (2015) A456–A487.

[2] P. Bader, S. Blanes, F. Casas, An improved algorithm to compute the exponential of a matrix, arXiv:1710 .10989 [math .NA], 2017, preprint.
[3] P. Bader, S. Blanes, F. Casas, Computing the matrix exponential with an optimized Taylor polynomial approximation, Mathematics 7 (2019) 1174,

https://doi .org /10 .3390 /math7121174.
[4] P. Bader, S. Blanes, E. Ponsoda, M. Seydaoğlu, Symplectic integrators for the matrix Hill’s equation and its applications to engineering models, J. Comput.

Appl. Math. 316 (2017) 47–59.
[5] P. Bader, S. Blanes, M. Seydaoğlu, The scaling, splitting and squaring method for the exponential of perturbed matrices, SIAM J. Matrix Anal. Appl. 36

(2015) 594–614.
[6] S. Blanes, F. Casas, A Concise Introduction to Geometric Numerical Integration, CRC Press, Boca Raton, FL, USA, 2016.
[7] S. Blanes, F. Casas, A. Murua, An efficient algorithm based on splitting for the time integration of the Schrödinger equation, J. Comput. Phys. 303 (2015)

396–412.
[8] S. Blanes, F. Casas, J.A. Oteo, J. Ros, The Magnus expansion and some of its applications, Phys. Rep. 470 (2009) 151–238.
[9] S. Blanes, F. Casas, J. Ros, High order optimized geometric integrators for linear differential equations, BIT Numer. Math. 42 (2002) 262–284.

[10] E.D. Dolan, J.J. More, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002) 201–213.
[11] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed, Springer,

Berlin, 2006.
[12] N.J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
[13] N.J. Higham, A.H. Al-Mohy, Computing matrix functions, Acta Numer. 19 (2010) 159–208.
[14] M. Hochbruck, C. Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34 (1997) 1911–1925.
[15] M. Hochbruck, A. Ostermann, Exponential integrators, Acta Numer. 19 (2010) 209–286.
[16] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, 2nd ed., Cambridge University Press, 2008.
[17] A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie group methods, Acta Numer. 9 (2000) 215–365.
[18] L. Lei, T. Nakamura, A fast algorithm for evaluating the matrix polynomial I + A + · · · + AN−1, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 39

(1992) 299–300.
[19] B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press, 2004.
[20] W. Liang, R. Baer, C. Saravanan, Y. Shao, A.T. Bell, M. Head-Gordon, Fast methods for resumming matrix polynomials and Chebyshev matrix polynomials,

J. Comput. Phys. 194 (2004) 575–587.
[21] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, European Mathematical Society, 2008.
[22] C.B. Moler, C.F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (2003) 3–49.
[23] M.S. Paterson, L.J. Stockmeyer, On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM J. Comput. 2 (1973) 60–66.
[24] J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.
[25] J. Sastre, Efficient evaluation of matrix polynomials, Linear Algebra Appl. 539 (2018) 229–250.
[26] J. Sastre, J. Ibáñez, P. Alonso-Jordá, J. Peinado, E. Defez, Fast Taylor polynomial evaluation for the computation of the matrix cosine, J. Comput. Appl.

Math. 354 (2019) 641–650.
[27] J. Sastre, J. Ibáñez, E. Defez, Boosting the computation of the matrix exponential, Appl. Math. Comput. 340 (2019) 206–220.
[28] R.B. Sidje, Expokit: a software package for computing matrix exponentials, ACM Trans. Math. Softw. 24 (1998) 130–156.
[29] C. Van Loan, A note on the evaluation of matrix polynomials, IEEE Trans. Autom. Control 24 (1979) 320–321.
[30] D. Westreich, Evaluating the matrix polynomial I + A + · · · + AN−1, IEEE Trans. Circuits Syst. 36 (1989) 162–164.
107

http://refhub.elsevier.com/S0168-9274(21)00011-8/bibAD4CF805819F31B3D2760D59C1C45E42s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibAD4CF805819F31B3D2760D59C1C45E42s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib63951E17596D323CE2314071FC75DD53s1
https://doi.org/10.3390/math7121174
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib2090A7F2EE8B2DD41292F1B31601205Fs1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib2090A7F2EE8B2DD41292F1B31601205Fs1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib43FE42241B3E4086CBB5DAF9A2859BD8s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib43FE42241B3E4086CBB5DAF9A2859BD8s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib08DD14D50A26C3C271F0FE3C00441ABCs1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibE3F494DF0D8BF8DEADD9873743916ED1s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibE3F494DF0D8BF8DEADD9873743916ED1s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibE2CB8F01F9F69E385637B71FD2A50933s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib51BDCAC478986832118E2AB2664B39DBs1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibC77F0827C68D751DD408102AEEEDFB93s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib53519ABF3DDD5C93FC555FE705D1532Bs1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib53519ABF3DDD5C93FC555FE705D1532Bs1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib8BDD6D5C9AACF011C29ED505C9FB9AADs1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib9E5BBE3819F0FB2F78F44CD8911405F2s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibE8E3FC453A336F6C021C8B411BDAECCBs1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibF5473BBD4CB7F42F01A69D2D742CDA83s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibCEC1E7599A0631F8AD34EAA776BBBDDFs1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib7B32564BEF534506E00BC06FD8481C33s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib3D1DB8A4507DEA90093DE4FF921047E8s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib3D1DB8A4507DEA90093DE4FF921047E8s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibA7FED2F1FF60B051D1F3F5CB11E8A6A5s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib28F15F31FC82D233FAE8DDD25CCC3A93s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib28F15F31FC82D233FAE8DDD25CCC3A93s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib14DD1143D697D70889E128F6A454F16Es1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib1CC15C02F8636FEE7D3F4CD5A1DD3359s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib5B7AF3CCC4E32EBA385369E3FB977984s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibF5FAED5D276921A06AE1980251E23F82s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibC27176FB136D91761ACFFD6A10C41E56s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib547FF85139A0FD375B55CB088B69A256s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib547FF85139A0FD375B55CB088B69A256s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibFF51BA0951B186C3AD6D24726E008432s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibBB029D69DF3B1888E129DDDEDC2583C9s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bib289D2EAF3A28C838FBD004970AC17365s1
http://refhub.elsevier.com/S0168-9274(21)00011-8/bibAE2A469267DA6EAFC26888D673AEDC2Bs1

	Computing the matrix sine and cosine simultaneously with a reduced number of products
	1 Introduction
	2 The algorithms
	2.1 Computing cos(A) and sin(A) simultaneously
	2.2 Computing c(t2A) and s(t,A) simultaneously
	2.3 Padé approximations

	3 Error analysis
	4 Numerical experiments
	5 Conclusions
	Acknowledgements
	References

