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A new procedure is presented for computing the matrix cosine and sine simultaneously 
by means of Taylor polynomial approximations. These are factorized so as to reduce the 
number of matrix products involved. Two versions are developed to be used in single 
and double precision arithmetic. The resulting algorithms are more efficient than schemes 
based on Padé approximations for a wide range of norm matrices.

© 2021 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many dynamical systems are modeled by differential equations in which finding closed solutions is not possible and 
so one has to compute approximating solutions. These differential equations usually preserve some underlying geometric 
structure which reflects the qualitative nature of the phenomena they describe. It is then relevant that the approximations 
share with the exact solution of the differential equation these qualitative properties to render a right description. The de-
sign and analysis of numerical integrators preserving some of these geometric structures constitutes the realm of Geometric 
Numerical Integration, an active and interdisciplinary research area and the subject of intensive development during the last 
decades [6,11,16,19,21,24].

Exponential integrators can be considered as a class of geometric integrators tailored to stiff and oscillatory equations 
[7,8,14,15,17]. For large systems of equations these schemes usually require to compute the action of the exponential of a 
matrix on a vector [14,15]. However, for problems of moderate size it may be more appropriate to compute directly the 
exponential of the matrices involved.

When the problem is oscillatory, very often the formal solution involves both the sine and cosine of a matrix. Thus, for 
example, consider the Schrödinger equation in quantum mechanics,

i
dψ

dt
= H(t)ψ, ψ(t0) = ψ0,
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where H(t) is a Hermitian operator and ψ is a complex wave function. A usual procedure to get numerical approximations 
involves first a spatial discretization or working on a finite dimensional representation. In any event, one ends up with a 
matrix equation with a similar structure,

i
du

dt
= Au, u(t0) = u0 ∈CN .

If A is a real and constant matrix, the unitary evolution operator is given by

U (t) = e−it A = cos(t A) − i sin(t A). (1)

There are different techniques to compute efficiently the exponential of a matrix [2,3,5,13,22,26–28]. However, using any 
of these general algorithms to approximate the unitary matrix e−it A in (1) involves products of complex matrices making 
them computationally expensive. Alternatively, we propose an efficient procedure to compute the matrix sine and cosine 
that only involves a small number of products of real matrices. The algorithm is used in combination with squaring as

cos(2A) = 2 cos2(A) − I = I − 2 sin2(A), sin(2A) = 2 sin(A) cos(A).

In this way, it only requires two products per squaring (instead of four products when considering the square of complex 
matrices), thus making the overall procedure more efficient.

There are other examples where the computation of the sine and cosine of a matrix can be of interest. For example, for 
wave equations given by the generic second order system

y′′ + Ay = f (y, t),

with y ∈RN , exponential integrators frequently require to solve separately the linear homogeneous problem

y′′ + Ay = 0, y(0) = y0, y′(0) = y′
0. (2)

Writing (2) as a first order system, the solution is given by(
y(t)
y′(t)

)
= etM

(
y0
y′

0

)
, with M =

(
0 I

−A 0

)
(3)

and

etM =
(

cos(t
√

A) (
√

A)−1 sin(t
√

A)

−√
A sin(t

√
A) cos(t

√
A)

)
≡

(
c(t2 A) s(t, A)

−As(t, A) c(t2 A)

)
. (4)

Notice that the dimension of M is twice the dimension of A and so the cost of matrix-matrix multiplications grows, in 
general, by a factor of eight.

On the other hand, a closer look to the functions to be approximated clearly indicates that the algorithm used to eval-
uate the matrix sine and cosine for the unitary matrix (1) should not be used directly for this problem, since it requires 
computing first the square root of the matrix, B = √

A, in addition to a multiplication and an inversion of this matrix. As 
a matter of fact, an efficient approximation to the exponential (4) was already presented in [4]. We propose in this case 
an improved algorithm based on a modification of the methods to compute the matrix sine and cosine with the goal of 
computing simultaneously the functions

c(t2 A) ≡ cos(
√

t2 A) and s(t, A) ≡ (
√

A)−1 sin(
√

t2 A).

For the double angle we will take into account that

c(4t2 A) = 2c2(t2 A) − I, s(2t, A) = 2s(t, A)c(t2 A),

thus requiring only two products per squaring. Notice that we do not use the property cos(2A) = I − 2 sin2(A), since the 
function sin(A) is not computed in this case.

In summary, the purpose of this paper consists in developing algorithms that allow one to compute cos(A) and sin(A) or 
c(t2 A) and s(t, A) simultaneously and providing full accuracy up to single or double precision with a reduced computational 
cost. Thus, in particular, we propose an algorithm that, with only six products, reproduces exactly the series defining cos(A)

up to the power A16 and the series of sin(A) up to A17. In this sense, the following definition will be helpful for the rest of 
the paper:

Definition 1. We say that a given function f (A) satisfies f (A) =O(An) if it can be written as a convergent Taylor expansion, 
f (A) = ∑∞

k=n ck Ak , for ‖A‖ < α, with α a positive constant.
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M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
Thus, our algorithm allows one to write cos(A) with and error O(A18). The same procedure allows one, with one extra 
product (seven products in total), to approximate cos(A) and sin(A) with errors O(A26) and O(A25), respectively.

Although one can find in the literature several algorithms to compute cos(A) (see [26] and references therein), only few 
of them are designed to do so in a simultaneous way (see [1] and references therein). As our analysis shows and several 
numerical examples confirm, the technique we propose here outperform all of them.

2. The algorithms

The search of fast algorithms for evaluating matrix polynomials has received considerable interest in the literature [2,3,
18,20,23,25,29,30]. We next briefly summarize how to approximate the matrix sine and cosine functions by means of certain 
polynomials involving a reduced number of matrix products. This reduction essentially follows the same approach used in 
[9] to minimize the number of commutators appearing in different Lie-group integrators and was successfully adapted to 
the Taylor expansion of the exponential matrix in [2] and especially in [3].

Generally speaking, the strategy consists first in elaborating a recursive procedure to compute the polynomial approxi-
mating the matrix cosine with the minimum number of products and then using these same products to approximate the 
matrix sine as accurately as possible in the cheapest possible way.

Clearly, the most economic way to construct polynomials of degree 2k is by applying the following sequence, which 
requires the evaluation of only k products. First we form the intermediate matrices

A0 := I, A1 := A,

A2 := z2,0 I + z2,1 A1 + (x1 I + x2 A1)(x3 I + x4 A1),

A4 := z4,0 I + z4,1 A1 + z4,2 A2 + (x5 I + x6 A1 + x7 A2)(x8 I + x9 A1 + x10 A2),

A8 :=
3∑

k=0

z8,2k−1 A2k−1 + (x11 I + · · · + x14 A4)(x15 I + · · · + x18 A4), (5)

...

and finally we take

P2k = A2k ,

where the coefficients zi, j, xk ∈R have to be chosen in such a way that P2k coincides with the desired polynomial. Here the 
indices 2k are chosen to indicate the highest attainable power, i.e., A2k ∈ P2k (A), where Pn(x) is the set of polynomials of 
degree ≤ n in the variable x. Of course, there are many redundancies in the coefficients since some of them can be absorbed 
by others. Thus, for instance, we may take just A2 = A1 A1, since any quadratic polynomial can be written in terms of A0, 
A1 and A2. By the same token, we can take A4 = A2(x1 A1 + x2 A2) because any polynomial of degree four can be expressed 
in terms of A0, A1, A2 and A4 for an appropriate choice of the coefficients x1 and x2. However, the problem is much more 
involved for higher degree polynomials.

According to the previous considerations, any polynomial of degree up to four can be computed with two products, 
whereas polynomials up to degree eight can be computed with only three products. This does not mean, however, that all 
such polynomials can be written with just three products. Thus, in particular, P7(A) = A7 requires at least four products 
where one of the intermediate results must be a polynomial of odd order (e.g. A2 = A2, A3 = A A2, A4 = A2 A2, A7 =
A4 A3 = P7(A)).

When a given polynomial cannot be reproduced by following the previous approach, new terms have to be incorporated. 
Thus, in particular

A0 = I, A1 = A, A2 = A2, A3 = A A2

A6 = B3,1 + B3,2 B3,3, B3,i =
3∑

k=0

xi,k Ak (6)

...

and this generalizes the procedure.
We use this technique in the sequel to approximate first cos(A) and sin(A) simultaneously with the minimum number 

of products, and then we apply the same procedure to c(t2 A) and s(t, A).
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2.1. Computing cos(A) and sin(A) simultaneously

Let us denote by

T c
2m(A) =

m∑
k=0

(−1)k(A2)k

(2k)! , T s
2m+1(A) = A

m∑
k=0

(−1)k(A2)k

(2k + 1)!
the Taylor polynomial approximations of cos(A) and sin(A) up to order 2m and 2m + 1 in A, respectively, and by T s

2m+1,�

with � > 2m + 1, any polynomial of degree � such that

T s
2m+1,�(A) = T s

2m+1(A) +O(A2m+2).

We next collect the best approximations we have obtained to the cosine and sine functions by polynomial functions when 
using an increasing number of products k.

k = 3 products. This constitutes a trivial problem, but it nevertheless illustrates the general procedure. With two products 
we can compute T c

4 as

A2 = A2, A4 = A4,

T c
4(A) = I − 1

2! A2 + 1

4! A4,
(7)

and with one extra product we get

T s
5(A) = A(I − 1

3! A2 + 1

5! A4). (8)

k = 4 products. With three products we can compute T c
8 as

A2 = A2, A4 = A2
2, A8 = A4

(
− 1

6! A2 + 1

8! A4

)
,

T c
8(A) = I − 1

2! A2 + 1

4! A4 + A8.

(9)

With one extra product we can approximate the matrix sine, but only up to order seven:

T s
7,9(A) = A

(
I − 1

3! A2 + 1

5! A4 + 6!
7! A8

)
. (10)

According with the previous notation, T s
7,9(A) = T s

7(A) +O(A9).
The order of approximation of the matrix sine can be increased by incorporating one extra product as follows:

A8 = A4

(
− 1

7! A2 + 1

9! A4

)
,

T s
9(A) = A

(
I − 1

3! A2 + 1

5! A4 + A8

)
.

(11)

In this way, sin(A) − T s
9(A) =O(A11).

k = 6 products. The following scheme allows one to express T c
16(A) with only four products:

A2 = A2, A4 = A2
2, A8 = A4(x1 A2 + x2 A4),

A16 = (x3 A4 + A8)(x4 I + x5 A2 + x6 A4 + x7 A8),

T c
16(A) = I − 1

2
A2 + x8 A4 + A16.

(12)

In fact, we get two families of solutions depending on a free parameter that reproduce T c
16(A) in exact arithmetic. Since 

floating-point arithmetic has to be used in practice, we choose this free parameter x1 so as to minimize the 1-norm of the 
vector (x1, . . . , x8) in order to avoid large round off errors. This results in

x1 = 7

500
, x2 = − 7

60000
, x3 = 1

2500
(−1533 + 7

√
36681),

x4 = −5(124581 + 391
√

36681)

10594584
, x5 = 9775

10594584
, x6 = −5(1001 + √

36681)

508540032
,

x7 = 3125
, x8 = 1549211 + 3246

√
36681

.

(13)
889945056 63063000
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Some of the coefficients are irrational numbers because they correspond to solutions of a nonlinear system of equations.
With two extra products we can approximate the matrix sine up to order O(A19) as follows:

C24 = (z5 I + z5 A2 + z6 A4 + z7 A8 + z8T c
16(A))A8,

T s
17,25(A) = A

(
z0 I + z1 A2 + z2 A4 + z3 A8 + z4T c

16(A) + C24
) (14)

with

z0 = 8887

4794
, z1 = −1897

3196
, z2 = 25259

575280
,

z3 = − 965093875

9674368704
, z4 = −4093

4794
, z5 = 25698275

29023106112
,

z6 = − 3907675

348277273344
, z7 = 11865625

3656911370112
, z8 = 25

308756448
.

(15)

In other words, (14)-(15) approximates the matrix sine up to a higher order than the matrix cosine.
k = 7 products. With five products we can compute T c

24:

A2 = A2, A4 = A2
2, A6 = A4 A2,

C1 = a0,1 I + a1,1 A2 + a2,1 A4 + a3,1 A6, C2 = a0,2 I + a1,2 A2 + a2,2 A4 + a3,2 A6,

C3 = a0,3 I + a1,3 A2 + a2,3 A4 + a3,3 A6, C4 = a0,4 I + a1,4 A2 + a2,4 A4 + a3,4 A6,

A12 = C3 + C2
4, A24 = (C2 + A12)A12

T c
24(A) = C1 + A24.

(16)

The best solution we have obtained is:

a0,1 = 0, a1,1 = 0,

a2,1 = 0.02264979811206039519, a3,1 = −0.00013110924142135755,

a0,2 = 0.55751443809990408029, a1,2 = −0.61577924683458386455,

a2,2 = 0.00747198841446687051, a3,2 = −0.00003362444420476012,

a0,3 = 0.75936877868464999248, a1,3 = −0.01560333979813817129,

a2,3 = 0.00010936989591908396, a3,3 = −1.03893360877457159499 · 10−6,

a0,4 = 0, a1,4 = −0.039649968743474473091,

a2,4 = 0.000155490073503821463, a3,4 = −1.126739663071170022488 · 10−6.

(17)

Although we report here 20 digits for the coefficients, they can be in fact determined with arbitrary accuracy.
With two extra products we can approximate the matrix sine up to order O(A23) as follows:

C48 = (z6 I + z7 A2 + z8 A4 + z9 A6 + z10 A12 + z11T c
24(A))T c

24(A),

T s
23,49(B) = A

(
z0 I + z1 A2 + z2 A4 + z3 A6 + z4 A12 + z5T c

24(A) + C48
)
,

(18)

with

z0 = 0.10090808375109885598, z1 = −0.07668753546445299316,

z2 = 0.00084924846993243257, z3 = −0.00001220406904464391,

z4 = 0.98499703159318860027, z5 = −0.84925233648155398756,

z6 = 1, z7 = 0.00095544138280925799,

z8 = 4.56337109377154270633 · 10−6, z9 = 2.73461259403000427141 · 10−8,

z10 = 0.00048550288474842477 z11 = −4.15891109384923342531 · 10−7.

(19)

2.2. Computing c(t2 A) and s(t, A) simultaneously

Given a real matrix A, let us denote by

P c
m(t2 A) =

m∑
k=0

(−1)k(t2 A)k

(2k)! , P s
m(t, A) = t

m∑
k=0

(−1)k(t2 A)k

(2k + 1)!
the Taylor expansions of the functions

c(t2 A) = cos(
√

t2 A), and s(t, A) = (
√

A)−1 sin(
√

t2 A)
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up to order m in A, respectively. Notice that they are approximations up to order 2m and 2m + 1 in t to the respective 
functions. Analogously, we will denote by P s

m,� , � > m, any polynomial of degree � such that P s
m,�(A) = P s

m(A) +O(Am+1).
Next we show how the previous algorithms to approximate the sine and cosine functions can be adjusted to approximate 

c(t2 A) and s(t, A). As before, we proceed according with the number of products involved.
k = 3 products. With two products we can compute P c

4(t
2 A):

B = t2 A, B2 = B2, B4 = B2(− 1

6! B + 1

8! B2),

P c
4(B) = I − 1

2! B + 1

4! B2 + B4.

(20)

With the same number of products we can also evaluate P s
3,4(t, A),

P s
3,4(t, A) = t

(
I − 1

3! B + 1

5! B2 − 6!
7! B4

)
, (21)

whereas with one extra product we get

P s
4(t, A) = t

(
I − 1

3! B + 1

5! B2 + B2

(
− 1

7! B + 1

9! B2

))
. (22)

k = 4 products. With three products we can compute P c
8(t

2 A):

B = t2 A, B2 = B2, B4 = B2(x1 B + x2 B2),

B8 = (x3 B2 + B4)(x4 I + x5 B + x6 B2 + x7 B4),

P c
8(B) = y0 I + y1 B + y2 B2 + B8,

(23)

whose coefficients are the same as those given in (13).
With one extra product we can approximate the matrix sine up to order eight as

C12 = (z5 I + z5 B + z6 B2 + z7 B4 + z8 P c
8(B))B4,

P s
8,12(t, A) = t

(
z0 I + z1 B + z2 B2 + z3 B4 + z4 P c

8(B) + C12
)
,

(24)

with the same values for the coefficients zi as before.
k = 5 products. With four products we can compute P c

12(t
2 A):

B = t2 A, B2 = B2, B3 = B2 B,

D1 = a0,1 I + a1,1 B + a2,1 B2 + a3,1 B3, D2 = a0,2 I + a1,2 B + a2,2 B2 + a3,2 B3,

D3 = a0,3 I + a1,3 B + a2,3 B2 + a3,3 B3, D4 = a0,4 I + a1,4 B + a2,4 B2 + a3,4 B3,

B6 = D3 + D2
4

P c
12(B) = D1 + (D2 + B6)B6,

(25)

with solution for the coefficients ai, j given in (17), whereas with one extra product we can approximate P s
11(t, A) as

C24 = (z6 I + z7 B + z8 B2 + z9 B3 + z10 B6 + z11 P c
12(A))P c

12(B),

P s
11,24(t, A) = t

(
z0 I + z1 B + z2 B2 + z3 B3 + z4 B6 + z5 P c

12(B) + C24
)
,

(26)

with the same coefficients as in (19).

2.3. Padé approximations

At this point it is useful to briefly review the schemes presented in [1] to compute the matrix sine and cosine simulta-
neously, since they will be compared in section 4 with our own procedure.

The methods presented in [1] are based on the identities

cos(A) = ei A + e−i A

2
, sin(A) = ei A − e−i A

2i
,

and the use of Padé approximations of the exponential ei A . For instance, taking a diagonal Padé of order eight for approxi-
mating ei A , i.e. r4(i A) = [p4(−i A)]−1 p4(i A) = ei A +O(A9) one gets
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s4 =
A

(
I − 11

8 A2 + 37
1176 A4 − 1

70560 A6
)

I + 1
28 A2 + 3

3920 A4 + 1
8 A6 + 1

2822400 A8
,

c4 = I − 13
28 A2 + 289

11760 A4 − 19
70560 A6 + 19

2822400 A8

I + 1
28 A2 + 3

3920 A4 + 1
8 A6 + 1

2822400 A8
,

with

s4 = sin(A) +O(A9), c4 = cos(A) +O(A10).

It is clear that s4, c4 can be computed simultaneously with 5 products (A2, A4, A6, A8, and the extra product for the numer-
ator in s4) and the computation of two inverse matrices. Since both denominators are the same, only one LU factorization 
is necessary. The totals cost is (7 + 1

3 ) products. Notice that the same order (with very similar accuracy as we will see) is 
obtained with our novel approach at the cost of only 4 products (and a smaller number of matrices need to be stored).

3. Error analysis

Next we analyze how to bound the truncation errors of the previously considered Taylor polynomial approximations of 
order 2m and 2m̃ + 1 for the cosine and sine functions, respectively. They have the form

cos(A) − T c
2m =

∞∑
k=m+1

α2k A2k, 2m ∈ {4,8,16,24}

sin(A) − T s
2m̃+1,�

=
∞∑

k=m̃+1

α̃2k+1 A2k+1, 2m̃ + 1 ∈ {5,7,17,23} .

(27)

On the other hand, the truncation errors of the approximations of the cosine and sine functions obtained by using Padé 
approximants for ei A [1] can be written as

cos(A) − cm =
∞∑

k=m+1

γ2k A2k, sin(A) − sm =
∞∑

k=m

γ̂2k+1 A2k+1. (28)

Clearly, the series (27) and (28) can be bounded in terms of ‖A‖ as

∥∥cos(A) − T c
2m

∥∥ ≤
∞∑

k=m+1

|α2k| ‖A‖2k ,

∥∥∥sin(A) − T s
2m̃+1,�

∥∥∥ ≤
∞∑

k=m̃+1

∣∣α̃2k+1
∣∣‖A‖2k+1 , (29)

and

‖cos(A) − cm‖ ≤
∞∑

k=m+1

∣∣γ2k
∣∣‖A‖2k , ‖sin(A) − sm‖ ≤

∞∑
k=m

∣∣γ̂2k+1
∣∣‖A‖2k+1 . (30)

We denote by θ M
2m the largest value of ‖A‖ such that the bounds (29), (30) do not exceed a prescribed accuracy, u, 

for each method M ≡ T c
2m, T s

2m̃+1, cm, sm . To achieve maximum accuracy, we bound the previous forward absolute errors 
with the unit round off u = 2−53, u = 2−24 in double and single precision floating-point arithmetic, respectively. We have 
truncated the series of the corresponding functions after 150 terms to find θ M

2m . The corresponding values for the new Taylor 
approximations of the cosine and sine functions are collected in Tables 1 and 2, together with the total number of matrix 
products corresponding to each procedure, �2m . For completeness, we have also included the values of θ M

2m for the Padé 
approximations, as given in [1]. In this case we have also added to the total number of matrix products πm the cost of 
evaluating two inverse matrices sharing the same LU factorization, i.e. (2 + 1

3 ) products.
The comparison of the theoretical performance of the new Taylor polynomial approximations T c

2m, T s
2m̃+1 (with orders 

{4,8,16,24} and {5,7,17,23} respectively) and the Padé approximations cm, sm [1] (with orders {4,8,16,24}) has been 
illustrated in Fig. 1: here we plot ‖A‖ versus the number of matrix products required for each approximation of cos(A) and 
sin(A) simultaneously, both in double (left) and single (right) precision. From the figure the improvement achieved by the 
proposed Taylor polynomial approximations is apparent.

Remark 2. Notice that the previous error analysis is also valid for the approximations to the function c(t2 A) just by replacing 
‖A‖ by t

√‖A‖ in the first expression of eq. (29). Since this result depends on both t and ‖A‖, it is not appropriate to get 
error bounds simultaneously for both s(t, A) and As(t, A) of eq. (4). Nevertheless, in the frequent case in which A is a 
real and symmetric matrix, then etM in (4) is a symplectic matrix and ‖ sin(t

√
A)‖ ≤ 1. In this case the values of α̃2k+1

appearing in the second expression of (29) are the same when considering the relative error for both functions s(t, A) and 
As(t, A).
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Table 1
Number of matrix multiplications �2m and forward absolute error bounds θ M

2m in 
double precision floating-point arithmetic, u ≤ 2−53, for the new Taylor algorithms 
T c

2m , T s
2m̃+1 and Padé approximations cm , sm [1]. The cost of the computation of two 

inverse matrices sharing the same LU factorization, i.e. (2 + 1
3 ), has been included in 

the cost πm for the Padé approximations.

2m̃ 4 6 16 22
2m 4 8 16 24
θ

cm
2m 6.5633e-3 1.3959e-1 1.3879 3.7288

θ
sm
2m 2.4019e-3 1.1213e-1 1.3784 3.7287

πm [1] 5 + 1
3 7 + 1

3 10 + 1
3 12 + 1

3

θ
T c

2m
2m 6.5633e-3 1.1495e-1 9.8108e-1 2.5675

θ
T s

2m̃+1
2m 1.777e-2 8.0438e-2 1.1184 1.97

�2m 3 4 6 7

Table 2
Same as Table 1, but now in single precision floating-point arithmetic.

2m̃ 4 6 16 22
2m 4 8 16 24
θ

cm
2m 1.8687e-1 1.0218 3.8571 7.1575

θ
sm
2m 1.3355e-1 9.9511e-1 3.8569 7.1575

πm [1] 5 + 1
3 7 + 1

3 10 + 1
3 12 + 1

3

θ
T c

2m
2m 1.8709e-1 8.5756e-1 2.9935 5.5555

θ
T s

2m̃+1
2m 3.1386e-1 7.492e-1 3.2152 4.3819

�2m 3 4 6 7

Fig. 1. Orders and corresponding number of products of each method versus ‖A‖ in double and single precision floating-point arithmetic.

4. Numerical experiments

In this section we collect the results we have obtained by measuring the performance of the new Taylor polynomials 
(denoted as ‘cosmsinmT’) and the Padé approximations (denoted as ‘cosmsinmP’) [1] to compute the matrix cosine and sine 
functions simultaneously. The platform for all numerical experiments is MATLAB R2013a and the matrix 1-norm has been 
used in the implementation of the algorithms. The experiments have been carried out for three sets of 2500 matrices of 
dimension ≤ N × N each one, with N = 16, 64 and 1024. Each set of 2500 matrices is chosen as follows (the matrices are 
adjusted in order to have different norms):

• Matrix gallery (blue): 52 test matrices have been chosen from the MATLAB gallery function [12]. 690 sampled matrices 
with different norms were tested. If the gallery does not return valid results for some dimension then the dimension is 
reduced. Furthermore, the dimension is reduced to 4 × 4 and 8 × 8 for matrices with norm larger than 104.

• Random matrices (red): Using rand() and randn() functions in MATLAB to randomly generate matrices with entries 
drawn from different distributions. 400 matrices normally distributed, 500 matrices uniformly distributed in the interval 
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Fig. 2. Comparison of cosmsinmP and cosmsinmT by using results of the cosine function of the matrices of dimensions ≤ 16 ×16. Test Matrices are specified 
as Matrix gallery (blue), Random matrices (red) and Special matrices (green). Top left panel: relative errors of the methods. Top right panel: number of 
scalings used versus the condition number for each matrix. Bottom left panel: ratio of the costs. Bottom right panel: ratio of the relative errors. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(0, 1) and 501 matrices in the interval (−0.5, 0.5). Additionally, using spdiags() and rand() functions in MATLAB 
to construct 400 triangular nilpotent matrices with random rank.

• Special matrices (green): 9 matrices of the form

A =
(

1 λ

0 −1

)
, (31)

where λ = 1, 10, . . . , 108, possibly leading to overscaling (utilization of large value of the scaling parameter s).

The same test matrices as in Remark 5 of [3] have been generated and all matrices are adjusted to have 1-norms on the 
interval (10−4, 104.1) in all numerical experiments. Notice that, given a matrix A, we first compute ‖A‖1 in order to decide, 
according to the results shown in Table 1 (for double precision) or Table 2 (for single precision), which method is used to 
approximate the functions as well as whether the scaling-squaring is required.

The condition numbers of each matrix function are computed by running the function funm_condest1 from the Matrix 
Function Toolbox [12]. The reference solutions of the matrix cosine and sine have been calculated with Mathematica with 
100 digits of precision. In all cases we have computed the relative error

‖F − f (A)‖2

‖ f (A)‖2
,

where F is an approximated value of f (A). In the following we show the results for double precision (similar results are 
obtained for single precision).

The results we have obtained for the 2500 matrices of dimension ≤ 16 × 16 are collected in Figs. 2 and 3. From the 
top left of these two figures we observe that in most cases the relative errors of both cosmsinmP and cosmsinmT methods 
produced in approximating the matrix cosine and sine functions change between 1.0e − 12 and 1.0e − 15, and they drop 
below machine accuracy for a few matrices, whereas the top right panels show that cosmsinmT method involves more 
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Fig. 3. Same as Fig. 2, but for the matrix sine function.

scalings (in particular, cosmsinmT leads to scaling for 1180 matrices, whereas cosmsinmP does so for 741 matrices). On 
the other hand, the bottom left panels show that in most cases the ratios of the cost cosmsinmT/cosmsinmP are below 1, 
with the new method cosmsinmT requiring fewer matrix products. Finally, it can be seen in the bottom right panels that 
the accuracy of both methods is in good agreement with the theoretical results we have obtained (here the values of the 
relative errors have been replaced by machine accuracy when they are smaller).

Figs. 4 and 5 show performance profiles [10] for the sets of matrices of dimension ≤ 64 × 64, and ≤ 1024 × 1024, 
respectively. A performance profile shows the probability that a measure is within a given factor of the best measure across 
all algorithms. Specifically, we show in Fig. 4 the relative errors (for both the cosine and the sine), the number of products 
and the computational time for matrices of dimension ≤ 64 × 64, whereas in Fig. 5 we only report the number of products 
and the computational times required. The abscissae are the digits of accuracy (for the relative error plots) and the interval 
[1, 3] for the number of products and computation times.

From these figures it is clear that, in particular, cosmsinmT method is quite less expensive than cosmsinmP.

5. Conclusions

We have presented a new algorithm to compute the matrix cosine and sine. The algorithm contains several methods 
that are optimized for different values of the norm of the matrix and the desired accuracy, and can be combined with the 
scaling and squaring technique. Each of these methods is obtained by following a sequence in which each stage uses the 
results from all previous ones. An error analysis is also carried out and we have shown both theoretically as well as in the 
numerical experiments that the new algorithm is superior to other procedures from the literature that are based on Padé 
approximations to the matrix cosine and sine.

The new algorithm only involves matrix-matrix products and does not require to compute the inverse of matrices as 
is the case for Padé approximations. The cost of computing the inverse of a dense matrix can be taken as 4/3 the cost of 
the product of two dense matrices. However, for sparse matrices, the computational cost of the proposed algorithms grow 
almost linearly, whereas the cost of Padé approximations grows much faster because, in general, the inverse of a sparse 
matrix is a dense matrix. We thus expect a further increase in the efficiency of the new algorithms in this case.
M. Seydaoğlu, P. Bader, S. Blanes et al. Applied Numerical Mathematics 163 (2021) 96–107
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Fig. 4. Performance profiles of cosmsinmP and cosmsinmT by using results of the cosine and sine function of the matrices of dimension ≤ 64 × 64. Top 
panels: the percentage of matrices among the test set for which the relative logarithmic errors are lower than the horizontal axis. Bottom left panel: the 
percentage of matrices among the test set for which the method under consideration has a number of product lower than factor-times the smallest number 
of product across all algorithms. Bottom right panel: Restatement of bottom left panel in terms of the computation times averaged across 10 cycles.

Fig. 5. Same as Fig. 4, bottom panels, for the set of matrices of dimension ≤ 1024 × 1024.
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