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Hybrid quantum-classical systems combine both classical and quantum degrees
of freedom. Typically, in Chemistry, Molecular Physics, or Materials Science,
the classical degrees of freedom describe atomic nuclei (or cations with frozen
core electrons), whereas the quantum particles are the electrons. Although
many possible hybrid dynamical models exist, the basic one is the so-called
Ehrenfest dynamics that results from the straightforward partial classical limit
applied to the full quantum Schrödinger equation. Few numerical methods
have been developed specifically for the integration of this type of systems.
Here we present a preliminary study of the performance of a family of recently
developed propagators: the (quasi) commutator-free Magnus expansions. These
methods, however, were initially designed for nonautonomous linear equations.
We employ them for the nonlinear Ehrenfest system, by approximating the state
value at each time step in the propagation, using an extrapolation from previous
time steps.
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1 INTRODUCTION

The right procedure, and even the possibility, of putting together classical and quantum mechanics into a physically
consistent hybrid quantum-classical theory has been extensively researched,1-12 and is still a subject of debate. There may
be fundamental reasons to consider these hybrids, that is, it has been speculated that hybrid systems may actually exist.
For example, a consistent quantum theory valid for cosmology problems is still not available, and it has been argued
that classical mechanics should be considered as the fundamental description; therefore the coupling of these systems to
quantum matter should be modeled with a hybrid theory (see, for example, Reference 13). Furthermore, hybrid models
have been proposed to explain the measurement process5,12): the “wave function collapse” should be explained through
the interaction of the quantum mechanical system with a classical measurement device.

However, the most important reason to deal with hybrid models is that they are essential to allow the approximation
of fully quantum systems that are too large to model exactly. If the classical approximation may be taken for a number of
particles of a quantum system, but not for others, the problem calls for a hybrid quantum-classical model representation,
that may significantly reduce the computational cost with respect to the full quantum treatment. In the extreme case, the
quantum degrees of freedom can actually be integrated out completely, leading to a purely classical system, formed by
particles that interact through forces that contain in an approximate way the influence of the quantum particles. This is
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the realm of classical molecular dynamics14 (MD). The problem then reduces to the integration of Newton's equations
and is no longer hybrid but merely classical—and is therefore not the target of this work.

Broadly speaking, the drastic reduction in the complexity of the problem that leads to classical MD can only be done
when the quantum particles (hereafter, the electrons) are constantly in the ground state of the Hamiltonian correspond-
ing to each instantaneous configuration of the classical particles (hereafter, the nuclei). This amounts to assuming the
so-called adiabatic approximation. Outside its domain of validity, a nonadiabatic form of MD must be used, in which the
dynamical system does contain both the electrons and nuclei, which must be evolved simultaneously—hence constitut-
ing a true hybrid system. There may be two reasons to necessitate a nonadiabatic MD: First, when the goal is to compute
equilibrium properties, if the temperature is sufficiently high so as to populate the electronic excited states. Second, for
time-dependent problems out of equilibrium, if the intensity of the perturbation is strong and fast enough to induce the
electronic transitions. Indeed, in the past decades, the advent and fast development of high-intensity ultra-fast laser pulses
has created the fields of femto- and atto-chemistry, whose theoretical study naturally calls for a nonadiabatic treatment.

A number of hybrid quantum-classical nonadiabatic MD models have been proposed over the years, but perhaps
the most fundamental of them all is given by the so-called Ehrenfest equations—oftentimes simply called the mixed
quantum-classical dynamics. This fundamental role played by Ehrenfest dynamics (ED) may be understood in two ways.
First, it is the result of the straightforward application of the classical limit, for a subset of the particles, to the full
Schrödinger equation.15 Second, it is the Hamiltonian system that results of the simple composition of two Hamiltonian
systems that represent both a classical and a quantum part: as it is well known, Schrödinger dynamics may be written
in terms of a Poisson bracket, and is therefore a Hamiltonian system.16 ED is thus symplectic, and it is desirable that
the numerical integrator used to solve the ED equations preserves this geometrical structure. Moreover, the norm of the
quantum wave function must also be preserved in time.

In principle, the different nature of the particles suggests the use of two different numerical propagators, as their
equations of motion—although coupled—are rather different. This is the approach that has often been taken, also favored
by the fact that the speed of the particles are normally different by as much as three orders of magnitude—the fact that
makes it possible to separate the two sets of particles and take the classical approximation for the heavy and slow ones.
Normally, a Verlet or velocity-Verlet algorithm is used for the nuclei, coupled in some way to some propagator designed for
linear equations to handle the Schrödinger equation. However, it is desirable to develop schemes that explicitly consider
the two subsystems on the same footing, in particular with the purpose of ensuring that the above-mentioned properties
(symplecticity, norm conservation) are preserved. Unfortunately, few methods have been specifically designed with this
purpose.17-24

Recently, some of the present authors25 have demonstrated the good performance of the commutator free (CF) Magnus
expansion26,27 based propagators for the time-dependent Kohn-Sham equations, which are the set of equations that stem
of time-dependent density-functional theory (TDDFT).28,29 This theory is one of the many alternatives that exist to tackle
the many-electron problem, substituting the Schrödinger equation by more manageable (yet approximate) equations.
This substitution reduces the dimension of the problem, making it computationally feasible, but also makes it nonlinear
(a transformation that is common to most of the other electronic structure methods). The CF Magnus propagators were
originally designed for linear equations, yet we proved that they can be used for the nonlinear TDDFT equations by
performing a simple extrapolation predictor step.

In this proceedings article, we extend this idea to hybrid quantum-classical systems, and present preliminary results
on the performance of two order 4 and two order 6 CF Magnus expansion propagators applied to ED—for the case in
which the quantum problem is handled directly by Schrödinger's equation. The goal is to use the same propagator for
both electrons and nuclei and apply the CF expansions formula to the full ED, which is also a nonlinear problem. In
a forthcoming publication,30 we will present the application of these methods to the ED+TDDFT combination, a more
detailed analysis of the performance of the schemes, and a deeper theoretical analysis.

Section 2 presents ED, and the specific model for which the numerical results will be later presented (a
one-dimensional H2 molecule with noninteracting electrons). In Section 3, we present the Magnus expansion and some
CF Magnus integrators that are benchmarked in this work, and how they are adapted for ED. In Section 4, we present
the numerical results of the methods, and conclusions are summarized in Section 5. Atomic units (e2 = ℏ = me = a0 = 1)
will be used hereafter.
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2 EHRENFEST DYNAMICS

Generally, ED is derived as the result of taking a partial classical limit on the Schrödinger for a set of particles.15 However,
one may arrive to ED in an alternative manner that emphasizes its symplectic structure. First of all, let us recall that
any quantum system may be rewritten in Hamiltonian form by considering, as canonical coordinates (qi, pi) the real and
imaginary parts of the coefficients ci of the system state in any orthonormal basis:

ci =
1√
2
(qi + ipi) , (1)

where ci = ⟨𝜑i|Ψ⟩, being Ψ the state of the system, and {𝜑i} an orthonormal basis. Each state Ψ is in this way associated
with a set of coordinates,Ψ = Ψ(q, p). One may then prove that Schrödinger's equation forΨ is equivalent to a Hamiltonian
system, that is,

q̇i =
𝜕H
𝜕pi

, (2)

ṗi = −𝜕H
𝜕qi

, (3)

where the Hamiltonian function is given by the expectation value of the quantum Hamiltonian operator, Ĥ: H(q, p) =⟨Ψ(q, p)|Ĥ|Ψ(q, p)⟩. One may then define the standard Poisson bracket, and the dynamics would be given by:

q̇i = {qi,H}Q , (4)

ṗi = {pi,H}Q. (5)

The “Q” subscript is used to underline the fact that, despite its classical appearance, this is, in fact, a reformulation of
Schrödinger equation.

Suppose now that we also have a classical system characterized by its canonical variables (Qi,Pi), and its associated
classical Poisson bracket {⋅, ⋅}C. We may form a hybrid quantum-classical system by considering all combined degrees of
freedom. The dynamical functions (“observables,” including the Hamiltonian) of these hybrid functions are then func-
tions defined on the full (q, p,Q,P)-space. However, in order to preserve the quantum character of the quantum subsystem,
the only valid functions are those that can be written as expectation values of (Q,P)-dependent self-adjoint linear operators
in the Hilbert space. For example, a Hamiltonian can be defined as:

H(q, p,Q,P) = ⟨Ψ(q, p)|Ĥ(Q,P)|Ψ(q, p)⟩ . (6)

A pure classical observable in this context would be given by a real function A(q, p) times the identity operator in the
Hilbert space.

The simple sum of both brackets defines then a valid hybrid bracket for the combined system (ie, it verifies the
necessary properties that define a Poisson bracket, ie, anticommutativity, bilinearity, Leibniz's rule, and the Jacobi
identity):

{⋅, ⋅}H = {⋅, ⋅}C + {⋅, ⋅}Q . (7)

Given the Hamiltonian function, the dynamics is then determined by:

q̇i = {qi,H}H , (8)

ṗi = {pi,H}H , (9)

Q̇i = {Qi,H}H , (10)

Ṗi = {Pi,H}H . (11)



4 of 12 GÓMEZ PUEYO et al.

These equations are, indeed, a reformulation of Ehrenfest's equations, found more frequently as:

Q̇i = ⟨Ψ|𝜕Ĥ(Q,P)
𝜕Pi

|Ψ⟩ , (12)

Ṗi = −⟨Ψ|𝜕Ĥ(Q,P)
𝜕Qi

|Ψ⟩ , (13)

|Ψ̇⟩ = −i|Ĥ(Q,P)|Ψ⟩ . (14)

This construction of ED emphasizes its symplectic structure, and the convenience of using a numerical integra-
tor that preserves it. Likewise, it is also easy to see that the norm of the quantum wave function is also a constant
of motion.

Despite the simplification entailed by the use of classical variables and equations for part of the system,
the many-electron wave function Ψ may be an enormous object, and the solution of the quantum part of the
equations grows badly with the number of electrons. For this reason, one normally uses reformulations of these
equations, such as time-dependent Hartree-Fock, post-Hartree Fock equations, or TDDFT. In this work, however,
we restrict the study to a model system whose unrestricted Schrödinger equation can be handled directly. It cor-
responds with a one-dimensional model for a Hydrogen molecule, irradiated by an electric field in the dipole
approximation:

Ĥ(Q,P, t) =

(∑
𝛼=1,2

1
2M

P2
𝛼 +

1|Q1 − Q2| − 𝜀(t)
∑
𝛼=1,2

Q𝛼

)
Î +

∑
i=1,2

1
2

p̂2
i −

∑
i=1,2

∑
𝛼=1,2

1√
1 + (Q𝛼 − x̂i)2

+ 𝜀(t)
∑
i=1,2

x̂i . (15)

The quantum operators x̂i, p̂i are the position and momentum operators, respectively (not to mistake with the q, p vari-
ables defined above). M is the Hydrogen nucleus mass (the electron mass is one in atomic units). Note that we have ignored
the electron-electron interaction so that we may describe the electron wave function with a single-electron doubly occu-
pied orbital Ψ(x). Also note that the electron nucleus interaction is not a pure Coulomb function, but a “soft-Coulomb”
one, a common artifact used in 1D models to avoid the Coulomb singularity.31 The resulting equations of motion are then
given by:

Q̇𝛼 = 1
M

P𝛼 , (16a)

Ṗ𝛼 = − 𝜕

𝜕Q𝛼

1|Q1 − Q2| + 𝜀(t) − 2∫ d3x|Ψ(x)|2 𝜕

𝜕Q𝛼

1√
1 + (Q𝛼 − x)2

, (16b)

i 𝜕
𝜕t
Ψ(x) =

[
−1

2
𝜕2

𝜕x2 −
∑
𝛼=1,2

1√
1 + (Q𝛼 − x)2

+ 𝜀(t)x

]
Ψ(x) . (16c)

We have implemented this model and the algorithms described below into the octopus code.32-34 Equation (16) is a set of
ordinary differential equations (ODEs) coupled to a partial differential equation (PDE). This last one must be discretized
somehow, thus transforming the full set into a system of ODEs. In our case, we cast the wave function into a real-space
regular grid defined in a simulation box [a, b]:

Ψj = Ψ(xj) (17a)

xj = a + (j − 1)Δ, (j = 1,… ,P), (xP+1 = b). (17b)

The Laplacian operator required by Equation (16c) is represented with a nine-point finite-difference formula.35

Zero-boundary conditions are set at the borders of the simulation box. The rest of the operators that appear in
that equation are diagonal in this real-space representation. For more details about the implementation, check
References 32-34.



GÓMEZ PUEYO et al. 5 of 12

3 COMMUTATOR-FREE MAGNUS EXPANSION METHODS
FOR EHRENFEST DYNAMCIS

Let us first recall the general definition of the Magnus expansion propagators. The solution to a linear system,

ẏ(t) = −iA(t)y(t) , (18a)

y(0) = y0 , (18b)

can be written as:

y(t + Δt) = exp(Ω(t + Δt, t))y(t) , (19)

where Ω(t + Δt, t) can be written, at least in a neighbourhood of t, as

Ω(t + Δt, t) =
∞∑

k=1
Ωk(t + Δt, t) . (20)

The existence of this expansion was proved by Magnus26 in 1954. He also obtainided by iteration the first Ωk operators,
that are given in terms of nested commutators of growing order:

Ω1(t + Δt, t) = ∫
t+Δt

t
d𝜏1(−iA(𝜏1)) , (21a)

Ω2(t + Δt, t) = 1
2 ∫

t+Δt

t
d𝜏1 ∫

𝜏1

t
d𝜏2 [−iA(𝜏1),−iA(𝜏2)] . (21b)

etc. (21c)

A working algorithm can be obtained by (a) truncating the infinite series at some cutoff term, and (b) approximating the
time integrals with some quadrature formula. The order of accuracy with respect to Δt can be systematically improved
by increasing the truncated series size (and consistently increasing the quadrature formula order). The trade-off for this
accuracy improvement is the computational complexity, specially due to the need to obtain the action of the nested com-
mutators. This need is absent in the simplest member of this family, the second order method that results of truncating
the series at k = 1, and using just one quadrature point: the exponential midpoint rule (EMR):

y(t + Δt) = exp(−iΔtA(t + Δt∕2))y(t) . (22)

The commutator-free approximations to the Magnus expansions36 were invented to alleviate this difficulty. They are
given by expressions in the form:

y(t + Δt) = Γ[S]
M (A)y(t), (23a)

Γ[S]
M (A) =

M∏
k=1

exp

[
−iΔt

K∑
𝜇

𝛼k𝜇A(𝜏𝜇)

]
, (23b)

where M is the number of exponentials of the method, S is the accuracy order of the resulting method, and 𝜏𝜇 = t + c𝜇Δt
are some time points within the interval [t, t + Δt]. In some cases, as we shall see below, the operators appearing on the
right-hand side are not always the full matrix A(𝜏𝜇), but parts of it. Note that for a given k, if

∑K
𝜇 𝛼k𝜇 = 0, then the constant

parts of A in this exponential disappear. The simplest member of this family is also the EMR, which in this notation would
be denoted as Γ[2]

1 .
In this work, in addition to this EMR, we have focused on the following higher order formulas:

• Order 4:
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One fourth-order method that requires of only two exponentials was reported in References 36 and 37. It is given by:

Γ[4]
2 (A) = exp{−iΔt(a11A[t1] + a12A[t2])} exp{−iΔt(a12A[t1] + a11A[t2])} . (24)

The constants aij and ti are:

⎧⎪⎨⎪⎩
a11 = 3−2

√
3

12
, a12 = 3+2

√
3

12
,

c1 = 1
2
−

√
3

6
, c2 = 1

2
+

√
3

6
,

t1 = t + c1Δt, t2 = t + c2Δt.

(25)

Another fourth-order method, which is computationally more expensive yet allegedly more precise, was suggested
by Bader et al.38 It makes use of four exponentials (and therefore we will denote it Γ[4]

4 ). This apparently makes it in
principle more expensive to compute, yet this extra cost is not so significant whenever the dynamical matrix A can be
split in two pieces:

A(t) = T + V(t) . (26)

The first term, the “kinetic” operator T, is time-independent, whereas the second “potential” term V(t) is such that the
exponential is easy to calculate (for example, because it is diagonal). This is indeed the case in the type of problems
that we are addressing. The method is then defined as:

Γ[4]
4 (A) = exp{−iΔtṼ4} exp

{
− iΔt

2
(T + Ṽ3)

}
exp

{
− iΔt

2
(T + Ṽ2)

}
exp{−iΔtṼ1}, (27)

where we make use of the following linear combinations

⎧⎪⎪⎨⎪⎪⎩

Ṽ1 = a11V1 + a12V2 + a13V3,

Ṽ2 = a21V1 + a22V2 + a23V3,

Ṽ3 = a23V1 + a22V2 + a21V3,

Ṽ4 = a13V1 + a12V2 + a11V3,

(28)

of the potential term at different instants in time:

V1 = V(t + c1Δt), V2 = V(t + c2Δt), V3 = V(t + c3Δt), (29)

If the two exponentials that only involve potential terms are easy to calculate, then in practice the cost of this method
is comparable to that of Γ[4]

2 . The value of all the constants that appear in the previous equations may be consulted in
Reference 38.

• Order 6:
We have tested an order six method that requires five exponentials, Γ[6]

5 , described in Reference 38. However, it can
profit from the same division of the matrix into a kinetic and a potential term described for Γ[4]

4 : two exponentials are
then in principle cheaper, as they only involve potential terms:

Γ[6]
5 (A) = exp{−iΔtṼ5} exp{−iΔt(b1T + Ṽ4)} exp{−iΔt(b2T + Ṽ3)} exp{−iΔt(b1T + Ṽ2)} exp{−iΔtṼ1}. (30)

The potential operators Ṽi are linear combinations of V1, V2, and V3, which are defined in Equation (29). The quadrature
points ci are the same as in Γ[4]

4 .
Finally, we have also implemented a four-exponential sixth-order method, Γ[6]

4 , also described in Reference 38:

Γ[6]
4 (A) = exp{−iΔt(Ṽ4 + Δt2Ṽ)} exp{−i(Δt∕2)(T + Ṽ3)} exp{−i(Δt∕2)(T + Ṽ2)} exp{−iΔt(Ṽ1 + Δt2Ṽ)} . (31)
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The potential terms Ṽi are once again linear combinations of V1, V2, and V3. There is a new term, Ṽ , given by:

Ṽ = i 1
43200Δt3 [𝛼2, [𝛼1, 𝛼2]] , (32)

where 𝛼1 and 𝛼2 are the first two of the three “generators” of the Lie algebra that is used to derive and analyze the
properties of these methods:27

𝛼1 = −iΔt(T + V2) (33a)

𝛼2 = −iΔt
√

15
3

(V3 − V1) (33b)

𝛼3 = −iΔt 10
3
(V3 − 2V2 + V1). (33c)

In purity, given Equation (32), this method is no longer a CF scheme. However, it can be considered a quasi-CF method,
if these commutators in particular are not difficult to compute—as it will be shown below for the case that we are
considering.

The previous method definitions assume a linear (possibly nonautonomous) system such as the one introduced in
Equation (18). Yet our ED (Equation (16)) is not linear. Let us start by rewriting it in a more compact way. We define the
full state vector as:

y =

[ Q
V
Ψ

]
, (34)

where Q and V are all the positions and velocities of the nuclei. Ehrenfest's equations may then be written as:

⎛⎜⎜⎝
Q̇(t)
V̇(t)
Ψ̇(t)

⎞⎟⎟⎠ = −i
(

HC(Q(t),Ψ(t), t) 0
0 HQ(Q(t), t)

)(Q(t)
V(t)
Ψ(t)

)
. (35)

We have introduced a “classical” Hamiltonian matrix HC:

HC(Q(t),Ψ(t), t) = i
( 0 1

F(Q(t),Ψ(t),t)
mQ(t)

0

)
, (36)

where the force F(Q(t),Ψ(t), t) is the right hand side of Equation (16b). The “quantum” Hamiltonian HQ(Q(t), t) is then
given by the right hand side of Equation (16c). Note that in order to arrive to the form of a nonlinear Schrödinger equation,
we have used a division and multiplication by Q(t). Note also that the matrix is block-diagonal: the classical and quantum
particles interact with each other only through the definition of their respective Hamiltonians.

In compact form, defining a “total” Hamiltonian HT(y(t), t) given by the full matrix in Equation (35), it becomes clear
that we do have an equation in the form of a nonlinear Schrödinger-like equation:

ẏ(t) = −iHT(y(t), t)y(t) . (37)

Yet the CF algorithms described above are only defined for linear systems. Looking at the general formula
(Equation (23)), one needs the Hamiltonian at K times 𝜏𝜇, within the propagating interval [t, t + Δt]. In a nonlinear
problem, this Hamiltonian is unknown. It may however be approximated by making use, at each time step, of the state of
the system at previous time steps and performing an extrapolation; in the following, we will call HT[𝜏𝜇] to the Hamiltonian
computed from these extrapolated states.

Once we have a way to approximate the state (and therefore, the Hamiltonian terms) at the intermediate steps, we
may apply the general formula. In our hybrid case, the block-diagonal structure of the matrix allows performing the
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propagations independently: (
Q(t + Δt)
V(t + Δt)

)
= Γ[S]

M (HC)
(

Q(t)
V(t)

)
, (38)

Ψ(t + Δt) = Γ[S]
M (HQ)Ψ(t) . (39)

It is important to take into account the following:

1. In order to preserve the order of accuracy of the algorithm with respect to Δt, the extrapolation must be performed
with a formula of equal or larger order to the one of the method (4 or 6, in our case). This implies a cost in terms of
memory since the states of previous time steps must be stored. The computational cost, however, is not significant
(although this may be problem dependent).

2. We must specify how to split both HQ and HC into the T and V(t) terms. For the quantum case, the division is obvious,
as we do have a real kinetic term and a potential term (whose exponential is fast to compute, as it is a diagonal operator
in real space). For the classical part of the Hamiltonian, HC, various choices are possible; in the examples shown below,
we have simply set T = 0.

3. In order for the exponential methods used in this work to preserve symplecticity and unitarity, the extrapolation must
be done on the Hamiltonians and not on the vectors. It is well known that a linear combination of unitary matrices
is not, in general, a unitary matrix. However, a linear combination of Hermitian matrices is a Hermitian matrix, and
this guarantees the preservation of unitarity, and similarly for the preservation of symplecticity.

As mentioned in the introduction, the current proposal is not the first one to approach the problem of propagating
a hybrid quantum-classical system. We mention here some relevant examples. Nettesheim et al17 were perhaps the first
ones to consider the symplecticity of the full hybrid system, and designed a propagator—that they called PICKABACK—
capable of preserving it. It is based on a Strang splitting39 of the full hybrid Hamiltonian. However, one cannot directly
apply this method to our target problem, which is the case in which the quantum subsystem is handled with some elec-
tronic structure method, such as TDDFT, that typically implies a non-linear quantum equation. Our current work has
been designed to consider non-linear quantum equations—although in this preliminary work the numerical results only
involve the linear case. Furthermore, PICKABACK is only second-order accurate in Δt, whereas our schemes are fourth-
or sixth-order methods— and in fact higher order schemes could be designed based on the same concept. Note, however,
that a higher order does not automatically imply better efficiency.

The basic PICKABACK algorithm can be modified in various ways to take advantage of the different time scales of
the problem (ionic and electrons move at different velocities), using multiple time steps.20,21 Hochbruck and Lubich18,19

have also proposed various algorithms, in particular exponential propagators, focusing on time-reversal symmetry rather
symplecticity. These are, however, also designed for a linear quantum equation, and therefore not directly applicable to
nonlinear electronic structure dynamical methods, at least not without modifications.

Jiang and Zhao23 also proposed some methods, departing from the concept of a “time-independent
quasi-Hamiltonian” operator, which is similar in spirit to the rewriting of the full quantum-classical system as a
Schröginer-like equation that we have used here. Finally, we also mention the work of Grochowski and Lesying,24

who proposed a number of second and fourth order propagators based on the splitting technique, and on the Fourier
transformation for the wave function.

4 RESULTS

We have assessed the accuracy and benchmarked the performance, of the methods described above, by performing cal-
culations with the model shown in Section 2. We show here results for one sample calculation, that summarizes the key
results. In this case, the Hydrogen molecule was subjet to a sinusoidal electric field:

𝜀(t) = A sin (𝜔t) . (40)

We set the amplitude to A = 0.1 a.u., and the frequency to 𝜔 = 10 a.u. The simulation was followed for 100 periods,
that is, up to T = 100 2𝜋

𝜔
a.u. At the end, the propagated wave function was compared to a quasi-exact result, obtained
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by propagating the system using an explicit sixth order Runge-Kutta method with a very small time step. The error was
defined as:

E =
(
∫ dx |Ψ(x,T) − Ψexact(x,T)|2)1∕2

. (41)

We could add the error in the nuclear coordinates, but we found that this suffices to get a qualitative idea of the
methods performance.

In Figure 1, we display, for one sample calculation, the error obtained with the five methods, as a function of the time
step Δt. Both scales are logarithmic, and in principle, the slope of the curves in the limit Δt → 0 should coincide with the
accuracy order of each method. The key findings are:

1 The higher order methods greatly improve the accuracy with respect to the lowest order ones. Obviously, this difference
grows as Δt approaches zero, or in other words, if greater accuracy is required.

2 The EMR has a very clear order two slope. In contrast, both the order four and order six methods have a more irregular
behavior, and their expected order is only observed approximately.

3 These CF methods applied to nonlinear systems have an extra source of error in comparison with the same method
applied to linear systems: the extrapolation. We have tried both a normal Lagrange polynomial form, and also the
Newton-Gregory extrapolation formula, with similar results. In any case, these add an extra error term whose order
with respect to Δt is given by the number of previous states stored and used in the formula. For the cases that we have
studied (this may be problem dependent), if the extrapolation is done at the same order than the underlying method,
the extrapolation error dominates. We therefore perform the extrapolations of larger order (8 when using the 6th order
expansions and 6 when using the 4th order expansions).

Finally, in Figure 2, we plot the wall time cost of the calculations, with respect to the accuracy achieved in each of
the runs. This plot permits to decide which of the methods is the most efficient for a given required level of accuracy.
It becomes clear that the higher the accuracy, the more convenient that it is to use higher-order, more sophisticated
methods. Comparing the two order six methods, it is also clear that Γ[6]

4 is faster, even if one needs the extra cost of
computing the potential derivatives. The comparison of the two order 4 methods is, however, less conclusive. The EMR
could become advantageous only when very little accuracy is required. Although these findings are problem dependent,
we have observed very similar behavior in many of our test runs.

F I G U R E 1 Propagation
error (formula given in
Equation (41)), as a function of the
time step Δt (both in logarithmic
scale), for the five methods
discussed in the text
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F I G U R E 2 Propagation cost
(wall clock time in seconds), as a
function of the propagation error
(both in logarithmic scale), for the
five methods discussed in the text

5 CONCLUSIONS

The accuracy and performance of some members of the CF Magnus expansion family of propagators were benchmarked
when applied to the nonlinear Ehrenfest equations problem that describe hybrid quantum-classical systems. The proce-
dure to do so consists in rewriting Ehrenfest equations in the form of a nonlinear Schrödinger equation, and then using
an extrapolation technique to predict the Hamiltonian at future times, as required by the algorithms. In this way, the two
subsystems (classical and quantum) are treated on the same footing, and therefore, the properties of the methods are not
compromised by the coupling of the equations. The use of Magnus expansions ensures the preservation of geometrical
properties—such as the symplectic structure and the wave function norm.

It was shown how these methods are accurate and fast alternatives. The advantage of using them, in contrast to simpler
schemes (such as the EMR, or a simple second-order Verlet algorithm for the nuclei coupled to any general purpose
scheme for the electrons), should become specially apparent if high precisions are required. The use of the extrapolation
does not spoil the good behavior already found for linear systems.

The quantum subsystem was handled directly by Schrödinger's equation. Work is in progress on the extension of the
problem to the case in which this equation is substituted by the nonlinear Kohn-Sham equations of TDDFT, which will
make possible the use of these techniques for larger and more realistic systems.
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