
Journal of Computational Dynamics

Vol. 9, No. 2, April 2022, pp. 85–101
doi:10.3934/jcd.2021022

APPLYING SPLITTING METHODS WITH COMPLEX

COEFFICIENTS TO THE NUMERICAL INTEGRATION OF

UNITARY PROBLEMS

Sergio Blanes∗

Universitat Politècnica de València
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Abstract. We explore the applicability of splitting methods involving com-

plex coefficients to solve numerically the time-dependent Schrödinger equation.

We prove that a particular class of integrators are conjugate to unitary methods
for sufficiently small step sizes when applied to problems defined in the group

SU(2). In the general case, the error in both the energy and the norm of the

numerical approximation provided by these methods does not possess a secu-
lar component over long time intervals, when combined with pseudo-spectral

discretization techniques in space.

1. Introduction. Splitting methods constitute a natural choice for the numerical
time integration of differential equations of the form

du

dt
= A(u) +B(u), u(0) = u0, (1)

when each subproblem
du

dt
= A(u),

du

dt
= B(u)
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with u(0) = u0 can be solved explicitly [3, 15, 19]. Then, by composing the solution
of each part with appropriately chosen coefficients, it is possible to construct an
integrator of a given order r ≥ 1 for (1). In the particular case of a linear problem,

du

dt
= Au+Bu, (2)

a splitting method is a composition of the form

Ψ[r](h) = ebs+1hBeashAebshB · · · ea1hA eb1hB , (3)

where h := ∆t is the time step and the coefficients aj , bj are chosen as solutions of
the order conditions, a set of polynomial equations that must be satisfied to achieve
an order of accuracy r, i.e., so that exp(h(A+B))u0 −Ψ[r](h)u0 = O(hr+1).

The simplest example within this class is the Lie–Trotter splitting,

ehA ehB or ehB ehA, (4)

providing a first order approximation (r = 1), whereas the palindromic versions

S(h) = eh/2A ehB eh/2A or S(h) = eh/2B ehA eh/2B , (5)

known as Strang splittings, are methods of order r = 2.
Although very efficient high order splitting methods can be found in the literature

for the numerical integration of Eq. (1), it is important to remark that if the
order r ≥ 3, then necessarily some of the coefficient aj and bj have to be negative
[2, 21, 22]. This, while does not constitute a particular problem when the differential
equation is reversible, makes unfeasible their application in parabolic differential
equations of evolutionary type, when the operators A and B are only assumed to
generate C0 semi-groups (and not groups): in that case the flows etA and/or etB

may not be defined for t < 0 [10, 16, 17]. Notice that this is the case, in particular,
if A is the Laplacian operator.

Moreover, even in problems where splitting methods of order r ≥ 3 can be
safely applied, the presence of negative coefficients usually leads to large truncation
errors, so that more stages than strictly necessary to achieve a given order have
to be included in the composition to reduce these errors and improve the overall
efficiency [6].

It is with the aim of circumventing these drawbacks that splitting methods with
complex coefficients (with positive real part) have entered into the literature, mainly
in the context of the integration of parabolic differential equations [10, 17, 5], but
also for ordinary differential equations (ODEs) when structure-preserving (symplec-
ticity, energy conservation, reversibility) is at stake [11].

Splitting and composition methods with complex coefficients, although computa-
tionally between 2 and 4 times more costly than their real counterparts when applied
to ODEs involving real vector fields, possess however some remarkable properties:
their truncation errors with the minimum number of stages are typically very small,
and their stability threshold is comparatively large. Moreover, when the numerical
solution is projected at each time step, they lead to approximations that still pre-
serve important qualitative features (such as symplecticity and time-symmetry) up
to an order much higher than the order of the method itself [7, 9, 4].

To better illustrate these points, let us consider a time-symmetric second order
method S(h) (such as one of the compositions (5)). Then, a fourth-order method
can be obtained by composition. More specifically, since the coefficients of such a
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scheme have to satisfy three order conditions, it makes sense to take three maps,

S(γ3h)S(γ2h)S(γ1h).

In that case, the order conditions read [6, 15]

3∑
j=1

γj = 1,

3∑
j=1

γ3
j = 0,

2∑
j=1

γ3
j

 3∑
k=j+1

γk

− γj
 3∑
k=j+1

γ3
k

 = 0. (6)

and admit only one real solution, namely

γ1 = γ3 =
1

2− 21/3
, γ2 = 1− 2γ1

leading to a time-symmetric composition scheme, usually referred to as Yoshida’s
method, here denoted as S [4](h). Notice, however, that there are four more complex
solutions. The first pair,

γ1 = γ3 ≡ γ =
1

2− 21/3e2ikπ/3
, γ2 = 1− 2γ, k = 1, 2 (7)

leads again to two time-symmetric methods, denoted as Ψ
[4]
P,c(h), whereas the second

one, denoted as Ψ
[4]
SC,c(h),

γ1 = γ̄3 =
1

4
± i 1

4

√
5

3
, γ2 =

1

2
(8)

(here the bar indicates the complex conjugate), corresponds to a so–called sym-
metric-conjugate composition method [4]: it is symmetric in the real part of the
coefficients and skew-symmetric in the imaginary part. Here and in the sequel, the
first sub-index in a method (either P or SC) refers to its type (either palindromic
or symmetric-conjugate, respectively), whereas the second sub-index (either r or c)
indicates that the ai coefficients in the splitting are real or complex, respectively.

At order five there are two additional order conditions. One of them, ω5,1 =∑3
j=1 γ

5
j , has been typically used to measure the relative error of methods of the

same class. If one defines the error as E = |ω5,1|, then one has for the previous
methods the following values of E :

S [4](h) E = 5.29 . . . ,

Ψ
[4]
P,c(h) E = 0.024 . . . ,

Ψ
[4]
SC,c(h) E = 0.027 . . .

Notice that the error of methods with complex coefficients is about 200 smaller than
in the real case.

In the particular case in which S(h) is given by (5), the previous methods can
also be written as

eb4hB ea3hA eb3hB ea2hA eb2hB ea1hA eb1hB , (9)

with

b1 =
1

2
γ1, a1 = γ1, b2 =

1

2
(γ1 + γ2), a2 = γ2,

b3 =
1

2
(γ2 + γ3), a3 = γ3, b4 =

1

2
γ3.

As a matter of fact, the simplest symmetric-conjugate composition corresponds to
the third order scheme

Ψ
[3]
SC,c(h) = S [2]

α2h
◦ S [2]

α1h
, (10)
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with

α1 = ᾱ2 ≡ α =
1

2
+ i

√
3

6
.

For equation (2), method (10) can be written as

Ψ
[3]
SC,c(h) = eb̄1hB eā1hA eb2hB ea1hA eb1hB , (11)

with a1 = α, b1 = α/2, b2 = 1/2.
Although (11) is of order 3, if A and B are real, then it renders a scheme of order

4 when it is projected on the real axis after each time step. In addition, it verifies

Ψ
[3]
SC,c(−h) ◦Ψ

[3]
SC,c(h) = I +O(h8). It is said that the scheme is pseudo-symmetric

of order 7, since it preserves the time-symmetry property up to terms of order h7

[9].
Schemes with complex coefficients have been proposed before for the treatment

of quantum problems, mainly in the context of imaginary time propagation, with
the purpose of computing ground state energies [1] and in quantum Monte Carlo
simulations [23, 14], but also in the decomposition of unitary operators [20]. In
the later case it is shown, both for unitary 2 × 2 matrices and empirically for
exponentials of Gaussian random Hermitian matrices, that a splitting method does
indeed possess a maximal time step for which the scheme is numerically stable.
We generalize the treatment to differential equations defined in SU(2) for methods
possessing a particular symmetry and eventually examine their behavior when they
are applied to the time dependent Schrödinger equation.

2. Splitting methods in SU(2). In the study of the evolution of two-level quan-
tum systems one has to deal with the Schrödinger equation, which in this context
reads (~ = 1)

i
dU

dt
= H U, U(0) = I, (12)

where U(t) is a 2×2 unitary matrix with unit determinant and the skew-Hermitian
Hamiltonian H can be expressed as a linear combination of Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (13)

Since our purpose is to analyze splitting methods in this context, we assume that
H can be written as

H = a · σ + b · σ (14)

for given vectors a,b ∈ R3 and σ = (σ1, σ2, σ3), so that, by comparing with (2),
one has A ≡ −ia · σ and B ≡ −ib · σ. The exact solution of Eq. (12) after one
time step h is

Uex(h) = e−ihH = e−ih(a·σ+b·σ).

On the other hand, if a splitting method of the form (3) of order r with real coeffi-
cients is applied to solve this very simple problem, it is clear that the corresponding
approximation can be written as

Uapp(h) = e−i hd(h)·σ, where d(h) = a + b +O(hr) ∈ R3,

and thus the method still renders an approximation in SU(2). The situation is
different, however, when the splitting method (3) involves complex coefficients, since
in that case d(h) ∈ C3 and the approximation is no longer unitary. In general, the
scheme will be unstable and the errors will grow exponentially along the integration.
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Example. At this point it is worth testing the previous third- and fourth-order
schemes obtained by composing the Strang splitting and involving complex coef-

ficients, namely Ψ
[3]
SC,c(h), Ψ

[4]
SC,c(h), and Ψ

[4]
P,c(h). To do that, we consider the

following simple Hamiltonian in SU(2): H = σ1 + σ2, or alternatively, a = (1, 0, 0),
b = (0, 1, 0) in (14).

In our experiment, we take as initial condition U(t0 = 0) = I, integrate Eq. (12)
with different values of the time step h and compute the error of the approximation
(in the 2-norm) at the final time tf = 10 as a function of the computational cost
(estimated as the number of exponentials involved in the whole integration). The
results obtained with each method are displayed in Figure 1 (left panel). We notice
that all schemes involving complex coefficients provide considerably more accurate
results than S [4](h) (black solid line), the fourth-order methods being also more

efficient than Ψ
[3]
SC,c(h) for high accuracy.

In order to check how each scheme with complex coefficients behaves with respect
to unitarity, we take as a final time tf = 1000, and adjust h (and therefore the num-
ber of iterations N) so that they require the same computational cost. Specifically,

N = 6000 (h = 1/6) for scheme Ψ
[3]
SC,c(h) and N = 4000 (h = 1/4) for all methods

of order 4. Finally we compute |‖Uapp(nh)‖ − 1|, n = 1, 2, . . . , N = (tf − t0)/h,
where Uapp(nh) denotes the approximate solution after n steps. The outcome is de-

picted in Figure 1 (right panel). Notice how the error in unitarity grows for Ψ
[4]
P,c(h),

whereas it is bounded, even for large intervals, for the symmetric-conjugate meth-

ods Ψ
[3]
SC,c(h) and Ψ

[4]
SC,c(h). Among them, the later clearly provides more accurate

results.
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Figure 1. Left: 2-norm error vs. computational cost (number of ex-

ponentials) for Ψ
[3]
SC,c (dotted line), S [4] (real coefficients, solid line), Ψ

[4]
P,c

(complex coefficients, dash-dotted line) and Ψ
[4]
SC,c (dashed line). Right:

Error in unitarity for Ψ
[4]
P,c (solid line) and the symmetric-conjugate

methods Ψ
[3]
SC,c (dotted line) and Ψ

[4]
SC,c (dashed line).

This marked difference of both types of integrators can also be illustrated by
computing the eigenvalues λ1, λ2 of the approximate solution after one step size,
i.e., of the corresponding matrix Uapp(h). In the exact case, of course, both evolve
on the unit circle in the complex plane, whereas here one has still λ1λ2 = 1, since
the determinant is one. In Figure 2 we depict |λj |, j = 1, 2, as a function of h for



90 SERGIO BLANES, FERNANDO CASAS AND ALEJANDRO ESCORIHUELA-TOMÀS

the palindromic scheme Ψ
[4]
P,c with k = 1 (black, dashed lines) and the symmetric-

conjugate splittings Ψ
[3]
SC,c (blue, dotted line) and Ψ

[4]
SC,c (red, solid line) in the

range 1 ≤ h ≤ 3. It is worth remarking that for the symmetric-conjugate methods

both |λj | are exactly 1 for 0 ≤ h ≤ h∗, with h∗ = 1.7570473 for Ψ
[3]
SC,c and h∗ =

2.9139468357 for Ψ
[4]
SC,c. In other words, they behave as unitary maps when h ≤ h∗.

On the other hand, it can be checked that |λ1| > 1 for any h > 0 for Ψ
[4]
P,c. �
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Figure 2. Absolute value of the eigenvalues of the approximate solu-

tion matrix obtained with Ψ
[4]
P,c with complex coefficients (k = 1, black

dashed line), Ψ
[3]
SC,c (blue dotted line) and Ψ

[4]
SC,c (red, solid line).

The previous example illustrates in fact a general pattern exhibited by symmetric-
conjugate methods for this problem, as we next prove.

Proposition 1. Suppose a symmetric-conjugate splitting method of the form (3),
with as+1−j = āj, bs+2−j = b̄j, is applied to the numerical integration of the
Schrödinger equation (12) with the Hamiltonian given by (14). In that case, the
following statements hold:

(a) The eigenvalues of the matrix approximating the solution after one time step
h lie on the unit circle in the complex plane for sufficiently small h.

(b) The symmetric-conjugate splitting method is itself conjugate to a unitary me-
thod for sufficiently small h.

Proof. When a splitting method of the form (3) is applied to solve Eq. (12), the
corresponding approximation after one step can be written as Uapp(h) = exp(V (h)),
where V (h) is a linear combination of A, B and all their nested commutators,

V (h) = h(w1,1A+w1,2B)+h2w2,1[A,B]+h3(w3,1[A, [A,B]]+w3,2[B, [A,B]])+O(h4),
(15)

and wn,k are polynomials in the coefficients aj , bj . Method (3) is of order r if
w1,1 = w1,2 = 1 and the polynomials wn,k vanish for 1 < n < r. In our case, since

[−ia · σ,−ib · σ] = −i 2 (a× b) · σ,
it is clear that the vector fields associated with all commutators in (15) containing
an even number of operators are perpendicular to the plane generated by the vectors
a and b, whereas those containing an odd number of operators A and B are in such
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a plane. If in addition the method is symmetric-conjugate, then a straightforward
computation shows that V †(h) = V (−h), and so all polynomials w2j+1,k are real
whereas all polynomials w2j,k are pure imaginary. Therefore, V (h) can be written
as

V (h) = −i hH̃(h), with H̃(h) = d(h) · σ + i c(h) · σ, (16)

for two vectors c,d ∈ R3 verifying c · d = 0 and

d(h) = a + b +O(hr+1), c(h) = O(hr). (17)

This special structure of H̃(h) allows one to obtain statements (a) and (b) above.
First, if we write

e−i hH̃(h) = ehu·σ, with u = c− id,
then

Uapp(h) = ehu·σ = cosh(hu)I +
sinh(hu)

u
u · σ,

with u =
√

u · u = (‖c‖2−‖d‖2)1/2. Of course, if ‖c‖ < ‖d‖, then cosh(u) = cosα,
sinh(u) = i sinα, with α = (‖d‖2 − ‖c‖2)1/2, and the eigenvalues of Uapp(h) are
λ1,2 = exp(±ihα(h)). But, in virtue of (17), this always holds for sufficiently small
values of h.

Statement (b) can demonstrated as follows. Let us introduce the unitary vector

C =
d× c

‖d× c‖ .

A trivial computation shows that

d×C = −‖d‖‖c‖ c, c×C =
‖c‖
‖d‖ d,

and furthermore, for a given parameter s ∈ R,

esC·σ ehu·σ e−sC·σ = exp
(
esC·σ (hu · σ) e−sC·σ

)
.

From the definition of C and the properties of the Pauli matrices [13], one has

esC·σ (c · σ) e−sC·σ = cosh(2s)(c · σ)− i sinh(2s)
‖c‖
‖d‖ d · σ

esC·σ (d · σ) e−sC·σ = cosh(2s)(d · σ) + i sinh(2s)
‖d‖
‖c‖ c · σ,

and thus

esC·σ (u · σ) e−sC·σ =(
sinh(2s)

‖d‖
‖c‖ + cosh(2s)

)
c · σ − i

(
sinh(2s)

‖c‖
‖d‖ + cosh(2s)

)
d · σ.

If we now take s such that

sinh(2s)
‖d‖
‖c‖ + cosh(2s) = 0, i.e., tanh(2s) = −‖c‖‖d‖ , (18)

then, clearly

esC·σ (−ihH̃) e−sC·σ = −i hD(h) · σ,
with

D(h) = sinh(2s)

( ‖c‖
‖d‖ −

‖d‖
‖c‖

)
d ∈ R3.
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In consequence,

esC·σ e−ihH̃ e−sC·σ = e−ihD(h)·σ. (19)

In other words, if s is such that Eq. (18) holds, then the map obtained by applying
a symmetric-conjugate splitting method is conjugate to a unitary matrix. Notice
that if ‖c‖ < ‖d‖ this is always possible, in agreement with statement (a) for the
eigenvalues of the approximate solution matrix.

Proposition 1 thus provides a rigorous justification of the results shown in Figures
1 and 2: since a symmetric-conjugate splitting method is ultimately conjugate to
a unitary map in the sense of eq. (19) for sufficiently small values of h, then the
error in the unitarity of the numerical solution is bounded, whereas the eigenvalues
remain on the unit circle in the complex plane.

Methods of the form (19) are called processed or corrected in the literature (see,

e.g. [3, 6, 15, 19]). In that context, method e−ihH̃ is called the kernel, and esC·σ

the processor. For integrators of this class, only the error terms in the kernel that
cannot be removed by a processor are relevant in the long run. In the case of unitary
problems in SU(2) we have shown that any symmetric-conjugate splitting method
is indeed the kernel of a processed unitary scheme.

3. Application to the time-dependent Schrödinger equation. In view of
the previous results in SU(2), it is natural to examine the situation when splitting
methods with complex coefficients, and in particular symmetric-conjugate schemes,
are applied in a more general setting. To this end, we next consider the numerical
integration of the general time dependent Schrödinger equation

i
∂

∂t
ψ(x, t) = − 1

2µ
∆ψ(x, t) + V (x)ψ(x, t), (20)

where now ψ : Rd × R −→ C is the wave function representing the state of the
system and the initial state is ψ(x, 0) = ψ0(x). We take again ~ = 1 and a reduced
mass µ. Equation (20) can be written as

i
∂

∂t
ψ = (T̂ (P ) + V̂ (X))ψ, (21)

with T̂ (P ) = P 2/(2µ), and the operators X and P are defined by their actions on
ψ(x, t) as

Xψ(x, t) = xψ(x, t), P ψ(x, t) = −i∇ψ(x, t). (22)

The usual procedure for applying splitting methods in this setting consists first
in discretizing the space variables x, so as to get a system of ordinary differential
equations (ODEs) which is subsequently integrated in time by the splitting scheme.
If, for simplicity, we consider the one-dimensional problem, d = 1, and suppose
that it is defined in x ∈ [x0, xN ], first this interval is partitioned into N parts of
length ∆x = (xN − x0)/N and the vector u = (u0, . . . , uN−1)T ∈ CN is formed,
with un = ψ(xn, t) and xn = x0 +n∆x, n = 0, 1, . . . , N − 1. The partial differential
equation (20) is then replaced by the N -dimensional linear ODE

i
d

dt
u(t) = H u(t), u(0) = u0 ∈ CN , (23)

where now H represents the (real symmetric) N × N matrix associated with the
Hamiltonian.
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When a Fourier spectral collocation method is used, then the matrix H in (23)
is

H = T + V, (24)

where V is a diagonal matrix associated with the potential V̂ and T is a (full)

differentiation matrix related with the kinetic energy T̂ . Their action on the wave
function vector u is trivial: on the one hand, (V u)n = V (xn)un and thus the
product V u requires to compute N complex multiplications. On the other hand,
Tu = F−1DTFu, where F and F−1 are the forward and backward discrete Fourier
transform, and DT is again diagonal. The transformation F from the discrete coor-
dinate representation to the discrete momentum representation (and back) is done
via the fast Fourier transform (FFT) algorithm, requiring O(N logN) operations.

Notice that, since(
eτV u

)
i

= eτV (xi)ui, eτTu = F−1eτDTF u,
splitting methods constitute a valid alternative to approximate the solution u(t) =
eτ(T+V )u0 for a time step ∆t, with τ = −i∆t. Thus, with the Lie–Trotter scheme
(4) one has

eτ(T+V ) = eτT eτV +O(τ2),

whereas the 2nd-order Strang splitting (5) constructs the numerical approximation
un+1 at time tn+1 = tn + ∆t by

un+1 = eτ/2V eτT eτ/2V un ≡ S(τ)un.

The resulting scheme is called split-step Fourier method in the chemical literature,
and has some remarkable properties. In particular, it is both unitary and symplectic
[18], as well as time-reversible. In addition, for suitable regularity assumptions on

the potential and on the norm of the commutators [T̂ , V̂ ] = T̂ V̂ −V̂ T̂ and [T̂ , [T̂ , V̂ ]],
the error at tn is bounded by

‖un − u(t)‖ ≤ C ∆t2 t max
0≤s≤t

‖u(s)‖2.

Higher order methods can be obtained of course by considering compositions (3),
which in this setting read

Ψ[r](τ) = ebs+1τV easτT ebsτV · · · ea1τT eb1τV , (25)

and in fact, a large collection of practical schemes of different orders exist for car-
rying out the numerical integration (see e.g. [6, 15, 19] and references therein). In

addition, from (22), it is clear that [X̂, P̂ ] ψ(x, t) = i ψ(x, t), and so

[V̂ , [V̂ , [V̂ , T̂ ]]] ψ(x, t) = 0. (26)

This property leads to a reduction in the number of order conditions necessary to
achieve a given order r and allows one to construct highly efficient schemes.

4. Splitting methods with complex coefficients. When exploring the applica-
bility of splitting methods with complex coefficients to the general time-dependent
Schrödinger equation, several aspects must be addressed. First, since the compu-
tational cost of method (25) is dominated by the number of FFTs per step, the
presence of complex aj , bj does not contribute significantly to increase this cost. In
addition, it has been shown in other problems that splitting methods with complex
coefficients involving the minimum number of flows to achieve a given order already
provide good efficiency, in contrast with their real counterparts. On the other hand,
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however, since
∑
j aj = 1 for a consistent method, if aj ∈ C, then imaginary parts

positive and negative enter into the game, with the result that severe instabilities
may arise in practice due to the unboundedness of the Laplace operator. With
respect to the potential, since in regions where it takes large values the wave func-
tion typically is close to zero, we can introduce an artificial cut-off bound in the
computation if necessary, so that complex bj can in principle be used, at least for
a sufficiently small ∆t. It makes sense therefore to construct and examine in detail
methods with real aj and complex bj coefficients.

In the following, and for simplicity, we restrict ourselves to splitting methods
(25) of order r ≤ 4, which we denote by their sequence of coefficients as

(bs+1, as, bs, . . . , a2, b2, a1, b1).

The order conditions are then

Order 1:

s∑
i=1

ai = 1,

s∑
i=1

bi = 1,

Order 2:

s∑
i=1

bi

 i∑
j=1

aj

 =
1

2
,

Order 3:

s∑
i=1

bi

 i∑
j=1

aj

2

=
1

3
,

s∑
i=1

ai

 s∑
j=i

bj

2

=
1

3
, (27)

Order 4:

s∑
i=1

bi

 i∑
j=1

aj

3

=
1

4
,

s∑
i=1

ai

 s∑
j=i

bj

3

=
1

4
,

s∑
i=1

a2
i

 s∑
j=i

bj

2

+ 2

s∑
i=2

ai

i−1∑
j=1

aj

( s∑
k=i

bk

)2

=
1

6
.

In typical applications of splitting methods with real coefficients, only palindromic
sequences of coefficients, i.e., methods (25) with bs+2−j = bj , as+1−j = aj for all j
are used. In that case, all the conditions at even order are automatically satisfied
and the resulting schemes are time-symmetric, Ψ[r](τ) Ψ[r](−τ) = I, and of even
order. Here, however, since we are dealing with complex coefficients, we also analyze
the case r = 3 for completeness.

Order 3. The first five order conditions in (27) admit solutions with all aj real
and positive and bj ∈ C with positive real part if one considers a composition of
the form

Ψ
[3]
SC,r(τ) = (b̄1, a1, b̄2, a2, b2, a1, b1) (28)

involving 6 parameters. Then one gets a 1-parametric family of solutions (+c.c.)
with the required properties. Among them, we choose

a1 =
3

10
, a2 =

2

5
, b1 =

13

126
− i
√

59/2

63
, b2 =

25

63
+ i

5
√

59/2

126
.

Composition (11) constitutes of course another symmetric-conjugate method of or-
der 3, denoted here by

Ψ
[3]
SC,c(τ) = (b̄1, ā1, b2, a1, b1) (29)
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and involving less maps, although in this case a1 ∈ C.

Order 4. The simplest approach to construct a palindromic scheme with aj ∈ R
and bj ∈ C consists in taking all the aj equal. In that case, with s = 4, one has
enough parameters to solve the required four order conditions (at odd orders). Only
two solutions (complex conjugate to each other) are obtained, as shown in [10], thus
resulting in the scheme

Ψ
[4]
P,r(τ) = (b1, a1, b2, a2, b3, a2, b2, a1, b1) (30)

with

a1 = a2 =
1

4
, b1 =

1

10
− i 1

30
, b2 =

4

15
+ i

2

15
, b3 =

4

15
− i1

5
.

Although more efficient schemes can be obtained if one allows for different aj ’s [5],
since we are interested here mainly in the qualitative behavior of the different meth-
ods, we limit ourselves to (30) as representative of palindromic splitting methods
with real aj ’s and complex bj ’s, whereas we can take scheme (9)

Ψ
[4]
P,c(τ) = (b1, a1, b2, a2, b2, a1, b1), (31)

as representative of palindromic methods with both aj ∈ C and bj ∈ C.
Symmetric-conjugate splitting methods with real aj ’s require at least s = 5

stages, in which case one has a free parameter. If we fix this as a1 = 1/8, we get
the scheme

Ψ
[4]
SC,r(τ) = (b̄1, a1, b̄2, a2, b̄3, a3, b3, a2, b2, a1, b1) (32)

with
a2 = 0.23670501659941197298,

a3 = 0.27658996680117605403,

b1 = 0.03881396214419327198− 0.045572109263923104872 i,

b2 = 0.19047619047619047619 + 0.115462072300408741306 i,

b3 = 0.27070984737961625182− 0.148322245509626403888 i

It is worth noticing that one can obtain symmetric-conjugate methods from palin-
dromic schemes and vice versa. Thus, in particular, by composing the palindromic
scheme (30) with its complex conjugate we can form a symmetric-conjugate splitting
method with 8 stages and aj ∈ R, bj ∈ C:

Ξ
[4]
SC,r(τ) = Ψ

[4]
P,r(τ/2) Ψ

[4]

P,r(τ/2), (33)

whereas doing the same with the 3rd-order symmetric-conjugate method (28) results
in the 4th-order palindromic scheme with 6 stages and aj ∈ R, bj ∈ C:

Ξ
[4]
P,r(τ) = Ψ

[3]
SC,r(τ/2) Ψ

[3]

SC,r(τ/2). (34)

This is possible because the adjoint of (Ψ
[3]
SC,r(τ))∗ verifies

(Ψ
[3]
SC,r(τ))∗ = Ψ

[3]

SC,r(τ).

In our numerical experiments we shall also use for comparison one of the best
4th-order splitting methods with real coefficients designed specifically for systems
verifying (26). It reads

Ψ
[4]
RKN (τ) = (b1, a1, b2, a2, b3, a3, b4, a3, b3, a2, b2, a1, b1) (35)
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and the coefficients can be found in [8]. The scheme has three additional parameters
that are used to minimize error terms at higher orders, and provides by construction
unitary approximations.

5. Numerical experiments. We next report on some numerical tests we have car-
ried out with the splitting methods presented in section 4 applied to the Scrödinger
equation in one dimension. Since many different schemes are tested and compared,
it is convenient to classify them into the following categories:

• symmetric-conjugate methods with aj ∈ R, bj ∈ C
– Order 3: Ψ

[3]
SC,r, Eq. (28);

– Order 4: Ψ
[4]
SC,r, Eq. (32);

• symmetric-conjugate with aj ∈ C, bj ∈ C: method Ψ
[3]
SC,c, Eq. (29), order 3;

• palindromic with aj ∈ R, bj ∈ C: method Ψ
[4]
P,r, Eq. (30), order 4;

• palindromic with aj ∈ C, bj ∈ C: method Ψ
[4]
P,c, Eq. (31), order 4;

For completeness, we also consider the following schemes of order 4 with aj ∈ R,
bj ∈ C:

• symmetric-conjugate obtained from a palindromic method: Ξ
[4]
SC,r, Eq. (33);

• palindromic obtained from a symmetric-conjugate method: Ξ
[4]
P,r, Eq. (34).

Quartic potential. As the first example we take the quartic oscillator

V (x) = −1

2
x2 +

1

20
x4 (36)

and the initial condition ψ0(x) = σ e−x
2/2, where σ is a normalization constant. As

usual, and since the exact solution decays rapidly, we truncate the infinite spatial
domain to the periodic domain [−L,L], provided L is sufficiently large and use
Fourier spectral methods. We take L = 8 and set up a uniform grid on the interval
with N = 128 subdivisions. Finally, we apply the different schemes to integrate in
time the resulting equation (23) in the interval t ∈ [0, tf ], with tf = 8000. As in the
case of the example in SU(2), we check the behavior of each scheme with respect to
unitarity by computing |‖uapp(t)‖− 1| along the integration, where uapp(t) denotes
the numerical approximation obtained by each method.

In addition, we also compute the expected value of the energy, u∗app(t) ·Huapp(t)
and measure the error as the difference with respect to the exact value:

energy error: |u∗app(t) · (Huapp(t))− u∗0 · (Hu0)|. (37)

In each case, the time step is adjusted so that the number of FFTs (and their
inverses) are the same for all methods (specifically, 1572864), so that the computa-
tional cost of all schemes is similar.

Figure 3 shows the corresponding results obtained by palindromic schemes with

the coefficients aj real, Ψ
[4]
P,r, and aj complex, Ψ

[4]
P,c, together with the symmetric-

conjugate method Ψ
[3]
SC,c with aj ∈ C. We notice that the qualitative behavior of

all of them is similar: after some point, depending on the particular step size, the
unitarity is lost and the error in energy grows rapidly.

We notice here the same type of behavior observed in the case of the group
SU(2): palindromic schemes with both real and complex coefficients aj are unable
to preserve unitarity. On the other hand, symmetric-conjugate schemes with aj ∈ C
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Figure 3. Error in norm of the approximate solution (left) and error
in energy (37) (right) for the quartic potential (36) obtained by the

palindromic schemes Ψ
[4]
P,r (magenta, dashed line), Ψ

[4]
P,c (blue dotted

line) and the symmetric-conjugate method Ψ
[3]
SC,c (black solid line) along

the integration interval. The step size is chosen so that all methods have
the same computational cost.

lead also to unbounded errors, according with the comments formulated at the
beginning of section 4.

We collect in Figure 4 the corresponding results achieved by the palindromic

method Ξ
[4]
P,r (blue dotted line), and the symmetric-conjugate schemes Ψ

[3]
SC,r (black

solid line) and Ξ
[4]
SC,r (magenta dashed line), all of them with real parameters aj .

It is worth noticing that both the norm of the solution and the expected value
of the energy are preserved for very long times by symmetric-conjugate methods
with aj ∈ R, and this happens even if the method is obtained by composing a
palindromic scheme (with a poor behavior) with its complex conjugate. By con-
trast, a symmetric-conjugate method looses its good preservation properties when
composed to form a palindromic scheme, even if all aj are real.

We have carried out the same experiment, but with the roles of T and V in-
terchanged. In other words, the complex coefficients bj are now multiplying the
discretized Laplacian. In that case, the errors obtained by all the previous schemes
grow unbounded. This indicates that, at least for this example, one needs both
symmetric-conjugate schemes and real coefficients multiplying the Laplacian to get
bounded errors in the preservation of unitarity and energy.

Pöschl–Teller potential. The next set of simulations is carried out with the well
known one-dimensional Pöschl–Teller potential,

V (x) = −λ(λ+ 1)

2
sech2(x), (38)

with λ(λ+1) = 10. It has been used in polyatomic molecular simulations and admits

an analytic treatment [12]. We take again as initial condition ψ0(x) = σ e−x
2/2,

with σ a normalizing constant, then apply Fourier spectral methods on the interval
x ∈ [−8, 8] and integrate until the final time tf = 8000 with the previous numerical
splitting methods. For this potential we take N = 512 subdivisions of the space
interval to better visualize the behavior of the different methods. Figure 5 is the

analogous of Fig. 3, and only displays the results obtained by Ψ
[3]
SC,c (black solid
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Figure 4. Error in norm of the approximate solution (left) and error
in energy (37) (right) for the quartic potential (36) obtained by the palin-

dromic scheme Ξ
[4]
P,r (blue dotted line), and the symmetric-conjugate

schemes Ψ
[3]
SC,r (black solid line) and Ξ

[4]
SC,r (magenta dashed line) along

the integration interval. The step size is chosen so that all methods have
the same computational cost.

line) and Ψ
[4]
P,c (blue dotted line), since the output corresponding to Ψ

[4]
P,r is out of

the scale (the errors are greater than 1087). On the other hand, Figure 6 shows the
same pattern as Figure 4: only symmetric-conjugate schemes with aj ∈ R provide
bounded errors in the norm and in the energy of the solution.
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Figure 5. Error in norm of the approximate solution (left) and error
in energy (37) (right) for the Pöschl–Teller potential (38) obtained by the

palindromic scheme Ψ
[4]
P,c (blue dotted line) and the symmetric-conjugate

method Ψ
[3]
SC,c (black solid line) along the integration interval. The result

achieved by Ψ
[4]
P,r is out of the scale.

Next, we take a shorter final time tf = 100 and compute the maximum error
in the energy along the time interval for several step sizes h = ∆t and integration
schemes. The corresponding results are displayed in a log-log diagrama in Figure 7
(left). The order of each method is clearly visible, as well as the values of h where
instabilities take place. Finally, in Figure 7 (right) we depict the same results but
in terms of the computational cost as measured by the number of FFTs necessary
to carry out the calculations. Notice that, for this range of times, the efficiency
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Figure 6. Error in norm of the approximate solution (left) and er-
ror in energy (37) (right) for the Pöschl–Teller potential (38) obtained

by the palindromic scheme Ξ
[4]
P,r (blue dotted line), and the symmetric-

conjugate schemes Ψ
[3]
SC,r (black solid line) and Ξ

[4]
SC,r (magenta dashed

line) along the integration interval.

of the 4th-order symmetric-conjugate methods is not far away from the optimized
scheme (35) that takes into account the special property (26).
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Figure 7. Maximum of error in the expected value of the energy
in the interval t ∈ [0, 100] as a function of the time step (left) and the
computational cost (number of FFTs, right) for several splitting schemes.
Pöschl–Teller potential.

6. Concluding remarks. Splitting and composition methods with complex co-
efficients have shown to be an appropriate tool in the numerical time integration
of differential equations of parabolic type, when one or more pieces of the equa-
tions are only defined in semi-groups and the aim is to get high accuracy. Since
it is possible to design methods of this class with positive real part, one is thus
able to circumvent the existing order barrier for methods with real coefficients. In
addition, these methods involve smaller truncation errors than their real counter-
parts and also exhibit relatively large stability thresholds. On the other hand, their
computational cost notably increases, due to the use of complex arithmetic.

More recently, it has been shown that the particular class of symmetric-conjugate
methods still exhibits remarkable preservation properties when applied to differen-
tial equations defined by real vector fields and the solution is projected on the real
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axis at each integration step. Here we have extended the analysis to problems evolv-
ing in the SU(2) and more generally to the numerical integration of the Schrödinger
equation, where preservation of unitarity is a physical requirement. In the former
case we have shown explicitly that symmetric-conjugate splitting methods are in-
deed conjugate to unitary methods for sufficiently small time step sizes, and thus
there is not a secular component in the unitarity error propagation.

With respect to the Schrödinger equation, the examples we collect here indicate
that methods of this class (with real coefficients aj) could safely be applied just
as other schemes involving only real coefficients for sufficiently small step sizes, al-
though a general theoretical analysis similar to the one developed here for problems
defined in SU(2) is lacking at present. Such analysis is clearly more involved, since
one has to take into account the effect of the space discretization, the possible intro-
duction of artificial cut-off bounds for unbounded potentials, etc. In this sense, this
paper should be considered as a preliminary step for such analysis. In any case, we
should remark that the use of methods with complex coefficients in this setting does
not imply any extra computational cost, since the problem has to be treated in the
complex domain anyway. Our results show that even some of the simplest methods
within this class provide efficiencies close to the best standard splitting schemes
specifically designed for the integration of the Schrödinger equation. Although we
have limited ourselves here to methods of order 3 and 4, it is clear that higher order
integrators can also be designed, just by solving the corresponding order conditions
[6, 15], and more efficient schemes can be obtained by taking into account property
(26) and the processing technique. It is also worth noticing that, in contrast with
the time integration of parabolic differential equations, here schemes with real and
negative coefficients aj still provide unitary approximations, and so more efficient
schemes with aj < 0 and bj ∈ C might be possible. All these issues will be treated
in a forthcoming paper.
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