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ON SYMMETRIC-CONJUGATE COMPOSITION METHODS

IN THE NUMERICAL INTEGRATION

OF DIFFERENTIAL EQUATIONS

S. BLANES, F. CASAS, P. CHARTIER, AND A. ESCORIHUELA-TOMÀS

Abstract. We analyze composition methods with complex coefficients ex-
hibiting the so-called “symmetry-conjugate” pattern in their distribution. In
particular, we study their behavior with respect to preservation of qualitative
properties when projected on the real axis and we compare them with the
usual left-right palindromic compositions. New schemes within this family up
to order 8 are proposed and their efficiency is tested on several examples. Our
analysis shows that higher-order schemes are more efficient even when time
step sizes are relatively large.

1. Introduction

We are concerned in this work with compositions of a time-symmetric 2nd-order

integrator, denoted by S [2]
h . To be more specific, given the initial value problem

(1) x′ = f(x), x(t0) = x0 ∈ R
d

with solution x(t) = ϕt(x0), method S [2]
h verifies that S [2]

h (x0) = ϕh(x0) + O(h3)

for a time step h and moreover S [2]
h ◦ S [2]

−h = id, the identity map, for any h. Then,
the s-stage composition methods we are considering here are of the form

(2) ψ
[r]
h = S [2]

αsh
◦ S [2]

αs−1h
◦ · · · ◦ S [2]

α2h
◦ S [2]

α1h
,

where the coefficients αj are certain numbers chosen in such a way that the order

of approximation of ψ
[r]
h is r ≥ 2.

Methods (2) constitute a very efficient class of numerical integrators for (1),
especially when f has some geometric properties that is advantageous to preserve
under discretization. In fact, composition methods preserve any group properties

shared by the basic scheme S [2]
h : symplecticity, phase space volume, first integrals,

symmetries, etc., and therefore they provide a general and flexible class of geometric
numerical integrators [15].

If in addition the sequence of coefficients in (2) is left-right palindromic, i.e.,

αs+1−j = αj , j = 1, 2, . . ., then ψ
[r]
h is also time-symmetric, i.e., it verifies for

Received by the editor December 31, 2020, and, in revised form, July 26, 2021, and October
20, 2021.

2020 Mathematics Subject Classification. Primary 65L05, 65P10, 37M15.
Key words and phrases. Composition methods, complex coefficients, time-symmetry, symplec-

tic integrators, complex coefficients, initial value problems.
This work was supported by EPSRC Grant Number EP/R014604/1 and by Ministerio de Cien-

cia e Innovación (Spain) through project PID2019-104927GB-C21/AEI/10.13039/501100011033.
The fourth author was additionally supported by the predoctoral contract BES-2017-079697
(Spain).

c©2021 American Mathematical Society

1739

https://www.ams.org/mcom/
https://doi.org/10.1090/mcom/3715


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1740 S. BLANES ET AL.

small h

(3) ψ
[r]
h ◦ ψ

[r]
−h = id,

and are of even order, r = 2n [15]. Methods of this class are called symmetric
compositions of symmetric schemes [17] and constitute an efficient way to construct
high-order approximations, due to the reduction in the number of order conditions
to be satisfied.

Nevertheless, the fact that composition methods of order greater than 2 require
some negative coefficients αj typically imposes severe stability restrictions on the
time step, especially when dealing with semidiscretized PDEs [4]. To try to remedy
this situation, complex coefficients with positive real part have been considered in
the literature for this class of problems [6, 12, 16]. In fact, methods with complex
coefficients have also been used even for problems when the presence of negative
fractional time steps is not problematic [3, 13].

If composition methods with complex coefficients are applied to a real vector
field f in (1), then the approximation x1 at the end of the first time step t1 = t0+h
will be of course complex, whereas the exact solution is real. A relevant issue is
then how to proceed with the computation of the trajectory. Two possibilities
exist: either one pursues the determination of the solution for t > t1 with the
previously computed value of x1 ∈ C and project on the real axis only when output
is desired (after, say, N integration steps) or one just discards the imaginary part
of x1 and initiates the next step only with �(x1). As some numerical experiments
show (for instance in [9]), the favourable properties the composition inherits from

the basic scheme S [2]
h (such as symplecticity) are most often lost, and it is usually

recommended the later approach for a better description of the problem [6, 13].
One purpose of this work is to provide a rigorous justification of the observed

behavior when a projection on the real axis is done at each step and determine up
to what degree symplecticity, say, is still preserved when using complex coefficients.
We show, in particular, that a 2n-th order left-right palindromic composition with
complex coefficients still preserves the time-symmetry and other relevant geomet-
ric properties up to order 4n + 1. Moreover, we also show that it is possible to
preserve the time-symmetry up to a higher order by considering another family of
compositions, namely methods of the form (2) with the special symmetry

(4) αs+1−j = ᾱj , j = 1, 2, . . . ,

where ᾱj denotes the complex conjugate of αj . For obvious reasons, we call the
resulting scheme

(5) ψ
[r]
h = S [2]

ᾱ1h
◦ S [2]

ᾱ2h
◦ · · · ◦ S [2]

α2h
◦ S [2]

α1h
,

a symmetric-conjugate composition. The simplest method within this family is of
course

(6) ψ
[3]
h = S [2]

αh ◦ S [2]
ᾱh.

If

α =
1

2
± i

√
3

6
,

then ψ
[3]
h is of order 3, but if one considers instead only its real part,

(7) �(ψ[3]
h ) =

1

2

(
ψ
[3]
h + ψ

[3]

h

)
= R̂

[4]
h ,
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or equivalently, if one projects ψ
[3]
h at each time step on the real axis, then the

resulting scheme R̂
[4]
h is an integration method of order 4. This fact has been

previously recognized by several authors [3, 13]. Although R̂
[4]
h is no longer time-

symmetric, it nevertheless verifies

R̂
[4]
−h ◦ R̂[4]

h = id +O(h8)

when the vector field f in (1) is real [11]. Moreover, if f is a (real) Hamiltonian

vector field and Sh is a 2nd-order symplectic integrator, then R̂
[4]
h is also symplectic

with an error O(h8).

Motivated by this feature of scheme R̂
[4]
h and the excellent preservation properties

of methods (5) reported in particular in [9], we shall analyze in detail this class
of integrators. In doing so, we will pay special attention to their preservation
properties, and eventually we will propose new schemes requiring less number of
stages for achieving a given order than left-right palindromic compositions when
projected on the real axis after each integration step.

2. Compositions of a 2nd-order symmetric scheme

2.1. Integrators and series of operators. If ϕh is the exact flow of the equation
(1), then for each infinitely differentiable map g, the function g(ϕh(x)) admits an
expansion of the form [1, 21]

g(ϕh(x)) = exp(hF )[g](x) = g(x) +
∑
k≥1

hk

k!
F k[g](x),

where F is the Lie derivative associated with f ,

(8) F =
∑
i≥1

fi(x)
∂

∂xi
.

Analogously, for the class of integrators ψh we are considering, one can associate a
series of linear operators so that

g(ψh(x)) = exp(Y (h))[g](x), with Y (h) =
∑
j≥1

hjYj

for all functions g [8]. Here Yj are operators depending on the particular method
considered. The integrator ψh is of order r if

Y1 = F and Yj = 0 for 2 ≤ j ≤ r.

For the adjoint integrator, defined as ψ∗
h := ψ−1

−h, one clearly has

g(ψ∗
h(x)) = exp

(
− Y (−h)

)
[g](x).

Notice that ψh is time-symmetric, i.e., it verifies (3), if and only if ψ∗
h = ψh,

and therefore Y (h) only contains odd powers of h. In particular, time-symmetric
methods are of even order.

According with these comments, the time-symmetric 2nd-order scheme S [2]
h can

be associated with the series

(9) Φ[2](h) = exp(hF + h3Y3 + h5Y5 + · · ·+ h2k+1Y2k+1 + · · · ).
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Then, the series of operators associated with the integrator (2) can be determined
by applying the Baker–Campbell–Hausdorff formula, thus resulting in

(10) Ψ[r](h) = exp(V (h)),

where V (h) is formally given by

V (h) = hw1F + h3w3,1Y3 + h4w4,1[F, Y3] + h5
(
w5,1Y5 + w5,2[F, [F, Y3]]

)
+O(h6).

Here [F, Y3] stands for the Lie bracket of the operators F and Y3, etc. and

(11)

w1 =

s∑
j=1

αj , w3,1 =

s∑
j=1

α3
j , w5,1 =

s∑
j=1

α5
j ,

w4,1 =
1

2

s−1∑
j=1

⎛
⎝α3

j

⎛
⎝ s∑

k=j+1

αk

⎞
⎠− αj

⎛
⎝ s∑

k=j+1

α3
k

⎞
⎠
⎞
⎠

w5,2 =
1

12

s∑
j=1

α3
j

⎛
⎜⎝
(

j−1∑
k=1

αk

)2

+

⎛
⎝ s∑

k=j+1

αk

⎞
⎠

2

− 4

j−1∑
k=1

αk

s∑
�=j+1

α�

⎞
⎟⎠

− 1

12

s∑
j=1

α4
j

⎛
⎝j−1∑

k=1

αk +

s∑
k=j+1

αk

⎞
⎠ .

(In the expression of w5,2 above the sum is zero when the upper index is smaller
than the lower index). In general, V (h) is an element of the free Lie algebra L
generated by {F, Y3, Y5, . . .} [20], i.e., V (h) is a linear combination of F, Y3, Y5, . . .,
and all their nested Lie brackets,

(12) V (h) = hw1F +
∑
n≥3

hn

c(n)∑
k=1

wn,kEn,k.

Here wn,k are polynomials in the coefficients of the method, E2n+1,1 = Y2n+1 and
En,k, k > 1, are independent nested Lie brackets of {F, Y3, Y5, . . .} forming a basis of
the homogeneous component Ln of L, with dimension c(n) [19]. Thus, in particular,
L5 has dimension c(5) = 2, and a basis is given by {E5,1 = Y5, E5,2 = [F, [F, Y3]]}.

Method (2) is of order r if w1 = 1 and the polynomials wn,k vanish whenever
1 < n ≤ r, and k = 1, . . . , c(n). The number of the resulting equations (the order
conditions) N [r] agrees of course with the sum of the dimensions c(n), i.e.,

N [r] =
r∑

n=1

c(n)

and is collected in Table 2.1 (second row) for the first values of r. A composition
without any special symmetry would involve then at least s = N [r] stages so as to
have enough parameters to solve the equations.

2.2. Left-right palindromic compositions. Before establishing general results
about preservation of properties of composition methods with complex coefficients
after projection on the real axis, it is worth to introduce the following definitions,
as in [11]:
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Table 1. Total number of order conditions to achieve order r for the
method resulting from projecting after each step (i) the general composi-
tion (2) of time-symmetric 2nd-order methods (second row), a left-right
palindromic composition (third row) and a symmetric-conjugate compo-
sition (fourth row). It turns out that by solving only 9 order conditions
one can achieve order 8 with symmetric-conjugate compositions.

Order r 1 2 3 4 5 6 7 8

N [r] (General) 1 0 2 3 5 7 11 16

N
[r=2n]
P (Palindromic) 1 2 4 8

N [r] − c(2n) (Sym-Conjugate) 1 2 5 11(9)

Definition 1. Let ψh be a smooth and consistent integrator. Then

(1) ψh is said to be pseudo-symmetric of pseudo-symmetry order q if for all
sufficiently small h, it is true that

ψ∗
h = ψh +O(hq+1),(13)

where the constant in the O-term depends on bounds of derivatives of ψh.
(2) ψh is said to be pseudo-symplectic of pseudo-symplecticity order p if for all

sufficiently small h, the following relation holds true when it is applied to
a Hamiltonian system:

(ψ′
h)

T J ψ′
h = J +O(hp+1),(14)

where J denotes the canonical symplectic matrix and the constant in the
O-term depends on bounds of derivatives of ψh.

Remark 1. A symmetric method is pseudo-symmetric of any order q ∈ N, whereas
a method of order r is pseudo-symmetric of order q ≥ r. A similar statement holds
for symplectic methods.

We first proceed with left-right palindromic compositions. According to the
considerations in the previous section, the series of operators associated with such
a method of order 2n is Ψ[2n](h) = exp(V (h)), with

(15) V (h) = hw1F +
∑
j≥n

h2j+1

c(2j+1)∑
k=1

w2j+1,kE2j+1,k

and w2j+1,k have in general real and imaginary parts when αj ∈ C. Then one has
the following:

Proposition 1. Given S [2]
h a time-symmetric 2nd-order method, consider the left-

right palindromic composition

(16) S [r]
h = S [2]

α1h
◦ S [2]

α2h
◦ · · · ◦ S [2]

α2h
◦ S [2]

α1h

of order r = 2n, n = 2, 3, . . ., when the coefficients αj are complex numbers satis-
fying 2(α1 + α2 + · · · ) = 1. Then the method obtained by taking its real part,

(17) φ
[2n]
h ≡ 1

2
(S [2n]

h + S̄ [2n]
h ),



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1744 S. BLANES ET AL.

is of the same order r = 2n and pseudo-symmetric of order q = 4n + 1 when the
vector field f in (1) is real. If in addition f is a (real) Hamiltonian vector field and

S [2]
h is a symplectic integrator, then φ

[2n]
h is pseudo-symplectic of order p = 4n+ 1.

Proof. We can apply the Lie formalism, as in [10] (for determining the pseudo-
symplectic character of methods obtained by polynomial extrapolation) and the
Appendix of [11]. An important ingredient is the symmetric BCH formula [5]:
given A and B two non-commuting operators, then

exp(
1

2
A) exp(B) exp(

1

2
A) = exp(C),

where C =
∑

n≥0 C2n+1 and C2n+1, n ≥ 1, is a linear combination of nested
brackets involving 2n+ 1 operators A and B. The first terms read

C1 = A+B, C3 = − 1

24
[A, [A,B]]− 1

12
[B, [A,B]].

To begin with, we write the expression (15) associated with (16) as

V (h) = hF + h2n+1V2n+1 + h2n+3V2n+3 + · · · ,

where V2n+j , j = 1, 3, . . . are complex operators in the free Lie algebra generated

by {F, Y3, Y5, . . .}. In consequence, the series corresponding to φ
[2n]
h is

Φ[2n](h) =
1

2
exp((V (h)) +

1

2
exp(V (h)),

which can be written in fact as

(18) Φ[2n](h) = exp

(
h

2
F

)(
1

2
exp((W (h)) +

1

2
exp(W (h))

)
exp

(
h

2
F

)
,

whereW (h) is determined by applying the symmetric BCH formula to exp(W (h)) =
exp(−hF/2) exp(V (h)) exp(−hF/2), thus leading to

W (h) = h2n+1V2n+1 + h2n+3

(
V2n+3 +

1

24
[F, [F, V2n+1]]

)
+O(h2n+5).

Now the idea is to write Φ[2n](h) in (18) as ehF/2 e(W+W )/2 ehF/2+O(hq), for some

q. Therefore, we have to analyze 1
2 (e

W + eW ) − e(W+W )/2. To this end, first we
note that

W (h) +W (h)

= 2h2n+1�(V2n+1) + 2h2n+3

(
�(V2n+3) +

1

24
[F, [F,�(V2n+1)]]

)
+O(h2n+5),

i.e., it only contains odd powers of h and

1

8

(
W (h) +W (h)

)2
=

1

2
h4n+2 �(V2n+1)

2 +O(h4n+4),

whereas

1

4

(
W (h)2 +W (h)2

)
=

1

2
h4n+2

(
�(V2n+1)

2 −	(V2n+1)
2
)
+O(h4n+4).
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In consequence,

1

2

(
eW (h) + eW (h)

)
− e

1
2

(
W (h)+W (h)

)
=

1

4

(
W (h)2 +W (h)2

)
− 1

8

(
W (h) +W (h)

)2
+O(h4n+4)

= −1

2
h4n+2	(V2n+1)

2 +O(h4n+4)

so that

Φ[2n](h) = exp

(
h

2
F

)
exp

(
1

2

(
W (h) +W (h)

))
exp

(
h

2
F

)
+O(h4n+2)

whence the following statements follow at once:

• Method (17) is of order 2n, since Φ[2n](h) = exp(hF ) +O(h2n+1).

• As Z ≡ (W (h) +W (h))/2 only contains odd powers of h, then e
h
2 F eZe

h
2 F

is a time-symmetric composition and φ
[2n]
h is pseudo-symmetric of order

4n+ 1.
• Let us suppose that scheme (17) is applied to a Hamiltonian system and

that S [2]
h is symplectic. Since Z is an operator in the free Lie algebra gen-

erated by {F, Y3, Y5, . . .}, clearly the composition e
h
2 F eZe

h
2 F is symplectic.

As a matter of fact, this can be extended to any geometric property the
differential equation (1) has volume-preserving, unitary, etc., as long as the

basic scheme S [2]
h preserves this property. �

As an example, let us consider the well known 4th-order palindromic scheme
used in the triple-jump procedure [22],

(19) S [4]
h = S [2]

α1h
◦ S [2]

α2h
◦ S [2]

α1h
,

with

α1 =
1

2− 21/3e2ikπ/3
, α2 = 1− 2α1, k = 1, 2.

(Note that with k = 0 one gets the usual real solution). Then φ
[4]
h = �(S [4]

h ) is still
a method of order 4, but pseudo-symmetric and pseudo-symplectic of order 9.

As is well known, the number of order conditions required by left-right palin-
dromic compositions to achieve order r = 2n is [19]

N
[2n]
P =

n∑
j=1

c(2j − 1).

In consequence, a palindromic composition requires at least 2N
[2n]
P − 1 stages so as

to have the same number of (complex) coefficients as order conditions. The values

of N
[2n]
P to achieve orders 2n = 2, 4, 6, 8 are collected in the third row of Table 2.1.

2.3. Symmetric-conjugate compositions. In contrast with left-right palindro-
mic compositions, even and odd order methods of the form (5) exist, but their
behavior with respect to structure preservation is different when they are projected
on the real axis at each step. The reason lies in the special structure of the associated
series of differential operators. More specifically, we have the following:
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Lemma 1. Let S [2]
h be a time-symmetric 2nd-order method for (1), with f real,

and consider the composition method

ψ
[r]
h = S [2]

αsh
◦ S [2]

αs−1h
◦ · · · ◦ S [2]

α2h
◦ S [2]

α1h
,

verifying

αs+1−j = ᾱj , j = 1, 2, . . . .

Then ψ
[r]
h has an associated series of operators Ψ[r](h) = exp(V (h)), with

(20) V (h) = hw1F +
∑
j≥1

h2j+1

c(2j+1)∑
k=1

μ2j+1,kE2j+1,k + i
∑
j≥2

h2j

c(2j)∑
k=1

σ2j,kE2j,k.

Here w1, μ2j+1,k, σ2j,k are real polynomials depending on the real and imaginary
parts of the parameters αi. In other words, the terms of even powers in h in V (h)
are pure imaginary, whereas terms of odd powers in h are real.

Proof. We start by noticing that, since S [2]
h is a time-symmetric integrator, the

adjoint (ψ
[r]
h )∗ is precisely the complex conjugate of ψ

[r]
h , i.e., (ψ

[r]
h )∗ = ψ

[r]

h . In
consequence, the corresponding series of operators are also identical,

Ψ
[r]
(h) = (Ψ[r])∗(h)

and therefore V (h) = −V (−h). From (12), these series are respectively

V (h) = hw1F +
∑
j≥1

h2j+1
∑
k≥1

w2j+1,kE2j+1,k +
∑
j≥1

h2j
∑
k≥1

w2j,kE2j,k

−V (−h) = hw1F +
∑
j≥1

h2j+1
∑
k≥1

w2j+1,kE2j+1,k −
∑
j≥1

h2j
∑
k≥1

w2j,kE2j,k,

so that

w1 = w1, w2j+1,k = w2j+1,k, w2j,k = −w2j,k,

and (20) is obtained with μ2j+1,k = w2j+1,k ∈ R, σ2j,k = 	(w2j,k) ∈ R. �

From this lemma one has the following general result concerning the preservation
of properties of symmetric-conjugate compositions.

Proposition 2. Given S [2]
h a time-symmetric 2nd-order method, let us consider

the symmetric-conjugate composition

ψ
[r]
h = S [2]

ᾱ1h
◦ S [2]

ᾱ2h
◦ · · · ◦ S [2]

α2h
◦ S [2]

α1h

of order r ≥ 3 and its real part, i.e.,

(21) R̂
[2n]
h =

1

2

(
ψ
[r]
h + ψ

[r]

h

)
,

applied to the differential equation (1) with a real vector field f . Then the following

statements concerning the pseudo-symmetry and pseudo-symplecticity of R̂
[2n]
h hold:

(a) If ψ
[r]
h is of odd order, r = 2n − 1, n = 2, 3, . . ., then R̂

[2n]
h is a method of

order 2n and pseudo-symmetric of order q = 4n − 1. If in addition f is

a (real) Hamiltonian vector field and S [2]
h is a symplectic integrator, then

R̂
[2n]
h is pseudo-symplectic of order p = 4n− 1.
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(b) If ψ
[r]
h is of even order, r = 2n, n = 2, 3, . . ., then R̂

[2n]
h is a method of order

2n and pseudo-symmetric of order q = 4n + 3. If in addition f is a (real)

Hamiltonian vector field and S [2]
h is a symplectic integrator, then R̂

[2n]
h is

pseudo-symplectic of order p = 4n+ 3.

Proof. A straightforward application of Proposition 1 in [11] allows one to conclude

that R̂
[2n]
h is a smooth integrator at least of order r and q = p = 4n−1 if r = 2n−1

and q = p = 4n + 1 if r = 2n. One can get sharper results, however, by assuming
analyticity and applying the Lie formalism, as in the proof of Proposition 1.

(a) Since r = 2n−1, then the series of operators associated with ψ
[r]
h is Ψ[r](h) =

exp(V (h)), with

(22) V (h) = hF + ih2nV2n + h2n+1V2n+1 + ih2n+2V2n+2 + · · · ,
where V2n+j , j = 0, 1, 2, . . . are, according to Lemma 1, real operators in the free
Lie algebra generated by {F, Y3, Y5, . . .}. From here the series corresponding to

R̂
[2n]
h ,

R[2n](h) =
1

2

(
exp((V (h)) + exp(V (h))

)
,

can be written as

R[2n](h) = exp

(
h

2
F

)(
1

2
exp((W (h)) +

1

2
exp(W (h))

)
exp

(
h

2
F

)
,

where W (h) is obtained from exp(W (h)) = exp(−hF/2) exp(V (h)) exp(−hF/2) as

W (h) = ih2nW2n + h2n+1W2n+1 + ih2n+2W2n+2 + h2n+3W2n+3 + ih2n+4W2n+4

+O(h2n+5)

with

W2n = V2n, W2n+1 = V2n+1, W2n+2 = V2n+2 +
1

24
[F, [F, V2n]]

W2n+3 = V2n+3 +
1

24
[F, [F, V2n+1]],

W2n+4 = V2n+4 +
1

24
[F, [F, V2n+2]] +

1

1920
[F, [F, [F, [F, V2n]]]].

In general, terms in W (h) of odd powers in h are real and terms of even powers of
h are pure imaginary. Then, it is clear that

W (h) +W (h) = 2h2n+1V2n+1 + 2h2n+3

(
V2n+3 +

1

24
[F, [F, V2n+1]]

)
+O(h2n+5)

and only contains odd powers of h. Furthermore,(
W (h) +W (h)

)2
= 4h4n+2V 2

2n+1 + 4h4n+4
(
V2n+1(V2n+3 +

1

24
[F, [F, V2n+1]])+

+ (V2n+3 +
1

24
[F, [F, V2n+1]])V2n+1

)
+O(h4n+6)

and

W (h)2 +W (h)2 = −2h4nV 2
2n +O(h4n+2).

In consequence,

1

2

(
eW (h) + eW (h)

)
− e

1
2

(
W (h)+W (h)

)
= −1

2
h4nV 2

2n +O(h4n+2),



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1748 S. BLANES ET AL.

so that

R[2n](h) = exp

(
h

2
F

)
exp

(
1

2

(
W (h) +W (h)

))
exp

(
h

2
F

)
+O(h4n),

whence the conclusions follow readily.
(b) We proceed along the same lines as in the preceding case for even order,

r = 2n. Now

V (h) = hF + h2n+1V2n+1 + ih2n+2V2n+2 + h2n+3V2n+3 + · · ·
and

W (h) = h2n+1W2n+1 + ih2n+2W2n+2 + h2n+3W2n+3 + ih2n+4W2n+4

+ h2n+5W2n+5 +O(h2n+6)

with

W2n+1 = V2n+1, W2n+2 = V2n+2, W2n+3 = V2n+3 +
1

24
[F, [F, V2n+1]]

W2n+4 = V2n+4 +
1

24
[F, [F, V2n+2]],

W2n+5 = V2n+5 +
1

24
[F, [F, V2n+3]] +

1

1920
[F, [F, [F, [F, V2n+1]]]],

whence, as before,

W (h) +W (h) = 2h2n+1W2n+1 + 2h2n+3W2n+3 + 2h2n+5W2n+5 +O(h2n+7).

On the other hand,

W (h)2 = h4n+2W 2
2n+1 + ih4n+3

(
W2n+1W2n+2 +W2n+2W2n+1

)
+ h4n+4

(
W2n+1W2n+3 +W2n+3W2n+1 −W 2

2n+2

)
+ ih2n+5

(
W2n+1W2n+4 +W2n+4W2n+1 +W2n+2W2n+3 +W2n+3W2n+2

)
+O(h4n+6),

whereas

W (h)2 = h4n+2W 2
2n+1 − ih4n+3

(
W2n+1W2n+2 +W2n+2W2n+1

)
+ h4n+4

(
W2n+1W2n+3 +W2n+3W2n+1 −W 2

2n+2

)
− ih2n+5

(
W2n+1W2n+4 +W2n+4W2n+1 +W2n+2W2n+3 +W2n+3W2n+2

)
+O(h4n+6).

An straightforward calculation shows that

1

2

(
eW (h) + eW (h)

)
− e

1
2

(
W (h)+W (h)

)
=

1

4

(
W (h)2 +W (h)2

)
− 1

8

(
W (h) +W (h)

)2
+ · · ·

= −1

2
h4n+4W 2

2n+2 +O(h4n+6)

and finally

(23) R[2n](h) = exp

(
h

2
F

)
exp

(
1

2

(
W (h) +W (h)

))
exp

(
h

2
F

)
+O(h4n+4).

Now R̂
[2n]
h is of orden 2n, but the time-symmetry (and symplecticity) holds up to

order 4n+ 3. �
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Although apparently a symmetric-conjugate composition requires solving N [r]

equations to achieve order r, just as general compositions, this is not the case,
however, when one is interested in projecting on the real axis, since the symmetry
in the coefficients introduces additional reductions. As Lemma 1 and Proposition
2 show, for a scheme of order r = 2n, the c(2n) order conditions at order h2n are
pure imaginary and so it is not necessary to solve them. Therefore, the number
of conditions is actually N [2n] − c(2n). This number is collected in the last row
of Table 2.1. This saving in the cost comes of course at the price of reducing the
preservation of time-symmetry (or symplecticity, etc.) from order 4n+3 to 4n− 1.

We can proceed in the same vein, since the c(2n− 2) order conditions at order
h2n−2 are also pure imaginary. Now, however, the resulting schemes after projection
are only pseudo-symmetric of pseudo-symmetry order 4n − 5. If 4n − 5 > 2n, or
equivalently if 2n > 5, then we still have a method of order r = 2n obtained from
a symmetric-conjugate composition with N [2n] − c(2n) − c(2n − 2) stages if the
corresponding order conditions have solutions.

This can be generalized as follows:

Proposition 3. Let

ψ
[r]
h = S [2]

ᾱ1h
◦ S [2]

ᾱ2h
◦ · · · ◦ S [2]

α2h
◦ S [2]

α1h

be a symmetric-conjugate composition of order r = 2n after projection on the real
axis. If 4n− (4q+1) > 2n for some q ≥ 0 (or equivalently if 2n > 4q+1), then the

number of order conditions to be satisfied by ψ
[r]
h to get a pseudo-symmetric scheme

of pseudo-symmetry order 4n− (4q + 1) after projection on the real axis is

N [2n] −
q∑

j=0

c(2n− 2j).

The simplest example corresponds to scheme (6): Part (a) of Proposition 2 with
r = 3 reproduces the result obtained in [11] and summarized in section 1: its real
part renders a method of order 4 and pseudo-symmetric of order 7.

If we consider instead a composition (5) of order r = 4, then by taking the
real part at each step we do not increase the order, but the pseudo-symmetry
order is q = 11 (instead of 7). In view of Table 2.1, it is worth remarking that,
although the symmetric-conjugate compositions require more order conditions to
be satisfied than palindromic compositions for orders higher than four, the methods
resulting from projecting on the real axis require less stages: thus, in particular, it
is possible to achieve a 6th-order scheme with only 5 stages, whereas schemes based
on palindromic composition require at least 7 stages.

As an additional illustration, let us take the composition

(24) ψ
[4]
h = S [2]

ᾱ1h
◦ S [2]

α2h
◦ S [2]

α1h
,

with s = 3. It is of order r = 2n = 4 if

α1 =
1

4
± i

1

4

√
5

3
, α2 =

1

2
.

Taking its real part, �(ψ[4]
h ), results in a method also of order 4, but pseudo-

symmetric and pseudo-symplectic of order 11. Both schemes �(ψ[3]
h ), (eq. (7)),

and �(ψ[4]
h ) are of order 4, but whereas the former requires two evaluations of S [2]

h

(instead of three), the latter preserves qualitative properties up to a higher order.
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2.4. Example: Harmonic oscillator. At this point it may be illustrative to ap-
ply all the previous 4th-order methods obtained by projecting on the real axis to a
simple example and check how different behaviors with respect to structure preser-
vation manifest in practice. To this end we choose the one-dimensional harmonic
oscillator,

q′ = p, p′ = −q

with Hamiltonian

(25) H(q, p) = T (p) + V (q) =
1

2
p2 +

1

2
q2.

Denoting by MX(h) the exact matrix evolution associated with the Hamiltonians
X = H, T and V , i.e., x(h) = (q(h), p(h))T = MX(h)(q(0), p(0))T , then

MH(h) =

(
cos(h) sin(h)

− sin(h) cos(h)

)
, MT (h) =

(
1 h
0 1

)
, MV (h) =

(
1 0

−h 1

)
.

As our basic time-symmetric 2nd-order scheme S [2]
h we take the leapfrog/Strang

integrator

(26) S [2]
h = MT (h/2)MV (h)MT (h/2)

and form the 4th-order schemes �(ψ[3]
h ) (eq. (7)), �(ψ[4]

h ) (eq. (24)), and �(S [4]
h )

(eq. (19)). In this case, it is straightforward to verify the order of the methods (by
computing explicitly the difference ψh −MH(h) for each method ψh), the pseudo-
symmetry order (by evaluating ψh ◦ ψ−h − I) and the pseudo-symplecticity order
(for instance, by computing the determinant of the corresponding approximation
matrix). In all cases the result agrees with Propositions 1 and 2.

We can also check the relative efficiency of the three schemes by computing the
error in the energy along a time interval with different time steps. Thus, Figure 1
(top panel) shows this relative error in H as a function of the number of evaluations

of the basic 2nd-order method S [2]
h when q0 = 2.5, p0 = 0 and the final time is

tf = 650. We see that the efficiency of schemes �(S [4]
h ) and �(ψ[3]

h ) is quite similar
for relatively small values of h.

It is also illustrative to test the behavior of these schemes for very long time
intervals. This is done in Figure 1 (bottom) for t ∈ [0, 107] and constant step size

h = 1/4 for �(ψ[4]
h ) and �(S [4]

h ), and h = 1/6 for �(ψ[3]
h ), so that all schemes require

the same computational effort. We see that even for large values of time �(ψ[4]
h )

does not exhibit a secular component in the error in energy (one might need still
larger final times), as is the case for compositions (2) involving real coefficients (see
[2], where this phenomenon is explained). In any case the results are consistent
with Proposition 2 and in particular with expression (23).

3. Symmetric-conjugate composition methods obtained

from a 2nd-order symmetric basic scheme

In this section we propose new methods constructed from a basic time-symmetric
2nd-order basic scheme by symmetric-conjugate composition. Since the case of
order 4 has been already analyzed in section 2, here we study compositions with
s ≥ 4 stages. From Proposition 2 it is clearly advantageous to consider conjugate-
symmetric compositions of odd order r = 2n − 1, since taking the real part leads
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Figure 1. Top: Relative error in energy vs. the number of evaluations

of the basic S [2]
h scheme for the harmonic oscillator for t ∈ [0, 650].

Bottom: Evolution of this error along the integration; here the same

step size h = 1/4 is used by �(ψ[4]
h ) and �(S [4]

h ), and h = 1/6 by �(ψ[3]
h ).

automatically to a method of order r = 2n (but requiring only the computational
cost of a method of order 2n− 1).

For simplicity, we denote in the sequel the general composition (2) by its sequence
of coefficients:

(αs, αs−1, . . . , α2, α1).

As a general rule for selecting a particular method, we follow the same criterion
as in [6], namely we first choose a subset of solutions with small 1-norm of the
coefficient vector (αs, . . . , α1) and, among them, choose the one that minimizes the
norm of the main term in the corresponding truncation error.

Order 6. According to the previous treatment, one could consider in principle a
symmetric-conjugate composition verifying the order conditions

w1 = 1, w3,1 = 0, w5,1 = w5,2 = 0
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in (11), since w4,1 is pure imaginary, so that when taking the real part of the com-
position, it does not contribute to the error. Four stages would then be necessary
to construct a 6th-order method. It turns out, however, that these equations do
not admit solutions with the required symmetry α4 = ᾱ1, α3 = ᾱ2, and thus at
least s = 5 stages are necessary. The additional parameter can be used to solve
the condition w4,1 = 0 so as to achieve order 5. These equations admit 5 solutions
(plus the corresponding complex conjugate) for the sequence (5), i.e., for

(27) ψ
[5]
h = S [2]

ᾱ1h
◦ S [2]

ᾱ2h
◦ S [2]

α3h
◦ S [2]

α2h
◦ S [2]

α1h
.

Among them, we select

α1 = 0.1752684090720741140583563 + 0.05761474413053870201304364 i

α2 = 0.1848736801929841604288898− 0.1941219227572495885067758 i

α3 = 0.2797158214698834510255077

so that the real part

R̂
[6]
h =

1

2

(
ψ
[5]
h + ψ

[5]

h

)
leads to a method of order 6 which, according with Part (a) of Proposition 2, is
pseudo-symmetric and pseudo-symplectic of order 11, although it only has 5 stages
(one of them being real). Notice that, according to Table 2.1, s = 7 stages are
required to construct a conjugate-symmetric composition of order 6. Such a method
was indeed proposed and tested on several numerical examples in [9], exhibiting a
good long time behavior. This behavior can be explained by Proposition 2, since the

corresponding method R̂
[6]
h constructed by taking its real part is pseudo-symmetric

and pseudo-symplectic of order 15.
The same number of stages (s = 7) is also required by a palindromic composition

to solve the 4 order conditions necessary to achieve order 6. As shown in [6], the
best solution within this class is the composition S76 previously found in [13]. By

taking the real part, the corresponding scheme φ
[6]
h is pseudo-symmetric of order

13 and involves 2 more stages than R̂
[6]
h .

Order 8. In view of the structure of the series of operators exp(V (h)) associated
with a symmetric-conjugate composition, eq. (20), it is clear that if the order
conditions

(28)
w1 = 1, w3,1 = 0, w4,1 = 0, w5,1 = w5,2 = 0,

w7,1 = w7,2 = w7,3 = w7,4 = 0

are satisfied by ψ
[r]
h , then we get a 5th-order composition whose projection on the

real axis is an 8th-order approximation. Here the condition w4,1 = 0 has to be
included, since otherwise there appears a contribution in h8. In consequence, at
least s = 9 stages are necessary to solve equations (28). We have in fact found 7
solutions (+ c.c.) with the required symmetry and positive real part. Among them,
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we propose, according with the previous criteria,
(29)
α1 = ᾱ9 = 0.08848457824129988495666830− 0.07427185309152124718276000 i

α2 = ᾱ8 = 0.15956870501880174198291033 + 0.02322565281009720913454462 i

α3 = ᾱ7 = 0.09359461460849451904251162 + 0.13796356924496549819619086 i

α4 = ᾱ6 = 0.15769224955121857774144315− 0.07166960107892295549940996 i

α5 = 0.00131970516037055255293318.

We thus have an 8th-order scheme obtained from a symmetric-conjugate compo-
sition of a basic 2nd-order time symmetric scheme requiring only 9 stages. This
is the reason for the last entry in Table 2.1. Since the composition is of order 5,
the final scheme will be pseudo-symmetric of order 11. In case one is interested in
preserving properties up to a higher order, then two more stages are necessary to
solve the order conditions at order 6. In that case, we have a symmetric-conjugate
composition of order 7 involving s = 11 stages which is pseudo-symmetric of order
15.

By contrast, s = 15 stages are required to solve the 8 order conditions of an
8-th order left-right palindromic composition. In [6], an optimized method of this
class is proposed. Notice that, when one takes its real part, the final method is
pseudo-symmetric of order 17. In any case, this different behavior with respect to
time-symmetry will be hardly visible in most practical situations.

We have carried out a numerical search of solutions for such an 11-stage symmet-
ric-conjugate composition, finding 29 sets of coefficients with positive real part.
Among them, we recommend the following:

(30)

α1 = ᾱ11 = 0.07683292597738736205503− 0.05965805084613860757735 i

α2 = ᾱ10 = 0.12844482070368650612973 + 0.02479812697572531668668 i

α3 = ᾱ9 = 0.06855723904168450389158 + 0.11276129325339482617990 i

α4 = ᾱ8 = 0.11879414810128891257046− 0.04055765731534572031090 i

α5 = ᾱ7 = 0.10279469076169306832515 + 0.06735917341353737963638 i

α6 = 0.009152350828519294056116.

Amethod of order 10 within this family would require at least 17 stages, since one
has to construct a symmetric-conjugate composition of order 5 (5 order conditions)
also verifying the 4 conditions at order 7 and the 8 conditions corresponding to order
9. This method would be pseudo-symmetric of order 11. The pseudo-symmetry
can be raised up to order 15 by adding the 2 conditions at order 6 for a total of 19
stages. By contrast, a palindromic composition requires a minimum of 31 stages.

4. Numerical examples

4.1. Kepler problem. As a first example we take the two-dimensional Kepler
problem with Hamiltonian

H(q, p) = T (p) + V (q) =
1

2
pT p− μ

1

r
.

Here q = (q1, q2), p = (p1, p2), μ = GM , G is the gravitational constant and M is
the sum of the masses of the two bodies. We take μ = 1 and initial conditions

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e

1− e
,
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so that the trajectory corresponds to an ellipse of eccentricity e = 0.6, and inte-
grate with the 6th- and 8th-order methods resulting from symmetric-conjugate and
palindromic compositions after projecting on the real axis at each step. We denote

them by Sr(∗)
p and Sr

p , respectively, where r is the order of the method and p is the
number of stages (basic 2n-order integrators) involved in the composition. Thus,

• S6(∗)
5 refers to scheme (27);

• S6(∗)
7 is method S∗67 of [9];

• S6
7 corresponds to composition S76 found in [13];

• S8(∗)
9 refers to method (29);

• S8(∗)
11 denotes method (30);

• S8
15 corresponds to composition S158 obtained in [6].

In our first experiment we fix the final time tf = 650 and compute the maximum of
the relative error in the energy along the trajectory for different step sizes. Thus,
we end up with Figure 2 (top), which shows this relative error in energy vs. the
number of basic 2nd-order methods necessary for each scheme.

Notice that the new 8th-order schemes obtained from symmetric-conjugate com-
positions are almost one order of magnitude more efficient than S158 coming from a
palindromic composition, due to the reduced number of basic 2nd-order integrators
they require. In addition, it is also worth remarking that these 8th-order methods
work better than 6th-order methods even for large time steps, in contrast with what
usually happens with compositions with real coefficients.

In Figure 2 (bottom) we illustrate the long-time behavior of the previous 6th-
order schemes. To this end, for the same initial conditions, we integrate until the
final time tf = 106 with a constant step size in such a way that all methods involve
the same number of evaluations of the basic integrator. Specifically, h = 2/5 for

both S6(∗)
7 and S6

7 , whereas h = 2/7 for S6(∗)
5 . We see that the latter behaves as a

symplectic integrator for the whole integration interval.

4.2. The pendulum. We consider next the one-dimensional pendulum with
Hamiltonian

H(q, p) = T (p) + V (q) =
1

2
p2 + (1− cos(q)).

We take as initial conditions q0 = 0, p0 = α, such that for small values of α this
is close to a harmonic oscillator, whereas for α > 2 the pendulum gives full turns.
We take α = 1

2 (small oscillations) and α = 5 (full turns), integrate until tf = 200π
and measure the average error in energy as well as the average two-norm error in
q, p at times t = k · 2π, k = 1, 2, . . . , 100 versus the number of stages. The results
are shown in Figure 3. We also observe the superiority of the higher order methods

for nearly all accuracies and, among the eighth-order schemes, S8(∗)
11 shows the best

performance in all cases we have considered.
Finally, in Figure 4 we illustrate the degree of preservation of the time-symmetry

property for different schemes. Specifically, we integrate the equations of motion
with initial condition (q0 = 0, p0 = 1) in the interval t ∈ [0, 1000 · 2π] with different
values of the step size h , and then, from the numerical solution thus obtained at
the final time we integrate again with a step −h until t = 0 to get the point (q∗0 , p

∗
0),

which is compared with (q0, po). A time-symmetric method recovers of course the

initial condition (up to round off). Curves labelled S4
3 and S

4(∗)
2 correspond to the

projections of compositions (19) and (6) at each step, respectively. The order of
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Figure 2. Top: Relative error in energy vs. the number of evaluations

of the basic S [2]
h scheme for the Kepler problem. Bottom: Evolution of

this error along the integration of 6th-order methods

preservation established by Propositions 1 and 2 (from top to bottom: 7, 9, 11 and
15) is clearly visible in Figure 4.

5. Stability

Efficiency diagrams of Figures 2 and 3 show a distinctive pattern: methods of
order 8 are more efficient than schemes of order 6 not only for small values of h,
but in fact for the whole region of h where errors are of practical interest. This
comes in contrast with what happens for methods with real coefficients: in that
case the error (in a log-log plot) of a given integrator typically exhibits a corner
where higher error terms contribute by the same amount as the main error term. In
this way, the errors of the different schemes form an envelope and one is interested
in selecting those particular methods lying close to this envelope.

In reference [18] McLachlan presents a simple model to determine in first approx-
imation this corner by defining the elbow of a given method as a crude estimate for
the envelope and for the nonlinear stability of the method. The idea is as follows:
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Figure 3. Average relative error in energy (left figures) and aver-
age error in positions (right) vs. the number of evaluations of the

basic S [2]
h scheme for the pendulum

if one assumes that all vector fields Yj in (9) have the same order of magnitude,
and considers only a single error term ej at each order for a given palindromic
composition (16) of order r, then this effective error scales as

E := hrer+1 + hr+2er+3 + · · · .
Here ej includes a factor sr multiplying the error coefficient of the s-stage composi-

tion, so that it can be compared to the reference value 1 for the basic method S [2]
h .

Then the elbow is defined as

h∗ :=

√
er+1

er+3

thus indicating the value of h below which the asymptotic error O(hr) is observed,
so that no method should be used with time steps larger than h∗. What is remark-
able about this model is that both E and h∗ provide a good qualitative picture of
palindromic compositions of different orders [18].

We have carried out a similar treatment for the compositions (both palindromic
and symmetric-conjugate) with complex coefficients of this work and the corre-
sponding results are collected in Table 2. Symmetric-conjugate compositions are
denoted by SC, whereas PR and PC stand for palindromic compositions with real
and complex coefficients, respectively. The reference value of h∗ for the basic inte-

grator S [2]
h is 1.
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Figure 4. Order of preservation of time-symmetry for different
integrators obtained by projecting compositions on the real axis at

each step vs. the number of evaluations of the basic S [2]
h scheme

for the pendulum. Dashed lines have slopes −7, −9, −11 and −15,
thus indicating the preservation order of each method.

We also depict in Figure 5 the effective error E vs. 1/h for the basic scheme S [2]
h

and several compositions with complex coefficients of order 4 (dash-dotted lines),
6 (dashed) and 8 (solid lines) whose errors terms are collected in Table 2. For
comparison we also include the curve corresponding to the triple-jump of order 4
with real coefficients (dotted line).

In view of Table 2 and Figure 5 some comments are in order. First, the size of the
scaled error terms is much smaller for compositions with complex coefficients than
for schemes with real coefficients. Second, these error terms grow only moderately
with the order for a given method, in contrast with compositions involving real
coefficients. In some cases (e.g., for symmetric-conjugate compositions of order
8) they even decrease in size. Third, as a result, the elbow h∗ is typically much
larger for schemes with complex coefficients, attaining values for which the error is
quite considerable. As a consequence, the asymptotic behavior of the error for this
class of methods is already visible for all practical values of the step size in a given
integration. This can be clearly seen in Figure 5, which qualitatively reproduces
quite well the behavior observed for the Kepler and pendulum problems (Figures
2 and 3): we notice that the curves corresponding to the 8th-order symmetric-

conjugate compositions are placed below the one given by the basic scheme S [2]
h for

all relevant errors.
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Table 2. Scaled error coefficients for different compositions of order
4, 6 and 8 with complex and real coefficients. s is the number of stages,
and h∗ is the elbow of the method. SC refers to symmetric-conjugate
compositions, whereas PR and PC stand for palindromic compositions
with real and complex coefficients, respectively.

Order 4
Method s e5 e7 h∗

SC 2 1.7778 2.3704 0.8660
SC 3 2.2500 8.4375 0.5164
PR 3 428.60 18222 0.1534
PC 3 1.9562 3.0189 0.8050

Order 6
Method s e7 e9 h∗

SC 5 4.4951 44.651 0.3173
SC 7 4.5667 147.577 0.1759
PR 7 104518 9.7× 106 0.1038
PC 7 4.3876 92.115 0.2182

Order 8
Method s e9 e11 h∗

SC 9 14.060 5.996 1.5312
SC 11 7.4082 2.4572 1.7363
PC 15 2.0506 10.429 0.4434
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Figure 5. Nominal effective error E vs. 1/h for different compo-
sitions with complex coefficients of order 4, 6 and 8. Triple-jump
of order 4 with real coefficients (dash-dotted line with stars) is
included for comparison. The order of the methods is clearly visi-
ble.
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6. Concluding remarks

Although compositions of basic 2nd-order time-symmetric integrators S [2]
h in-

volving complex coefficients have been proposed in the past for overcoming the
difficulties associated with the presence of negative real coefficients when the order
r ≥ 3, this is, we believe, the first systematic analysis of such composition methods.

When the vector field defining the differential equation is real, the goal is of
course to get accurate real approximations to the exact solution, whereas the di-
rect application of a composition method with complex coefficients leads in general
to a complex approximation at each step. Two approaches present themselves in
a natural way: either one projects the solution on the real axis at the end of each
integration step or the numerical solution is only projected at the end of the inte-
gration interval (or more generally only when output is required). In both cases,
however, the favorable preservation properties the composition inherits from the
basic scheme (such as time-symmetry, symplecticity, volume preservation, etc.) are
generally lost. We have focused our attention here in the first approach, namely, we
have analyzed in a precise way what happens with the preservation of properties
when the composition is projected on the real axis at each time step. We have seen
that, in general, projecting at each step preserves these qualitative properties up
to an order much higher than the order of accuracy of the composition itself, and
provides a good description of the system. In addition to the usual palindromic se-
quence of coefficients in a composition, we have also explored symmetric-conjugate
sequences, showing that it is indeed possible to construct numerical integrators of
high order requiring a smaller number of basic schemes. Thus, in particular, we

have presented a 6th-order method requiring 5 S [2]
h evaluations, and an 8th-order

scheme involving only 9 S [2]
h evaluations. These numbers have to be compared with

7 and 15, respectively, for palindromic compositions. The numerical tests carried
out clearly illustrate how this reduction in the computational complexity translates
into a better performance whereas still sharing with the exact solution its main
qualitative properties up to a higher order. Moreover, the efficiency diagrams show
that higher order methods involving complex coefficients are more efficient than
lower order schemes, not only for small values of the step size h as occurs typi-
cally with real coefficients, but in the whole region of h where errors are reasonably
small. This remarkable property has been traced back to the structure and size of
the successive terms in the asymptotic expansion of the error of these compositions.

Since high order methods obtained from compositions with complex coefficients
provide good accuracy and behave in practice as geometric numerical integrators,
one might consider comparing them with composition methods with real coefficients

on practical applications. Take, for instance, the 8th-order method S8(∗)
9 , involving

9 basic schemes S [2]
h . The minimum number for a composition method of the same

order with real coefficients is 15, and more are required to have efficient schemes.
It might be the case that for certain problems this reduction in the number of
evaluations compensates the extra cost due to using complex arithmetic, although
this of course is highly dependent of the particular structure of the processor and
the implementation. In any case, this will be the subject of future research.

With respect to the second approach, namely the characterization of composition
schemes with complex coefficients by projecting at the end of the whole integration
interval or alternatively after N time steps, with t = Nh, several comments are in
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order. First, for some examples one can observe a secular growth in the determina-
tion of first integrals, which diminishes when the step size is reduced [9]. This can
be explained as a consequence of the accumulative effect of the existing local error
along the integration interval, in an analogous way to what happens with polyno-
mial extrapolation of symplectic methods [10]. Second, when symmetric-conjugate
composition methods are applied to unitary problems (and in particular in the
SU(2) group) and no projection is required, then unitarity is strictly preserved for
sufficiently small values of the time step [7], as is also the case for the simple har-
monic oscillator [9]. Methods of this family also show a superior behavior to other
classes of integrators involving complex coefficients in the context of the auxiliary
field quantum Monte Carlo method [14]. We think therefore that the whole issue
deserves further analysis and so it will be explored in a forthcoming paper.

In this work we have only considered composition methods. Notice however
that, in virtue of the existing relationship between composition and splitting meth-
ods when the vector field is separated into two parts explicitly solvable [17], all the
analysis remains valid also for operator splitting schemes involving complex coeffi-
cients. As a matter of fact, all the numerical integrators tested on the numerical
examples can be considered in the end as splitting methods since the basic scheme

S [2]
h is taken always as the Strang splitting.
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