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A B S T R A C T

We propose new linear combinations of compositions of a basic second-order scheme with appropriately chosen coefficients to construct higher 
order numerical integrators for differential equations. They can be considered as a generalization of extrapolation methods and multi-product 
expansions. A general analysis is provided and new methods up to order 8 are built and tested. The new approach is shown to reduce the latency 
problem when implemented in a parallel environment and leads to schemes that are significantly more efficient than standard extrapolation when 
the linear combination is delayed by a number of steps.

1. Introduction

Extrapolation methods constitute a class of efficient numerical integrators for the initial value problem

𝑥′ = 𝑓 (𝑥), 𝑥(𝑡0) = 𝑥0, 𝑥 ∈ℝ𝑑 , (1.1)

especially when high accuracy is desired and relatively short time integrations are considered. Although it is possible to construct 
extrapolation methods starting from a basic first-order scheme, better results are achieved in general with a time-symmetric 2nd-

order scheme 𝑆ℎ, since the asymptotic expansion of its local error contains only even powers of the step size ℎ [12]. If 𝜑𝑡 denotes 
the flow of (1.1), i.e., 𝑥(𝑡) = 𝜑𝑡(𝑥0), then

𝑥𝑛+1 = 𝑆ℎ(𝑥𝑛) = 𝜑ℎ(𝑥𝑛) +(ℎ3),

where 𝑥𝑛 is taken as the approximation of 𝑥(𝑡𝑛) at 𝑡𝑛 = 𝑡0 + 𝑛ℎ. Given a sequence of integer numbers 0 <𝑚1 < 𝑚2 < 𝑚3 <…, then it 
is possible to achieve order 2𝑟, 𝑟 = 2, 3, …, by determining the coefficients 𝑏𝑖 in the multi-product expansion (MPE) [8]

𝜓
[2𝑟]
ℎ

=
𝑟∑
𝑖=1
𝑏𝑖
(
𝑆ℎ∕𝑚𝑖

)𝑚𝑖 , 𝑟 = 2,3,… (1.2)

so that

𝜓
[2𝑟]
ℎ

(𝑥0) = 𝜑ℎ(𝑥0) +(ℎ2𝑟+1).

Here 
(
𝑆ℎ∕2

)2
≡ 𝑆

ℎ∕2◦𝑆ℎ∕2, etc. In particular, if one takes the harmonic sequence 𝑚𝑖 = 𝑖, the resulting linear combination
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𝜓
[2𝑟]
ℎ

=
𝑟∑
𝑖=1
𝑏𝑖
(
𝑆ℎ∕𝑖

)𝑖
(1.3)

produces an extrapolation method of order 2𝑟 with only 𝑟(𝑟 + 1)∕2 evaluations of the basic map 𝑆ℎ [12,8]. For orders 4, 6 and 8 one 
has, respectively

𝜓
[4]
ℎ

= −1
3
𝑆ℎ +

4
3
𝑆2
ℎ∕2

𝜓
[6]
ℎ

= 1
24
𝑆ℎ −

16
15
𝑆2
ℎ∕2 +

81
40
𝑆3
ℎ∕3

𝜓
[8]
ℎ

= − 1
360

𝑆ℎ +
16
45
𝑆2
ℎ∕2 −

729
280

𝑆3
ℎ∕3 +

1024
315

𝑆4
ℎ∕4.

(1.4)

In fact, analytic expressions for the coefficients 𝑏𝑖 exist at any order [7], so that construction of MPEs / extrapolation methods of 
arbitrarily high order is trivial.

Schemes (1.3) are also well suited for parallelization: each processor can evaluate the composition 
(
𝑆ℎ∕𝑖

)𝑖
, requiring at most 𝑟

evaluations of the basic map 𝑆ℎ. There remains, however, the problem of latency: the period of time used for communication between 
processes during which none of the processes may advance. In the application under consideration, latency will take place whilst 
one sums the outputs of the various compositions. This is particularly problematic for schemes (1.2), since all processes require 
different numbers of evaluations and so all have to wait until the composition involving the largest number of maps terminates 
before proceeding further. As a result, communication between processors may be more expensive than computing the different 
compositions in parallel.

It is then of interest to examine the case where one delays the summation by, say, 𝑝 > 1 steps, i.e., when in place of (1.2) one uses

�̂�
[2𝑟]
𝑝ℎ

=
𝑟∑
𝑖=1
𝑏𝑖

(
𝑆ℎ∕𝑚𝑖

)𝑚𝑖𝑝
(1.5)

to reduce the communication between processes. One should stress, however, that �̂� [2𝑟]
𝑝ℎ

≠

(
𝜓

[2𝑟]
ℎ

)𝑝
, so that additional errors depend-

ing on 𝑝 and even order reductions may take place when one uses very large values of 𝑝 in (1.5). Notice, however, that even in this 
case not all processes involve the same amount of computations, and so most of them have to wait until the processor evaluating the 
largest composition finishes.

Multi-product expansions of the form (1.2) have shown to be competitive with other integration schemes on a number of problems, 
especially when high accuracy is required [7,8], even when a fixed step size is used. On the other hand, they do not belong to the 
class of structure-preserving methods. Specifically, suppose problem (1.1) is formulated in some Lie group so that the exact solution 
preserves some qualitative features related with this fact. For instance, if (1.1) corresponds to a Hamiltonian system, then the exact 
flow is symplectic. In that case, the numerical solution furnished by an MPE of order 2𝑟 is no longer symplectic, but only up to one 
order higher than the order of the method itself. If (1.1) evolves in the SU(𝑁) group, then the exact matrix solution is unitary (with 
unit determinant), whereas the numerical approximation preserves unitarity up to order 2𝑟 + 1, etc. Moreover, MPEs may be more 
prone to round-off errors than other types of integrators, due to the different size of the terms to be added up.

Having identified some of the advantages and disadvantages of MPEs, it is natural to generalize them so as to remove their 
drawbacks whilst still maintaining their characteristic good efficiency. A step in that direction is provided by the study carried out 
in [2], where new 4th- and 6th-order schemes show greater efficiency than MPEs (1.4) on the 2-dimensional Kepler problem. The 
schemes proposed in [2] can be formulated as particular instances of the general linear combination

𝜓
[𝑘,𝑚]
ℎ

=
𝑘∑
𝑖=1
𝑏𝑖

𝑚∏
𝑗=1

𝑆𝑎𝑖𝑗ℎ, (1.6)

where, as before, 𝑆ℎ is a 2nd-order time-symmetric integrator and the condition 
∑𝑘
𝑖=1 𝑏𝑖 =

∑𝑚
𝑗=1 𝑎𝑖𝑗 = 1 is usually taken for consis-

tency.

The presence of additional coefficients in (1.6) may be used for various purposes. In particular, one could increase the order of 
preservation of whatever properties system (1.1) may possess (such as symplecticity or unitarity), or to reduce the most significant 
contributions to the truncation error. In contrast, MPEs use all available coefficients to increase the order of the method as much 
as possible, and in doing so, they provide excellent results, as we will see in section 2. It turns out that there exist order barriers 
depending on the value of 𝑚, so that, even for arbitrarily large 𝑘 in (1.6), it is not possible to raise the order of the method. 
Nonetheless, one can still use this extra freedom to improve the efficiency (although not the order).

Each of the integrations in the sum (1.6) may be performed simultaneously and then combined, but in this case all the processes 
require the same amount of work per step, so that in principle the latency period is reduced. If we are interested in further reductions, 
then we can combine the solutions after 𝑝 steps, i.e., in place of (1.6) we use instead

𝜓
[𝑘,𝑚,𝑝] =

𝑘∑
𝑏

(
𝑚∏
𝑆

)𝑝

,

𝑘∑
𝑏 =

𝑚∑
𝑎 = 1. (1.7)
2

ℎ
𝑖=1

𝑖

𝑗=1
𝑎𝑖𝑗ℎ

𝑖=1
𝑖

𝑗=1
𝑖𝑗
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Here we carry out a general analysis of schemes (1.6) and (1.7), eventually proposing new schemes that perform better than extrap-

olation methods for a number of problems, whilst possessing better preservation properties and reducing the latency problem.

The structure of the paper is as follows. Section 2 collects information previously available about multi-product expansions, 
in particular the order conditions and their general solutions, as well as the structure of the truncation error and their preservation 
properties. The general analysis of linear combinations (1.6) is detailed in section 3, where we also construct new schemes within this 
family of orders 4, 6 and 8. The new methods are tested in section 4 on two examples in comparison with multi-product expansions 
and the integrators proposed in [2]. Finally, section 5 analyzes the latency problem for this type of schemes and shows how methods 
preserving qualitative properties up to higher orders can be successfully used when the summation of the different compositions is 
delayed by a number of steps.

2. Multi-product expansions

Series of differential operators The Lie formalism constitutes an appropriate tool for the analysis of the methods considered in this 
work. As is well known, associated with 𝑓 in the ODE (1.1) there exists an operator 𝐹 , called the Lie derivative, and defined by

𝐹 𝑔(𝑥) = 𝑑

𝑑ℎ

||||ℎ=0 𝑔(𝜑ℎ(𝑥))
for each smooth function 𝑔 ∶ℝ𝑑 →ℝ and 𝑥 ∈ℝ𝑑 , so that

(𝐹 𝑔)(𝑥) = 𝑓 (𝑥) ⋅∇𝑔(𝑥). (2.1)

Then, the ℎ-flow of (1.1) satisfies [11,14]

𝑔(𝜑ℎ(𝑥)) =
(
eℎ𝐹 𝑔

)
(𝑥) =

∞∑
𝑘=0

ℎ𝑘

𝑘!
(𝐹𝑘𝑔)(𝑥).

Analogously, one can associate a series of linear operators to the basic 2nd-order method 𝑆ℎ as [4]

𝑔(𝑆ℎ(𝑥)) =
(
e𝑌 (ℎ)𝑔

)
(𝑥),

for all functions 𝑔, where

𝑌 (ℎ) =
∑
𝑘≥0

ℎ2𝑘+1𝑌2𝑘+1 and 𝑌1 = 𝐹 .

Notice that only odd powers of ℎ appear in 𝑌 (ℎ), due to the time-symmetry of 𝑆ℎ.

In that case, the composition 
(
𝑆ℎ∕𝑚𝑖

)𝑚𝑖 in (1.2) has associated a series 𝑆(𝑚𝑖)(ℎ) of differential operators given by

𝑆(𝑚𝑖)(ℎ) = e𝑚𝑖𝑌 (ℎ∕𝑚𝑖) = exp

( ∞∑
𝑘=0

ℎ2𝑘+1

𝑚2𝑘
𝑖

𝑌2𝑘+1

)
, (2.2)

whereas the series associated to the MPE (1.2) is the linear combination

Ψ(ℎ) =
𝑟∑
𝑖=1
𝑏𝑖 𝑆

(𝑚𝑖)(ℎ). (2.3)

Order conditions for MPEs We then proceed as in [5] and write (2.3) as

Ψ(ℎ) = e
ℎ
2 𝑌1 𝑍(ℎ) e

ℎ
2 𝑌1 ,

where the expression of 𝑍(ℎ) can be obtained with the Baker–Campbell–Hausdorff formula [16] as

𝑍(ℎ) =
𝑟∑
𝑖=1
𝑏𝑖 eℎ

3𝑊𝑖(ℎ), (2.4)

with

𝑊𝑖(ℎ) =
1
𝑚2
𝑖

𝑅(1)
(
ℎ

𝑚𝑖

)
= 1
𝑚2
𝑖

∞∑
𝑗=0

(
ℎ

𝑚𝑖

)2𝑗
𝑅
(1)
2𝑗 , and 𝑅

(1)
2𝑗 = 𝑌3+2𝑗 +

𝑗−1∑
𝓁=0

𝑚
2𝑗−2𝓁
𝑖

𝑢𝓁 .

Here 𝑢𝓁 is an element of the free Lie algebra (𝑌𝑗 ) generated by the operators {𝑌2𝓁+1}, 𝓁 = 0, 1, 2, …. This can be considered as the 
vector space spanned by all 𝑌2𝓁+1 and their independent nested commutators [13].

Expanding the exponentials in (2.4) we get

𝑍(ℎ) =𝐺 𝐼 +
∞∑ 1

ℎ3𝓁
∞∑
ℎ2𝑗 𝐺 𝑅

(𝓁)
(2.5)
3

0
𝓁=1 𝓁! 𝑗=0

2𝓁+2𝑗 2𝑗
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in terms of

𝐺𝑠 =
𝑟∑
𝑖=1

𝑏𝑖

𝑚𝑠
𝑖

, 𝑅
(𝓁)
2𝑠 =

𝑠∑
𝑖=0
𝑅
(1)
2𝑖 𝑅

(𝓁−1)
2𝑠−2𝑖 , 𝓁 > 1, 𝑠 = 0,1,2,…

In more detail,

𝑍(ℎ) =𝐺0𝐼 + ℎ3
(
𝐺2𝑅

(1)
0 + ℎ2𝐺4𝑅

(1)
2 + ℎ4𝐺6𝑅

(1)
4 + ℎ6𝐺8𝑅

(1)
6 +(ℎ8)

)
+ 1

2
ℎ6

(
𝐺4𝑅

(2)
0 + ℎ2𝐺6𝑅

(2)
2 +(ℎ4)

)
+ 1

6
ℎ9

(
𝐺6𝑅

(3)
0 +(ℎ2)

)
+⋯

It is then clear that if

𝐺0 = 1, 𝐺2𝓁 = 0, 𝓁 = 1,… , 𝑟− 1, (2.6)

then one has a method of order 2𝑟, 𝑟 ≥ 2. The order conditions (2.6) form a linear system in the coefficients 𝑏𝑖, with unique solution 
given by [7]

𝑏𝑖 =
𝑟∏
𝑗=1
𝑗≠𝑖

𝑚−2
𝑗

𝑚−2
𝑗

−𝑚−2
𝑖

=
𝑟∏
𝑗=1
𝑗≠𝑖

𝑚2
𝑖

𝑚2
𝑖
−𝑚2

𝑗

.

In fact, the structure of 𝑍(ℎ) in (2.5) allows one to get additional information on the extrapolation method (1.2). Thus, in particular, 
it is possible to compute analytically the main term in the truncation error. If Ψ(ℎ) in (2.3) corresponds to a method of order 2𝑟, then 
the term in ℎ2𝑟+1 clearly comes from the term 𝓁 = 1 in the series (2.5),1 which reads

𝐺2𝑟 𝑅
(1)
2𝑟−2 =𝐺2𝑟 𝑌2𝑟+1 +

𝑟−2∑
𝓁=0

𝐺2+2𝓁 𝑢𝓁 =𝐺2𝑟 𝑌2𝑟+1,

since 𝐺2 =⋯ =𝐺2𝑟−2 = 0 for a method of order 2𝑟. In consequence,

e𝐹 =Ψ(ℎ) + ℎ2𝑟+1𝐺2𝑟𝑌2𝑟+1 +(ℎ2𝑟+2),

and 𝐺2𝑟 can be computed as follows:

𝐺2𝑟 =
𝑟∑
𝑖=1

𝑏𝑖

𝑚2𝑟
𝑖

=
𝑟∑
𝑖=1
𝑚−2𝑟
𝑖

𝑟∏
𝑗=1
𝑗≠𝑖

𝑚2
𝑖

𝑚2
𝑖
−𝑚2

𝑗

=

(
𝑟∏
𝑗=1

𝑚−2
𝑗

)
𝑟∑
𝑖=1

𝑟∏
𝑗=1
𝑗≠𝑖

𝑚2
𝑗

𝑟∏
𝑗=1
𝑗≠𝑖

1
𝑚2
𝑖
−𝑚2

𝑗

= (−1)𝑟−1
(

𝑟∏
𝑗=1

𝑚−2
𝑗

)
𝑟∑
𝑖=1

𝑟∏
𝑗=1
𝑗≠𝑖

𝑚2
𝑗

𝑚2
𝑗
−𝑚2

𝑖

= (−1)𝑟−1
𝑟∏
𝑗=1

1
𝑚2
𝑗

,

(2.7)

where we have used the well-known property of the Lagrange polynomials 
∑𝑟
𝑖=1

∏𝑟
𝑗=1
𝑗≠𝑖

𝑥𝑗∕(𝑥𝑗 − 𝑥𝑖) = 1 with 𝑥𝑗 =𝑚2
𝑗

[7]. Then

𝑍(ℎ) = 𝐼 + ℎ2𝑟+1𝑈 + 1
2
ℎ2𝑟+2𝐺2𝑟𝑅

(2)
2𝑟−4 +⋯

with

𝑈 =
∞∑
𝑗=0
ℎ2𝑗 𝐺2𝑟+2𝑗 𝑅

(1)
2(𝑟−1)+2𝑗 .

The important point is that 𝑈 contains only operators in (𝑌𝑗 ), so that

𝑍(ℎ) = eℎ2𝑟+1𝑈 + 1
2
ℎ2𝑟+2𝐺2𝑟 𝑅

(2)
2𝑟−4 + higher order terms.

Since 𝑅(2)
2𝑟−4 does not belong to (𝑌𝑗 ), it is clear that the method 𝜓 [2𝑟]

ℎ
of order 2𝑟 only preserves geometric properties related with 

(𝑌𝑗 ) up to order 2𝑟 + 1. In particular, if (1.1) corresponds to a Hamiltonian system, then the numerical approximation furnished by 
a scheme (1.2) of order 2𝑟 is symplectic up to order 2𝑟 + 1.
4

1 The first non-vanishing term coming from 𝓁 = 2 is proportional to ℎ2𝑟+2 and contributions from 𝓁 ≥ 3 contain higher powers of ℎ.
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Table 1

First terms in the particular basis of (𝑌1, 𝑌3, 𝑌5, 𝑌7) taken in this work.

𝐸31 = 𝑌3
𝐸41 = [𝑌1,𝐸31]
𝐸51 = 𝑌5 𝐸52 = [𝑌1,𝐸41]
𝐸61 = [𝑌1,𝐸51] 𝐸62 = [𝑌1,𝐸52]
𝐸71 = 𝑌7 𝐸72 = [𝑌1,𝐸61] 𝐸73 = [𝑌1,𝐸62] 𝐸74 = [𝐸31 ,𝐸41]
𝐸8𝓁 = [𝑌1,𝐸7𝓁 ] 𝓁 = 1,… ,4 𝐸85 = [𝐸31,𝐸51]

It is illustrative to compare the main error term 𝐺2𝑟, and therefore the efficiency, for different sequences of integers {𝑚𝑖}, 
𝑖 = 1, 2, …, commonly used in extrapolation, and in particular for the Romberg sequence 𝑚𝑖 = 2𝑖−1, the harmonic sequence 𝑚𝑖 = 𝑖
and the Burlirsch sequence

𝑚𝑖 = 1,2,3,4,6,8,12,16,24,32,…

If we define the efficiency of the extrapolation method (1.2) of order 2𝑟 as

𝑓 = 𝑛𝑠 |𝐺2𝑟|1∕(2𝑟)
where 𝑛𝑠 is the total number of evaluations of the basic map 𝑆ℎ required by the scheme, then a straightforward computation shows 
that, for any order 2𝑟,

𝑓 harmonic ≤ 𝑓 Bulirsch ≤ 𝑓 Romberg,

in accordance with [12, p. 226].

3. Analysis of general linear combinations

In view of the favorable features that MPEs possess, it is natural to consider now the more general family of integrators (1.6)

𝜓
[𝑘,𝑚]
ℎ

=
𝑘∑
𝑖=1
𝑏𝑖

𝑚∏
𝑗=1

𝑆𝑎𝑖𝑗ℎ, with

𝑘∑
𝑖=1
𝑏𝑖 =

𝑚∑
𝑗=1
𝑎𝑖𝑗 = 1. (3.1)

Scheme (1.2) is then recovered by taking 𝑘 = 𝑟 terms and coefficients 𝑎𝑖𝑗 = 1∕𝑚𝑖 for all 𝑗 in (3.1). Whereas this simple choice for the 
𝑎𝑖𝑗 leads to linear order conditions in the 𝑏𝑖, the general treatment is more involved. In any case, we can proceed as in Section 2 and 
write the operator Ψ[𝑘,𝑚](ℎ) associated to (3.1) as

Ψ[𝑘,𝑚]
ℎ

= e
ℎ
2 𝑌1 𝑍(ℎ) e

ℎ
2 𝑌1 , 𝑍(ℎ) =

𝑟∑
𝑖=𝑘
𝑏𝑖 eℎ

3𝑊𝑖(ℎ),

where now

𝑊𝑖(ℎ) =𝑤
(𝑖)
31 𝑌3 + ℎ𝑤

(𝑖)
41 [𝑌1, 𝑌3] + ℎ

2(𝑤(𝑖)
51 𝑌5 +𝑤

(𝑖)
52 [𝑌1, [𝑌1, 𝑌3]]) +(ℎ3),

and 𝑤(𝑖)
𝑚𝑛 are polynomials in the coefficients 𝑎𝑖𝑗 . Expanding 𝑍(ℎ) in powers of ℎ results in

𝑍(ℎ) =𝐺00 𝐼 + ℎ3𝐺31𝐸31 + ℎ4𝐺41𝐸41 + ℎ5
2∑

𝓁=1
𝐺5𝓁 𝐸5𝓁

+ ℎ6
( 2∑

𝓁=1
𝐺6𝓁𝐸6𝓁 +

1
2
�̃�63𝐸

2
31

)
+ ℎ7

( 4∑
𝓁=1

𝐺7𝓁𝐸7𝓁 +
1
2
�̃�75{𝐸31,𝐸41}

)

+ ℎ8
( 5∑

𝓁=1
𝐺8𝓁𝐸8𝓁 +

1
2
(
�̃�86𝐸

2
41 + �̃�87{𝐸31,𝐸51} + �̃�88{𝐸31,𝐸52}

))
+(ℎ9),

(3.2)

where 𝐸𝑖𝑗 denote the elements of the basis of the free Lie algebra (𝑌𝑗 ) collected in Table 1, the symbol {⋅, ⋅} denotes the anti-

commutator, i.e., {𝐸31, 𝐸41} =𝐸31𝐸41 +𝐸41𝐸31, and finally

𝐺00 =
𝑘∑
𝑖=1
𝑏𝑖, 𝐺𝑚𝑛 =

𝑘∑
𝑖=1
𝑏𝑖 𝑤

(𝑖)
𝑚𝑛, �̃�63 =

𝑘∑
𝑖=1
𝑏𝑖
(
𝑤

(𝑖)
31
)2
, �̃�75 =

𝑘∑
𝑖=1
𝑏𝑖 𝑤

(𝑖)
31𝑤

(𝑖)
41,

�̃�86 =
𝑘∑
𝑖=1
𝑏𝑖
(
𝑤

(𝑖)
41
)2
, �̃�87 =

𝑘∑
𝑖=1
𝑏𝑖 𝑤

(𝑖)
31𝑤

(𝑖)
51, �̃�88 =

𝑘∑
𝑖=1
𝑏𝑖 𝑤

(𝑖)
31𝑤

(𝑖)
52.

(3.3)
5

With expansion (3.2) at hand, we can now analyze the situation order by order and eventually construct new schemes.
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Order 4 By taking 2-stage compositions, i.e., 𝑚 = 2 in (3.1),

𝜓
[𝑘,2]
ℎ

=
𝑘∑
𝑖=1
𝑏𝑖 𝑆(1−𝑎𝑖)ℎ◦𝑆𝑎𝑖ℎ, (3.4)

one has enough parameters to construct a method of order 4. The aim here is to find particular solutions so that the resulting scheme 
is competitive with the MPE 𝜓 [4]

ℎ
of (1.4). Notice that in this case one must satisfy

𝐺00 = 1, 𝐺31 =𝐺41 = 0, (3.5)

where, explicitly,

𝑤
(𝑖)
31 = (1 − 𝑎𝑖)3 + 𝑎3𝑖 , 𝑤

(𝑖)
41 =

1
2
𝑎𝑖(2𝑎𝑖 − 1)(1 − 𝑎𝑖)

𝑤
(𝑖)
51 = (1 − 𝑎𝑖)5 + 𝑎5𝑖 , 𝑤

(𝑖)
52 =

1
12
𝑎𝑖(2𝑎𝑖 − 1)2(𝑎𝑖 − 1) + 1

24
𝑤

(𝑖)
31.

(3.6)

A 5th-order scheme would require, in addition to (3.5), that 𝐺51 = 𝐺52 = 0. It turns out, however, that the following constraint 
involving the coefficients 𝑤(𝑖)

𝑚𝑛 in (3.6) holds:

5
2
𝑤

(𝑖)
31 − 4𝑤(𝑖)

51 + 60𝑤(𝑖)
52 = 1,

so that conditions 𝐺51 = 0 and 𝐺52 = 0 cannot be simultaneously satisfied and therefore a 5th-order barrier exists. In conclusion, 
with 𝑚 = 2 only order 4 is possible with this approach, and the possibilities of improvement are quite limited. Two different options 
present themselves:

• If 𝐺52 = 0, then the only solution with 𝑘 = 2 corresponds to the standard extrapolation method 𝜓 [4]
ℎ

of (1.4), leading to 𝐺51 = −1
4 .

• If 𝐺51 = 0, there are no real solutions with 𝑘 = 2, whereas with 𝑘 = 3 one gets the solution proposed in [2], with 𝐺52 = 1∕60.

Of course, other alternatives are possible. Thus, with 𝑘 = 2 in (3.4), we choose the solution providing the smallest values of 𝐺51 and 
𝐺52, whilst keeping the size of the coefficients reasonably small. This results in a method with 𝐺51 ≈ −0.2089, and 𝐺52 ≈ 0.0027, 
denoted as 𝜓 [2,2]

ℎ
in section 4.

Increasing the number of processors to 𝑘 = 3 introduces additional free parameters that can be used for various purposes. In 
particular,

• We fix 𝐺51 = 0, as in [2], but explore solutions with the 𝑏𝑖 coefficients as small as possible. Thus, we construct the new method 
𝜓

[3,2]
ℎ

, with (max𝑖(𝑏𝑖) −min𝑖(𝑏𝑖)) = 4.59. This should be compared with the value (max𝑖(𝑏𝑖) −min𝑖(𝑏𝑖)) = 16.68 corresponding to 
the equivalent scheme in [2].

• In addition to the order conditions (3.5), we can also vanish �̃�63 and �̃�75 in the expression (3.2) of 𝑍(ℎ). Notice that these terms 
do not belong to (𝑌𝑗 ), so that, if the original problem corresponds to a Hamiltonian system, the resulting 4th-order method 
𝜓

[3,2]
ℎ,𝑠

preserves symplecticity up to order 7 (instead of order 5, as for the other methods). In that case, we say that 𝜓 [3,2]
ℎ,𝑠

is 
pseudo-symplectic of order 7 [1,6].

Order 6 From the previous discussion, it is clear that compositions with at least 𝑚 = 3 stages are required in (3.1) to achieve order 
6. We first explore palindromic compositions, i.e.,

𝜓
[𝑘,3]
ℎ

=
𝑘∑
𝑖=1
𝑏𝑖 𝑆𝑎𝑖ℎ◦𝑆(1−2𝑎𝑖)ℎ◦𝑆𝑎𝑖ℎ. (3.7)

From the expression of 𝑍(ℎ) in (3.2) it is clear that a 6th-order scheme only requires the following conditions to be satisfied:

𝐺00 = 1, 𝐺31 =𝐺51 =𝐺52 = �̃�63 = 0, (3.8)

since all terms 𝐺𝑖𝑗 with even 𝑖 vanish by the symmetry of the composition. Moreover, from the expression of 𝑤(𝑖)
𝑚𝑛, not all terms are 

independent. In particular, one has the following relations:

𝐺72 = − 5
4536

+ 5
126

𝐺71, 𝐺73 = − 1
90720

+ 1
2520

𝐺71,

𝐺74 = − 1
648

+ 1
18
𝐺71, − 1

15
�̃�87 + 2�̃�88 +

1
30
𝐺71 +𝐺72 + 6𝐺73 −

3
2
𝐺74 = 0,

(3.9)

so that a 7th-order barrier exists. If 𝐺71 = 0, then 𝐺72, 𝐺73 and 𝐺74 are fixed and moreover it is not possible to simultaneously vanish 
the terms �̃�87 and �̃�88. On the other hand, if 𝐺72 = 𝐺73 = 𝐺74 = 0, then 𝐺71 = 1∕36. The extrapolation method 𝜓 [6]

ℎ
of eq. (1.4)
6

corresponds to this case when 𝑘 = 3, although other possibilities exist: in particular, we have constructed a method which gives 
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𝐺71 ≈ 0.0199 with small values of 𝑏𝑖, but it behaves in practice as 𝜓 [6]
ℎ

, so that it is necessary to consider larger values of 𝑘. We then 
propose the following alternatives:

• A 𝑘 = 4 method which vanishes �̃�87 and �̃�88, and thus it is pseudo-symplectic of order 8.

• Very often, the most important error term at order 7 corresponds to 𝐺71. For this reason, we construct a 𝑘 = 4 method which 
vanishes 𝐺71 and �̃�87.

• The method presented in [2] with 𝑘 = 5 vanishes 𝐺71, �̃�87 and 𝐺91 (associated with 𝑌9 in the expansion of 𝑍(ℎ)). The depen-

dences within the equations are such that these conditions fix all other terms at ℎ7, ℎ8 and ℎ9.

• A 𝑘 = 5 method which vanishes all the terms not belonging to (𝑌𝑗 ) up to order 9, i.e., �̃�87, �̃�88 and �̃�99 ≡
∑𝑘
𝑖=1 𝑏𝑖

(
𝑤

(𝑖)
31
)3

. We 
expect this additional preservation of symplecticity (for Hamiltonian systems) up to order 9 to lead to better performance in the 
long run, although the fact that 𝐺71 = 13∕90 may be a hindrance.

• Finally, a 𝑘 = 5 method vanishing 𝐺71, �̃�87 and 𝐺91 (as does the scheme in [2]), but with smaller values of the 𝑏𝑖 coefficients.

We can also analyze linear combinations 𝜓 [𝑘,3]
ℎ

involving non-palindromic compositions of the form

𝑆𝑎𝑖1ℎ◦𝑆𝑎𝑖2ℎ◦𝑆(1−𝑎𝑖1−𝑎𝑖2)ℎ, (3.10)

so that more free parameters are available for optimization. It turns out, however, that a 7th-order barrier is still present, since the 
following identity is satisfied:

35
4
𝐺31 −

63
2
𝐺51 + 35�̃�63 + 36𝐺71 − 420𝐺72 + 10080𝐺73 − 420𝐺74 = 1.

It is thus possible to vanish all terms at order 7 except 𝐺73 = 1∕10080, although the resulting method with 𝑘 = 4 is not particularly 
efficient in practice (see Fig. 3).

Order 8 We need compositions with at least 𝑚 = 4 stages in (3.1). If we take symmetric compositions

𝑆𝑎𝑖ℎ◦𝑆( 12 −𝑎𝑖)ℎ
◦𝑆( 12 −𝑎𝑖)ℎ

◦𝑆𝑎𝑖ℎ,

then 11 order conditions are required to achieve order 8, and thus 𝑘 = 6 terms provide enough parameters. It turns out, however, 
that any 𝜓 [𝑘,4]

ℎ
of this form is subject to a fifth-order barrier, since the identity

20𝐺31 − 144𝐺51 + 80�̃�63 = 1

holds. If 5-stage symmetric compositions are considered, i.e., with linear combinations of the form

𝜓
[𝑘,5]
ℎ

=
𝑘∑
𝑖=1
𝑏𝑖 𝑆𝑎𝑖1ℎ◦𝑆𝑎𝑖2ℎ◦𝑆(1−2𝑎𝑖1−2𝑎𝑖2)ℎ◦𝑆𝑎𝑖2ℎ◦𝑆𝑎𝑖1ℎ, (3.11)

with 𝑘 = 4 we are able to get order 8. One such method, which also eliminates the term 𝐺91 is illustrated in Section 4 in comparison 
with the extrapolation method 𝜓 [8]

ℎ
(see Fig. 4).

On the other hand, with 4-stage non-symmetric compositions 𝑆𝑎𝑖1ℎ◦𝑆𝑎𝑖2ℎ◦𝑆𝑎𝑖3ℎ◦𝑆𝑎𝑖4ℎ the number of order conditions is 21. 
Although the extrapolation method 𝜓 [8]

ℎ
in (1.4) constitutes a particular solution with only 𝑘 = 4 terms, in general we will need 𝑘 = 7

processors and the analysis is much more involved.

The coefficients of all methods discussed here and tested in the succeeding section have been uploaded as .txt files to GitHub.2

In addition, the coefficients of the most efficient schemes are collected in the appendix.

4. Numerical examples

We next present some numerical experiments to illustrate the behavior of the new schemes described in Section 3 on two simple 
problems of a different character, but both possessing conserved quantities: the 2-body gravitational problem and the Lotka–Volterra 
system. We will use the compensated sum technique described in subsection 4.1 to minimize roundoff error. It turns out that, with 
this technique and for the experiments we have carried out, methods with larger 𝑏𝑖 coefficients do not perform any differently to 
methods with smaller 𝑏𝑖, assuming they both satisfy the same order conditions.

Example 1: Kepler problem The motion of two bodies attracting each other through the gravitational law takes place in a plane and 
can be described by the 2-degrees-of-freedom Hamiltonian

𝐻(𝑞, 𝑝) = 𝑇 (𝑝) + 𝑉 (𝑞) = 1
2
𝑝𝑇 𝑝− 𝜇 1

𝑟
, with 𝑟 = ‖𝑞‖ =√

𝑞21 + 𝑞
2
2 ,
7

2 https://github .com /lshaw8317 /Generalized -extrapolation -methods.

https://github.com/lshaw8317/Generalized-extrapolation-methods
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𝜇 =𝐺𝑀 , 𝐺 is the gravitational constant and 𝑀 is the sum of the masses of the two bodies. We could take as the basic second-order 
integrator 𝑆ℎ the Störmer–Verlet scheme [10]

𝑆ℎ(𝑞, 𝑝) = 𝜙𝑉ℎ∕2◦𝜙
𝑇
ℎ
◦𝜙𝑉

ℎ∕2(𝑞, 𝑝),

which corresponds to the symmetric composition of the flows corresponding to the kinetic and potential energies with

𝜙𝑇
ℎ
(𝑞, 𝑝) = (𝑞 + ℎ𝑝, 𝑝), 𝜙𝑉

ℎ
(𝑞, 𝑝) = (𝑞, 𝑝− ℎ∇𝑉 (𝑞)),

but one evaluation of the force per processor and per step can be saved if we consider instead the symmetric composition

𝑆ℎ(𝑞, 𝑝) = 𝜙𝑇ℎ∕2◦𝜙
𝑉
ℎ
◦𝜙𝑇

ℎ∕2(𝑞, 𝑝), (4.1)

which, for simplicity, we will also refer to as a Störmer–Verlet scheme.

We take 𝜇 = 1 and initial conditions

𝑞(0) = (1 − 𝑒,0), 𝑝(0) =
(
0,
√
(1 + 𝑒)(1 − 𝑒)−1

)
,

so that, if 0 ≤ 𝑒 < 1, the total energy is 𝐻 =𝐻0 = −1∕2, the solution is periodic with period 2𝜋 and the trajectory is an ellipse of 
eccentricity 𝑒. In the experiments we fix 𝑒 = 0.25 and compute the relative error in phase space and in energy. In the first case, given 
a final time 𝑡𝑓 and step size ℎ = 𝑡𝑓∕𝑁 , we compute

max
0≤𝑛≤𝑁

(‖(𝑞(𝑡𝑛), 𝑝(𝑡𝑛)) − (𝑞𝑛, 𝑝𝑛)‖‖(𝑞𝑛, 𝑝𝑛)‖
)
, 𝑡𝑛 = 𝑛ℎ,

where (𝑞𝑛, 𝑝𝑛) denotes the numerical approximation, and the exact solution 𝑞(𝑡𝑛), 𝑝(𝑡𝑛) is determined by using the iterative algorithm 
described in [3, Sec. 1.5] (see also [9, p. 165]. In the second case, we compute||||𝐻0 −𝐻(𝑞𝑛, 𝑝𝑛)

𝐻0

||||
as a function of time.

Example 2: Lotka-Volterra model It corresponds to the system of differential equations in ℝ2 given by [11]

𝑢′ = 𝑢(𝑣− 2), 𝑣′ = 𝑣(1 − 𝑢), (4.2)

and has

𝐼(𝑢, 𝑣) = ln𝑢− 𝑢+ 2 ln𝑣− 𝑣

as an integral of the motion: 𝐼(𝑢(𝑡), 𝑣(𝑡)) = 𝐼0 = constant for all 𝑡. In this case the basic second-order symmetric integrator we use is 
𝑆ℎ(𝑞, 𝑝) = 𝜙𝐴ℎ∕2◦𝜙

𝐵
ℎ
◦𝜙𝐴

ℎ∕2(𝑞, 𝑝), with

𝜙𝐴
ℎ
(𝑢, 𝑣) = (𝑢 exp(ℎ(𝑣− 2)), 𝑣), 𝜙𝐵

ℎ
(𝑢, 𝑣) = (𝑢, 𝑣 exp(ℎ(1 − 𝑢))).

Here we take as initial conditions 𝑢(0) = 1, 𝑣(0) = 1, which fix the value of the constant of integration 𝐼(𝑢, 𝑣) to 𝐼0 = −2, and 
integrate up to a final time 𝑡𝑓 . Given the number of time steps 𝑁 , we examine the integration error of the numerical solution (𝑢𝑛, 𝑣𝑛)
determined via

1⌊0.8𝑁⌋
𝑁∑

𝑛=⌊0.8𝑁⌋
‖(𝑢(𝑡𝑛), 𝑣(𝑡𝑛)) − (𝑢𝑛, 𝑣𝑛)‖‖(𝑢𝑛, 𝑣𝑛)‖ , 𝑡𝑛 = 𝑛𝑡𝑓∕𝑁 = 𝑛ℎ,

where the ‘exact’ solution 𝑢(𝑡𝑛), 𝑣(𝑡𝑛) is determined numerically to high accuracy. On the other hand, the error in 𝐼 is monitored by 
evaluating||||𝐼0 − 𝐼(𝑢𝑛, 𝑣𝑛)𝐼0

|||| .
In the graphs collected next, the notation “# of evals” is defined as the number of evaluations of the basic scheme 𝑆ℎ per processor 

(i.e., for 𝑁 steps of the fourth-order compositions of two-stage integrators, the number of evaluations is 2𝑁 and so on). In the case 
of extrapolation methods, it corresponds to the maximum number of evaluations of 𝑆ℎ required to form the linear combination.

4.1. Rounding errors

Since one sums the outputs of various maps, methods of the form (3.1) can lead to rounding errors which give results for small 
values of ℎ far worse than could be expected from the theoretical order of the method. One may eliminate or at least reduce such 
effects in various ways as discussed in [15]. When designing the method, as mentioned above, one might seek to ensure that the 
8

values of 𝑏𝑖 are not too large and are of the same scale (e.g. in the range [0.1, 1]) for example. This offers at least one way to limit 
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the addition and subtraction of numbers which differ greatly in the number of digits after the decimal point (working with a fixed 
precision). However, a more reliable way to achieve the same goal, at least when the underlying method allows, is to reformulate the 
algorithms such that in place of working directly with the solutions output by the maps 𝑥𝑖

ℎ
≡
∏𝑚
𝑗=1 𝑆𝑎𝑖𝑗ℎ(𝑥0) one instead calculates 

increments for the maps Δ𝑥𝑖
ℎ
= 𝑥𝑖

ℎ
− 𝑥0 and then sums the increments Δ𝑥ℎ =

∑
𝑖 𝑏𝑖Δ𝑥𝑖ℎ before finally calculating 𝑥ℎ = 𝑥0 + Δ𝑥ℎ.

For example, in the case of the Störmer–Verlet integrator (4.1) used for the Kepler problem, in place of defining 𝑆ℎ(𝑞, 𝑝) as the 
output 𝑥 = (𝑞, 𝑝) of the sequence (with 𝑥 = (𝑞, 𝑝), 𝑓 (𝑞) = −∇𝑉 (𝑞))

𝑞← 𝑞 + (1∕2)ℎ𝑝

𝑝← 𝑝+ ℎ𝑓 (𝑞)

𝑞← 𝑞 + (1∕2)ℎ𝑝, (4.3)

and the composition rule as (𝑆ℎ◦𝑆ℎ)(𝑥) = 𝑆ℎ(𝑆ℎ(𝑥)), one takes 𝑆ℎ(𝑞, 𝑝) as the output Δ𝑥 = (Δ𝑞, Δ𝑝) of the sequence

Δ𝑝← ℎ𝑓 (𝑞 + (1∕2)ℎ𝑝)

Δ𝑞← ℎ(𝑝+ (1∕2)Δ𝑝) (4.4)

with the composition rule 𝑆ℎ◦𝑆ℎ(𝑥) = 𝑆ℎ(𝑥 + 𝑆ℎ(𝑥)). Note that, irrespective of the underlying method, one may always modify the 
composition rule thusly and define 𝑆ℎ(𝑥) = 𝑆ℎ(𝑥) −𝑥 although with less improvements in accuracy than would be the case otherwise. 
This has been carried out for the Lotka–Volterra problem, with reasonable success.

With the underlying method and composition redefined to output increments, the sum Δ𝑥ℎ =
∑
𝑖 𝑏𝑖Δ𝑥𝑖ℎ may be calculated and 

likewise 𝑥ℎ = 𝑥0 + Δ𝑥ℎ. This form of summation is used in all numerical experiments shown here.

4.2. Order 4

We examine the fourth order methods 𝜓 [2,2]
ℎ

, 𝜓 [3,2]
ℎ

and 𝜓 [3,2]
ℎ,𝑠

derived in section 3, all of them of type (3.4) and present comparison 
results for the two problems, with the fourth-order (𝑘 = 2) extrapolation method and the scheme with 𝑘 = 3 derived in [2] (called 
here B4) as the baselines. The corresponding results are collected in Fig. 1.

Method 𝜓 [2,2]
ℎ

improves slightly on the extrapolation method, in line with expectations, whereas B4 and the optimized scheme 
𝜓
[3,2]
ℎ

(both vanishing the same coefficient 𝐺51 in the 𝑍(ℎ) expansion) perform equally well in both problems. On the other hand, 
scheme 𝜓 [3,2]

ℎ,𝑠
, which is pseudo-symplectic of order 7 (as opposed to 5 for the other methods shown) performs reasonably well for 

short time integration - its advantages for long time integration are shown in diagrams (c) and (d) of Fig. 1: it begins to show a linear 
growth in the energy error at times 𝑡 approximately 100 times larger than the other methods.

4.3. Order 6

We first examine the sixth order methods derived in section 3 and involving 3-stage symmetric compositions, i.e., linear combi-

nations of the form (3.7), and present comparison results for the two problems, with the sixth-order (𝑘 = 3) extrapolation method 
and the 𝑘 = 5 scheme proposed in [2] (called here B6) as the baselines. Fig. 2 collects the relative errors in position and the integrals 
of motion for both problems.

As for the two stage case, the method with 𝑘 = 3 we have constructed improves only very slightly on the extrapolation method 
𝜓
[6]
ℎ

of eq. (1.4). The schemes which eliminate 𝐺71 (which includes method B6) are clearly superior in the Kepler problem, but 
perform the same in the Lotka–Volterra system. Methods of higher pseudo-symplectic order perform worse in the first case, but 
show massive improvements in the second: in fact, one is able to achieve parity with B6 using only 4 processors. Our proposed 
𝑘 = 5 scheme which vanishes terms �̃�87, �̃�88, and �̃�99, and thus is pseudo-symplectic of order 9, shows the best performance for the 
Lotka–Volterra problem, and in addition provides improved conservation of the first integrals in both problems.

On the other hand, the method constructed in section 3 involving non-palindromic compositions (3.10) with 𝑘 = 4, whilst not 
improving on B6 in the Kepler problem, owing to the �̃�87 term, does show improved performance in the Lotka-Volterra problem, as 
shown in Fig. 3.

4.4. Order 8

We compare the integrator proposed in section 3 (a linear combination of 𝑘 = 4 symmetric compositions involving 5 stages) with 
the extrapolation method 𝜓 [8]

ℎ
, which uses at most 4 evaluations of 𝑆ℎ per processor. Now, the elimination of the 𝐺91 term by the 

new scheme only compensates the extra cost of the additional evaluation of 𝑆ℎ in the Kepler problem (see Fig. 4). This is so in part 
because the extrapolation method 𝜓 [8]

ℎ
works better than expected only from local error considerations: in fact, the order exhibited 
9

in both diagrams of Fig. 4 is ≈ 8.4.
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Fig. 1. Order 4. Efficiency diagrams (a), (b), and relative error in energy vs. time (c), (d) for the Kepler problem and the Lotka–Volterra system. All methods have 
𝑚 = 2, so that they involve 2-stage compositions. In all four plots B4 and 𝜓 [3,2]

ℎ
, which (numerically) vanish the same terms in the error expansion, are virtually 

indistinguishable.

5. Low-latency methods

As stated in the introduction, latency may considerably affect the overall performance of the standard MPE (1.2) when it is imple-

mented in a parallel environment, so that it is relevant to analyze the situation where the summation of the different compositions is 
delayed by, say, 𝑝 steps. In other words, instead of (1.6) one has linear combinations of the form (1.7):

𝜓
[𝑘,𝑚,𝑝]
ℎ

=
𝑘∑
𝑖=1
𝑏𝑖

(
𝑚∏
𝑗=1

𝑆𝑎𝑖𝑗ℎ

)𝑝

,

𝑘∑
𝑖=1
𝑏𝑖 =

𝑚∑
𝑗=1
𝑎𝑖𝑗 = 1,

which is naturally a special case of (1.6) with �̄� =𝑚𝑝 and a periodicity restriction on the sequence

𝜓
[𝑘,𝑚𝑝]
ℎ

=
𝑘∑
𝑖=1
𝑏𝑖

𝑚𝑝∏
𝑗=1

𝑆𝑎𝑖𝑗ℎ,

𝑘∑
𝑖=1
𝑏𝑖 =

𝑚𝑝∑
𝑗=1
𝑎𝑖𝑗 = 1, 𝑎𝑖,𝑗 = 𝑎𝑖,𝑗+𝑚. (5.1)

Relaxing the restrictions on 𝑎𝑖𝑗 in (5.1) could generate very high-order methods: for illustration, even with a symmetry restriction, 
for 𝑚𝑝 = 2 × 10 = 20 and 𝑘 = 3 processors one has 29 free parameters, which in principle would enable one to satisfy the 22 order 
conditions required by a 9th-order method, with 7 free parameters for optimization. However, solving such a system is a difficult 
10

computational challenge, and of course then enforces multiples of 20 evaluations if one desires to further delay summation.
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Fig. 2. Order 6. Efficiency diagrams (a), (b), and relative error in energy vs. time (c), (d) for the Kepler problem and the Lotka–Volterra system. All methods have 
𝑚 = 3, and they involve 3-stage symmetric compositions. In all four plots B6 and the 𝑘 = 5 integrator, which both vanish 𝐺71, �̃�87 , 𝐺91 , are virtually indistinguishable.

Since this delayed sum presents obvious computational advantages in a parallel environment, it is indeed relevant to analyze how 
the error of the corresponding method depends on 𝑝, and in particular, whether there is some order reduction when one uses very 
large 𝑝 =(ℎ−1). If we denote by Ψ[𝑘,𝑚,𝑝](ℎ) the operator associated to the linear combination 𝜓 [𝑘,𝑚,𝑝]

ℎ
, then a similar calculation as 

was done in section 3 leads us to

Ψ[𝑘,𝑚,𝑝](ℎ) = exp(𝑝ℎ𝑌1∕2)𝑍𝑝(ℎ) exp(𝑝ℎ𝑌1∕2),

with

𝑍𝑝(ℎ) =𝐺00 𝐼 + 𝑝ℎ3𝐺31𝐸31 + 𝑝ℎ4𝐺41𝐸41 + 𝑝ℎ5
( 2∑

𝓁=1
𝐺5𝓁 𝐸5𝓁 +

1
24

(𝑝2 − 1)𝐺31𝐸52

)

+ 𝑝ℎ6
( 2∑

𝓁=1
𝐺6𝓁𝐸6𝓁 +

1
24

(𝑝2 − 1)𝐺41𝐸62 +
1
2
𝑝 �̃�63𝐸

2
31

)
+(𝑝ℎ7)

(5.2)

If the method is of order 4, then 𝐺00 = 1, 𝐺31 =𝐺41 = 0, so that, after 𝑛 steps, one has(
Ψ[𝑘,𝑚,𝑝](ℎ)

)𝑛 = exp(𝑉𝑛(ℎ)) +(ℎ10) (5.3)
11

with
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Fig. 3. Order 6. Efficiency diagrams for both problems. The proposed scheme based on a linear combination of 𝑘 = 4 non-palindromic compositions shows an 
improved behavior on the Lotka–Volterra system.

Fig. 4. Order 8. Efficiency diagrams for both problems. Including an additional stage in the composition renders a better performance with respect to the standard 
MPE only for the Kepler problem.

𝑉𝑛(ℎ) = 𝑛𝑝ℎ𝑌1 + 𝑛𝑝ℎ5
2∑

𝓁=1
𝐺5𝓁 𝐸5𝓁 + 𝑛𝑝ℎ6

( 2∑
𝓁=1

𝐺6𝓁𝐸6𝓁 +
1
2
𝑝 �̃�63𝐸

2
31

)

+ 𝑛𝑝ℎ7
( 4∑

𝓁=1
𝐺7𝓁𝐸7𝓁 +

1
2
𝑝 �̃�75{𝐸31,𝐸41}

)
+(𝑛𝑝ℎ8).

To arrive at the final time 𝑡𝑓 after 𝑁 steps, 𝑡𝑓 =𝑁ℎ, we need to take 𝑛 =𝑁∕𝑝 in (5.3), so that

𝑉𝑁∕𝑝(ℎ) = 𝑡𝑓 𝑌1 + 𝑡𝑓 ℎ4
2∑

𝓁=1
𝐺5𝓁 𝐸5𝓁 + 𝑡𝑓 ℎ5

2∑
𝓁=1

𝐺6𝓁𝐸6𝓁 + 𝑡𝑓 𝑝ℎ5
1
2
�̃�63𝐸

2
31 +(𝑡𝑓 ℎ6).

The error thus grows with 𝑝, and in the extreme case where one performs the sum once so that 𝑝 = 𝑡𝑓∕ℎ, the method has global error 
(ℎ4 + 𝑡𝑓 ℎ4). If, in addition, the error terms 𝐺5𝑗 , 𝐸5𝑗 vanish or are relatively small, then we have an apparent order reduction. This 
is the case of methods B4 and 𝜓 [3,2]

ℎ
for the Kepler problem, since 𝐺51 = 0 and 𝐺52, 𝐸52 are very small (cf. Fig. 1).

On the other hand, for the 4th-order scheme 𝜓 [3,2]
ℎ,𝑠

(pseudo-symplectic of order 7), it holds that both �̃�63 and �̃�75 vanish, so that 
12

the global error is constant with 𝑝 and (ℎ4) regardless of 𝑝 and 𝑡𝑓 . This method is compared to the (representative) fourth order 
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Fig. 5. Order 4 when the sum is computed after 𝑝 steps. Extrapolation method and scheme 𝜓 [3,2]
ℎ,𝑠

. The results obtained by the pseudo-symplectic method of order 7 
do not depend on the value of 𝑝, in accordance with the analysis. The advantages become more apparent on increasing the final integration time 𝑡𝑓 (right panel).

extrapolation method 𝜓 [4]
ℎ

in Fig. 5. We clearly see that 𝜓 [3,2]
ℎ,𝑠

performs the same regardless of the value of 𝑝, even if the sum is done 
only once, at the end of the integration 𝑝 =𝑁 . In contrast, other methods will suffer decreasing performance and even (effective) 
order reduction for large 𝑝. The benefits of preserving the symplectic character up to a higher order become more apparent on 
increasing the final integration time 𝑡𝑓 , see Fig. 5 (b).

In the case of a sixth-order method built with symmetric compositions, the corresponding operator 𝑉𝑛(ℎ) in (5.3) reads

𝑉𝑛(ℎ) = 𝑛𝑝ℎ𝑌1 + 𝑛𝑝ℎ7
4∑

𝓁=1
𝐺7𝓁𝐸7𝓁 + 𝑛𝑝2ℎ8

1
2
(
�̃�87{𝐸31,𝐸51} + �̃�88{𝐸31,𝐸52}

)
+ 𝑛𝑝3ℎ9 1

6
�̃�99 +(𝑛𝑝ℎ9)

so that at the final time 𝑡𝑓 we have

𝑉𝑁∕𝑝(ℎ) = 𝑡𝑓 𝑌1 + 𝑡𝑓 ℎ6
4∑

𝓁=1
𝐺7𝓁𝐸7𝓁 +

𝑡𝑓 𝑝ℎ
7

2
(
�̃�87�̃�87 + �̃�88�̃�88

)
+
𝑡𝑓 𝑝

2ℎ8

6
�̃�99�̃�99 +(𝑡𝑓 ℎ7 + 𝑡𝑓 𝑝2ℎ9).

Notice that both the extrapolation 𝜓 [6]
ℎ

and B6 methods exhibit a (ℎ6 + 𝑝ℎ7 + 𝑝2ℎ8) global error, which in the worst case (𝑝 = 𝑡𝑓∕ℎ) 
gives (𝑡2

𝑓
ℎ6), whereas the 𝑘 = 4 method constructed in section 3 that vanishes �̃�87, �̃�88 possesses the same (𝑡2

𝑓
ℎ6) dependence in 

the global error. Finally, the 𝑘 = 5 scheme vanishing the terms �̃�87, �̃�88 and �̃�99 has an (ℎ6) error. All these features are clearly 
visible in Fig. 6: the performance of methods which fail to vanish �̃�99 always degrades upon increasing 𝑝 (although for sufficiently 
small ℎ, i.e. large number of evaluations, one is able to make the higher order non-symplectic terms small enough to improve 
performance). Notice that the method of highest pseudo-symplectic order shows invariable performance, as was the case for the 
4th-order method in Fig. 5. We see then that, by choosing parameters in (1.6) so as to increase the order of structure-preservation of 
the method, it is possible to delay the sum by a number of steps (and therefore reducing the latency problem) without affecting the 
overall performance of the scheme.

Data availability

Link in article to github with integrator coefficients.
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Appendix. Coefficients
13

We collect here the coefficients of three of the most efficient methods we have constructed (see Tables 2–4).
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Fig. 6. Order 6. Comparison of the performance of different schemes with 𝑝. Only the method which vanish �̃�87 , �̃�88 and �̃�99 (pseudo-symplectic of order 9) exhibits 
an (ℎ6) error, independently of 𝑝.

Table 2

Coefficients for the method 𝜓 [3,2]
ℎ,𝑠

in Fig. 1, of the type shown in 
Equation (3.4).

𝑎1 = −0.19220568886474299 𝑏1 = 0.09012936855999465
𝑎2 = 0.7952090547057717 𝑏2 = −1.8742613286568583
𝑎3 = 0.615 𝑏3 = 1 − 𝑏1 − 𝑏2

Table 3

Coefficients for the 6th-order method with 𝑘 = 5 which van-

ishes the terms �̃�87 , �̃�88 , and �̃�99 in Fig. 2, of the type shown 
in Equation (3.7).

𝑎1 = 0.7702669932516844 𝑏1 = 0.7482993205697204
𝑎2 = 2∕100 𝑏2 = −0.34096002148336635
𝑎3 = 0.5133170199053506 𝑏3 = −1.5697387622875072
𝑎4 = 1.1686905913031624 𝑏4 = −0.11572553679884676
𝑎5 = 1∕3 𝑏5 = 1 − 𝑏1 − 𝑏2 − 𝑏3 − 𝑏4

Table 4

Coefficients for the 8th-order method with 𝑘 = 4 which vanishes 𝐺91 in Fig. 4, of the type shown 
in Equation (3.11).

𝑎11 = −0.2539842055534987 𝑎12 = 0.4514159659747628 𝑏1 = 0.6402721677360648
𝑎21 = −0.1297472147351918 𝑎22 = 0.5893868250930246 𝑏2 = −0.4488395035838362
𝑎31 = 0.283267969084071 𝑎32 = 0.0411275969512266 𝑏3 = −11.611098146500447
𝑎41 = 0.0671551220219572 𝑎42 = 0.3228966120312048 𝑏4 = 1 − 𝑏1 − 𝑏2 − 𝑏3
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