Publications


Submitted Papers, Publications in Journals and Other Publications

Perfil en Google Scholar


 

Submitted Papers

·      [1] S. Blanes, F. Casas, A. Escorihuela-Tomŕs, Families of efficient low order processed composition methods, arXiv preprint arXiv:2404.04340

·      [2] E.S. Carlin, S. Blanes, F. Casas, Reformulating polarized radiative transfer.(I) A consistent formalism allowing non-local Magnus solutions, arXiv preprint arXiv:2402.00252

·      [3] S. Blanes, Parallel Computation of functions of matrices and their action on vectors, arXiv preprint arXiv:2210.03714

 

 

Publications in Journals

2024

·     [88] S. Blanes, F. Casas, and A. Murua, Splitting Methods for differential equations, Acta Numerica (2024). In Press. arXiv preprint arXiv:2401.01722

·     [87] S. Blanes, F. Casas, L. Shaw, Generalized extrapolation methods based on compositions of a basic 2nd-order scheme, Applied Mathematics and Computation 473 (2024), 128663

·     [86] S. Blanes, F. Casas, C. González, M. Thalhammer, Symmetric-conjugate splitting methods for evolution equations of parabolic type, Journal of Computational Dynamics, 11 ( 2024), pp. 108-134

·     [85] S. Blanes, F. Casas, C. González, M. Thalhammer, Generalisation of splitting methods based on modified potentials to nonlinear evolution equations of parabolic and Schrödinger type, Computer Physics Communications 295 (2024), 109007.

 

2023

·     [84] S. Blanes, F. Casas, C. González, M. Thalhammer, Efficient Splitting Methods Based on Modified Potentials: Numerical Integration of Linear Parabolic Problems and Imaginary Time Propagation of the Schrodinger Equation, Commun. Comput. Phys. 33, No. 4, (2023), pp. 937-961

·     [83] J Bernier, S. Blanes, F. Casas, and A. Escorihuela-Tomŕs, Symmetric-conjugate splitting methods for linear unitary problems, BIT Numerical Mathematics (2023) 63:58

2022

·     [82] S. Blanes, A. Iserles and S. MacNamara, Positivity-preserving methods for ordinary differential equations. ESAIM: Mathematical Modelling and Numerical Analysis 56 (2022), 1843-1870.

·     [81] S. Blanes, F. Casas and A. Escorihuela-Tomŕs, Runge-Kutta-Nyström symplectic splitting methods of order 8. Applied Numerical Mathematics 182 (2022), 14-27.

·     [80] S. Blanes, F. Casas, P. Chartier and A. Escorihuela-Tomŕs, On symmetric-conjugate composition methods in the numerical integration of differential equations, Mathematics of Computation 91 (2022), 1739-1761.

·     [79] S. Blanes, F. Casas and A. Escorihuela-Tomŕs, Applying splitting methods with complex coefficients to the numerical integration of unitary problems, J. Comput. Dyn. 9 (2022), 85-101.

·     [78] P. Bader, S. Blanes, F. Casas and M Seydaoğlu, An efficient algorithm to compute the exponential of skew-Hermitian matrices for the time integration of the Schrödinger equation, Math. Comput. Sim. 194 (2022), pp. 383-400.

 

2021

·     [77] S. Blanes, Novel parallel in time integrators for ODEs, Applied Mathematics Letters, 122 (2021) 107542.

·      [76] S. Blanes, M.P. Calvo, F. Casas and J.M. Sanz-Serna, Symmetrically processed splitting integrators for enhanced Hamiltonian Monte Carlo sampling, SIAM J. Sci. Comput. 43 (2021), pp. A3357-A3371.

·      [75] M. Seydaoğlu, P. Bader, S. Blanes and F. Casas, Computing the matrix sine and cosine simultaneously with a reduced number of products, Appl. Num. Math., 163 (2021), 96-107.

·      [74] S. Blanes, F. Casas, C. González and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrödinger equations, IMA J. Numer. Anal. 41 (2021), pp. 594–617.

·      [73] A. Gómez_Pueyo, S. Blanes and A. Castro, Performance of fourth and sixth‐order commutator‐free Magnus expansion integrators for Ehrenfest dynamics, Computational and Mathematical Methods 3 (2021), e1100.

 

2020

·      [72] S. Blanes, S. MacNamara and A. Iserles, Simulation of bimolecular reactions: numerical challenges with the graph Laplacian, ANZIAM J. 61 (EMAC2019) (2020), pp. C1-C16.

·      [71] A. Gómez_Pueyo, S. Blanes and A. Castro, Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods, Journal of Chemical Theory and Computation 16 (2020), pp. 1420-1430.

·      [70] S. Blanes, V. Gradinaru, High order efficient splittings for the semiclassical time–dependent Schrödinger equation, J Comput. Phys. 405 (2020) 109157.

 

2019

·      [69] P. Bader, S. Blanes, F. Casas and M. Thalhammer, Efficient time integration methods for Gross--Pitaevskii equations with rotation term, J. Comput. Dyn. 6 (2019), 147-169.

·      [68] P. Bader, S. Blanes and F: Casas, Computing the matrix exponential with an optimized Taylor polynomial approximation, Mathematics 7 (2019), 1174.

·     [67] S. Blanes, F. Casas, and M. Thalhammer, Splitting and composition methods with embedded error estimators. Appl. Numer. Math. 146 (2019), pp. 400-415. arXiv:1903.05391v1 [math.NA]

·     [66] S. Blanes, On the construction of symmetric second order methods for ODEs, Applied Mathematics Letters, 98 (2019), pp. 41-48.

·      [65] P. Bader, S. Blanes, F: Casas, and N. Kopylov, Symplectic propagators for the Kepler problem with time-dependent mass, Celest. Mech. & Dyn. Astron. 131:25 (2019), pp.1-19.

·      [64] P. Bader, S. Blanes, F: Casas, and N. Kopylov, Novel symplectic integrators for the Klein-Gordon equation with space- and time-dependent mass, J. Comput. Appl. Math. 350 (2019), pp. 130-138.

2018

·      [63] P. Bader, S. Blanes, and N. Kopylov, Exponential propagators for the Schrödinger equation with a time-dependent potential, J. Chem. Phys. 148, 244109 (2018). arXiv:1804.07103 [math.NA].

·      [62] S. Blanes, Time-average on the numerical integration of non-autonomous differential equations, SIAM J. Numer. Anal. 56 (2018), pp. 2513-2536.

·      [61] S. Blanes, F. Casas, and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type. IMA J. Numer. Anal. 38 (2018), pp. 743–778. doi: 10.1093/imanum/drx012.

·      [60] P. Bader, S. Blanes, F: Casas, N. Kopylov, and E. Ponsoda, Symplectic integrators for second-order linear non-autonomous equations. J. Comput. Appl. Math. 330 (2018), pp. 909-919. arXiv: 1702.04768 [math.NA].

 2017

·      [59] S. Blanes, F. Casas, and M. Thalhammer, High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations. Comput. Phys. Comm. 220 (2017), 243-262.

·      [58] S. Blanes, F. Casas, and A. Murua, Symplectic time-average propagators for the Schödinger equation with a time-dependent Hamiltonian, J. Chem. Phys. 146, 114109 (2017).

·       [57] P. Bader, S. Blanes, E. Ponsoda, and M Seydaoglu, Symplectic integrators for the matrix Hill's equation and its applications to engineering models. J. Comput. Appl. Math., 316 (2017), pp. 47-59. arXiv:1512.02343 [math.NA].

 2016

·      [56] P. Bader, S. Blanes, F. Casas, and E. Ponsoda, Efficient Numerical Integration of Nth-order non-Autonomous Linear Differential Equations. J. Comput. Appl. Math., 291 (2016), pp. 380-390.

 2015

·      [55] S. Blanes, F. Casas, and A. Murua, An efficient algorithm based on splitting for the time integration of the Schrödinger equation. J. Comput. Phys., 303 (2015), pp. 396-412. (Fortran programs)

·      [54] S. Blanes, Explicit symplectic RKN methods for perturbed non-autonomous oscillators: splitting, extended and exponentially fitting methods. Comput. Phys. Comm., 195 (2015), pp. 10-18.

·      [53] P. Bader, S. Blanes, and M Seydaoglu, The Scaling, Splitting and Squaring Method for the Exponential of Perturbed Matrices. SIAM J. Matrix Anal., 36 (2015), pp. 549-614.

·      [52] S. Blanes, High order structure preserving explicit methods for solving linear-quadratic optimal control problems. Numerical Algorithms, 69 (2015), pp. 271-290.

·      [51] S. Blanes, F. Casas, J.A. Oteo and J. Ros, The Fer and Magnus expansions. Encyclopedia of Applied and Computational Mathematics, Springer. Engquist, Björn (Ed.) (2015).

·      [50] S. Blanes, F. Casas, and A. Murua, Splitting methods. Encyclopedia of Applied and Computational Mathematics, Springer. Engquist, Björn (Ed.) (2015).

2014

·      [49] M Seydaoglu and S. Blanes, High-order splitting methods for separable non-autonomous parabolic equations. Appl. Numer. Math., 84 (2014), pp. 22-32.

·      [48] S. Blanes, F. Casas and J.M. Sanz-Serna, Numerical integrators for the Hybrid Monte Carlo method. SIAM J. Sci. Comput. 36 (2014), pp. A1556-A1580.

·      [47] S. Blanes and E. Ponsoda, Exponential integrators for coupled self-adjoint non-autonomous partial differential equations. Appl. Math. Comput., 243 (2014), pp. 1-11.

·      [46] P. Bader, S. Blanes, and E. Ponsoda, Structure preserving integrators for solving linear quadratic optimal control problems with applications to describe the flight of a quadrotor. J. Comput. Appl. Math., 262 (2014), pp. 223-233. arXiv:1212.0474v1

 2013

·      [45] P. Bader, S. Blanes, and F. Casas, Solving the Schrödinger eigenvalue problem by the imaginary time propagation technique using splitting methods with complex coefficients. J. Chem. Phys. 139, 124117 (2013). arXiv:1304.6845

·      [44] A. Farrés, J. Laskar, S. Blanes, F. Casas, J. Makazaga, and A. Murua, High precision Symplectic Integrators for the Solar System. Celest. Mech. & Dyn. Astron., 116 (2013), pp. 141-174. arXiv:1208.0716v1

·      [43] S. Blanes, F. Casas, A. Farrés, J. Laskar, J. Makazaga, and A. Murua, New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68 (2013), pp. 58-72. arXiv:1208.0689v1 (Fortran programs)

·      [42] S. Blanes, F. Casas, P. Chartier, and A. Murua, Optimized high-order splitting methods for some classes of parabolic equations, Math. Comput. 82 (2013), pp. 1559-1576. arXiv:1102.1622v1 [math.NA]

2012

·      [41] S. Blanes and A. Iserles, Explicit Adaptive Symplectic Integrators for solving Hamiltonian Systems, Celest. Mech. & Dyn. Astron. 114 (2012), pp. 297-317.

·      [40] S. Blanes and E. Ponsoda, Magnus integrators for solving linear-quadratic differential games. J. Comput. Appl. Math. 236 (2012), pp. 3394-3408.

·      [39] S. Blanes, F. Casas, and A. Murua, Splitting methods in the numerical integration of non-autonomous dynamical systems. RACSAM. 106 (2012), pp. 49-66.

·      [38] S. Blanes and E. Ponsoda, Time-averaging and exponential integrators for non-homogeneous linear IVPs and BVPs. Appl. Numer. Math. 62 (2012), pp. 875-894.

2011

·       [37] E. Ponsoda, S. Blanes and P. Bader, New efficient numerical methods to describe the heat transfer in a solid medium, Math. Comp. Mod. 54 (2011), pp. 1858-1862.

·       [36] P. Bader and S. Blanes, Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Phys. Rev. E. 83, 046711 (2011). arXiv:1007.3470v2 [math.NA]

·       [35] S. Blanes, F. Casas, and A. Murua, Error analysis of splitting methods for the time dependent Schrodinger equation, SIAM J. Sci. Comput. 33 (2011), pp. 1525-1548.

2010

·       [34] S. Blanes, F. Casas, J.A. Oteo and J. Ros, A pedagogical approach to the Magnus expansion, Eur. J. Phys., 31 (2010), pp. 907-918.

·       [33] S. Blanes, F. Diele, C. Marangi, and S. Ragni, Splitting and composition methods for explicit time dependence in separable dynamical systems. J. Comput. Appl. Math., 235 (2010), pp. 646-659.

·       [32] S. Blanes, F. Casas, and A. Murua, Splitting methods with complex coefficients. Bol. Soc. Esp. Mat. Apl. 50 (2010), pp. 47–61.

2009

·       [31] S. Blanes, F. Casas, J.A. Oteo and J. Ros, The Magnus and expansion and some of its applications. Physics Reports, 470 (2009), pp. 151-238.

2008

·       [30] S. Blanes, F. Casas and A. Murua, On the linear stability of splitting methods. Found. Comp. Math. 8 (2008), pp. 357-393.

·       [29] S. Blanes, F. Casas, and A. Murua, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. (SEMA) 45 (2008), pp. 87–143.

2007

·       [28] S. Blanes, F. Casas and A. Murua, Splitting methods for non-autonomous linear systems. Int. J. Computer Math., 6 (2007), pp. 713-727 (Special Issue on Splitting Methods for Differential Equations.).

2006

·       [27] S. Blanes, F. Casas and A. Murua, Symplectic splitting operator methods for the time-dependent Schrödinger equation. J. Chem. Phys. 124 (2006) 234105.

·       [26] S. Blanes and F. Casas, Comment on `Structure of positive decomposition of exponential operators'  . Phys. Rev. E. 73 (2006) 048701.

·       [25] S. Blanes and F. Casas, Splitting methods for non-autonomous separable dynamical system. J. Phys. A: Math. Gen. 39 (2006), pp. 5405-5423. (Special issue on Geometric Numerical Integration).

·       [24] S. Blanes and P.C. Moan, Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems. Appl. Numer. Math. 56 (2006), pp. 1519-1537.

·       [23] S. Blanes, F. Casas and A. Murua, Composition methods for differential equations with processing  . SIAM J. Sci. Comp. 27 (2006), pp. 1817-1843.

2005

·       [22] S. Blanes and F. Casas, On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Numer. Math. 54 (2005), pp. 23-37.

·       [21] S. Blanes and C. J. Budd, Adaptive geometric integrators for Hamiltonian problems with approximate scale invariance, SIAM J. Sci. Comp. 26 (2005), pp. 1089-1113.

·       [20] S. Blanes and F. Casas, Raising the order of geometric numerical integrators by composition and extrapolation, Numerical Algorithms, 38 (2005), pp. 305-326.

2004

·       [19] S. Blanes and C. J. Budd, Explicit Adaptive SYmplectic (EASY) integrators: A scaling invariant generalisation of the Levi-Civita and KS regularisations, Celest. Mech. & Dyn. Astron., 89 (2004), pp. 383-405.

·       [18] S. Blanes and F. Casas, On the convergence and optimization of the Baker-Campbell-Hausdorff formula, Linear Algebra Appl., 378 (2004), pp. 135-158.

·       [17] S. Blanes, F. Casas and A. Murua, On the numerical integration of ordinary differential equations by processed methods, SIAM J. Numer. Anal., 42 (2004), pp. 531-552.

2003

·       [16] S. Blanes and F. Casas, Optimization of Lie-group methods, Future Gener. Comp. Sy., 19 (2003),pp. 331-339.

2002

·       [15] S. Blanes, Symplectic Maps for Approximating Polynomial Hamiltonian Systems, Phys. Rev. E., 65 (2002) 056703.

·       [14] S. Blanes, F. Casas and J. Ros, High order optimized geometric integrators for linear differential equations, BIT, 42 (2002), pp. 262-284.

·       [13] S. Blanes and P.C. Moan, Practical Symplectic Partitioned Runge-Kutta and Runge-Kutta-Nyström Methods, J. Comput. Appl. Math., 142 (2002), pp. 313-330.

2001

·       [12] S. Blanes and P.C. Moan, Splitting Methods for non-autonomous differential equations, J. Comput. Phys., 170 (2001), pp. 205-230.

·       [11] S. Blanes, High Order Numerical Integrators for Differential Equations using Composition and Processing of low Order Methods, Appl. Num. Math., 37 (2001), pp. 289-306.

·       [10] S. Blanes, F. Casas and J. Ros, New families of symplectic Runge-Kutta-Nyström integration methods, Lecture Notes in Computer Science. L. Vulkov, J. Wasniewski, and Yalamov (Eds.): NAA 2000, LNCS 1988, pp. 102-109, 2001. Springer-Verlag Berlin Heidelberg 2001.

·       [9] S. Blanes, F. Casas and J. Ros, High-order Runge-Kutta-Nyström geometric methods with processing , Appl. Num. Math., 39 (2001), pp. 245-259.

2000

·       [8] S. Blanes, F. Casas, and J. Ros, Processing symplectic methods for near-integrable Hamiltonian systems, Celest. Mech. & Dyn. Astron., 77 (2000), pp. 17-36.

·       [7] S. Blanes, F. Casas and J. Ros, Improved high order integrators based on Magnus expansion, BIT, 40 (2000), pp. 434-450.

·       [6] S. Blanes and P.C. Moan, Splitting methods for the time-dependent Schrödinger equation, Phys. Lett. A, 265, (2000), pp. 35-42.

·       [5] S. Blanes, L. Jodar and E. Ponsoda, Approximate solutions with a priori error bounds for continuous coefficient matrix Riccati equations , Math. Comp. Modelling, 31 (2000), pp. 1-15.

1999

·       [4] S. Blanes, F. Casas, and J. Ros, Extrapolation of symplectic integrators; Celest. Mech. & Dyn. Astron., 75 (1999), pp. 149-161.

·       [3] S. Blanes, F. Casas and J. Ros, Symplectic integration with processing: A general study, SIAM J. Sci., Comp. 21 (1999), pp. 711-727.

·       [2] S. Blanes and L. Jodar, Continuous numerical solutions of coupled mixed partial differential systems using Fer's factorization, J. Comp. Appl. Math., 101 (1999), pp. 189-202.

1998

·       [1] S. Blanes, F. Casas, J.A. Oteo and  J. Ros, Magnus and Fer expansions for matrix differential equations:  the convergence problem, J. Phys. A: Math. Gen., 31 (1998), pp. 259-268.

 

Other Publications

·      [5] P. Bader and S. Blanes, Solving the pertubed quantum harmonic oscillator in imaginary time using splitting methods with complex coefficients. Springer International Publishing Switzerland 2014 F. Casas, V. Martinez (eds.), Advances in Differential Equations and Applications, SEMA SIMAI Springer Series 4, DOI 10.1007/978-3-319-06953-1_21

·      [4] S. Blanes and M. Seydaoglu, Splitting methods with real-complex coefficients for separable non-autonomous semi-linear reaction-diffusion equation of Fisher. Proceedings del XXIII Congreso de Ecuaciones Diferenciales y Aplicaciones XIII Congreso de Matemática Aplicada Castellón, 9-13 septiembre 2013.

·      [3] S. Blanes, F. Casas and J.M. Sanz-Serna, Beating the Verlet integrator in Monte Carlo simulations. AIP Conf. Proceedings 1558, (2013); pp. 8-10. doi: 10.1063/1.4825407

·       [2] S. Blanes, F. Casas, and A. Murua, Splitting and composition methods for the time dependent Schrödinger equation. Mathematisches Forschungsinstitut Oberwolfach, Geometric Numerical Integration, Report No. 16/2011.

·       [1] S. Blanes, F. Casas, and A. Murua, Splitting methods in Geometric Numerical Integration. Mathematisches Forschungsinstitut Oberwolfach, Geometric Numerical Integration, Report No. 14/2006.