Control de procesos discretos mediante "continuización": demostración

Antonio Sala

Control de Sistemas Complejos

DISA – Universitat Politècnica de València

Introducción

Motivación:

Existen muchas metodologías "analógicas" de diseño de reguladores $K_c(s)$ para un proceso contínuo $G_c(s)$. Si se dispone de un modelo $G_d(z)$, ¿podrían usarse de algún modo?

Objetivos:

Comprender el uso de la transformación bilineal/Tustin **inversa** para diseñar reguladores discretos usando técnicas contínuas con **garantía de estabilidad**.

Contenido:

© 2018, A. Sala

Demostración de la preservación de la estabilidad.

Transformación bilineal

La transformación bilineal directa/inversa:

$$s := \frac{2}{T} \frac{z-1}{z+1}$$
 $z := \frac{1 + \frac{T}{2}s}{1 - \frac{T}{2}s}$

- Preserva la estabilidad:
 - Al discretizar, dado $G_c(s)$, $G_d(z) := G_c(\frac{2}{T}\frac{z-1}{z+1})$ estable discreto sii $G_c(s)$ es estable.
 - Al "continuizar" (invertir transformación): Dado $G_d(z)$, $G_c(s) := G_d(\frac{1+\frac{T}{2}s}{1-\frac{T}{2}s})$ estable en continuo sii $G_d(z)$ es estable.
- 2 Continuizar y Discretizar (o viceversa) recupera la función original:

$$G_d(z) = G_c(\frac{2}{T}\frac{z-1}{z+1}) = G_d(\frac{1+\frac{T}{2}(\frac{2}{T}\frac{z-1}{z+1})}{1-\frac{T}{2}(\frac{2}{T}\frac{z-1}{z+1})}) = G_d(\frac{1+(\frac{z-1}{z+1})}{1-(\frac{z-1}{z+1})}) = G_d(\frac{2z}{2}) = G_d(z)$$

Diseño discreto por transformación bilineal

1 Dado $G_d(z)$, supongamos que $K_c(s)$ estabiliza en bucle cerrado a la continuización $G_c(s) := G_d(\frac{1+\frac{T}{2}s}{1-\frac{T}{2}s})$, esto es la función de transferencia de referencia a error en bucle cerrado (o cualquier otra FdT de bucle cerrado elegida) es estable:

$$S_c(s) = \frac{1}{1 + G_c(s)K_c(s)}$$

Entonces, la función de transferencia entre referencia a error discreta

$$S_d(z) = \frac{1}{1 + G_d(z)K_d(z)}$$

es ESTABLE.

Demostración

Hagamos la continuización de $S_d(z)$:

$$S_c(s) := S_d(\frac{1 + \frac{T}{2}s}{1 - \frac{T}{2}s}) = \frac{1}{1 + G_d(\frac{1 + \frac{T}{2}s}{1 - \frac{T}{2}s})K_d(\frac{1 + \frac{T}{2}s}{1 - \frac{T}{2}s})} = \frac{1}{1 + G_c(s)K_c(s)}$$

Con lo que, como la continuización (Tustin) de $S_d(z)$ es estable, también lo es $S_d(z)$.

Conclusiones

- Se ha demostrado que, dado $G_d(z)$, la siguiente metodología:
 - ① Continuizar G_z por Tustin.
 - 2 Diseñar un regulador continuo para el proceso resultante, que lo estabilice.
 - 3 Discretizar el regulador por Tustin.

produce un regulador $K_d(z)$ que lo estabiliza.

