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Objectives: model a tank as a 1st-order dynamical system, but considering it "tubular", taking into 

account the steady-state exponential temperature profile arising from well-known stationary PDE 

solutions.
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First-principle model
If stirred, all temperature inside the volume is the same... if NOT stirred (the case here), and "long/

tubular", we'll look at it later on.

• Inputs:

syms F real %input flow
syms Tin real %input fluid's temperature
syms Q real %total heating power

• Parámeters (constant):

syms V real% total volume
syms rho real %density
syms kappa real % conduction heat transfer coefficient
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syms Ce real %specific heat

NOTE: Specific heat constant will be renamed to  for consistency with my notes in Spanish 

language, sorry for the inconvenience; in other English-language material it was "c".

• State variable:

syms T  real %mean temperature of the fluid inside the (tubular) tank
syms dTdt real % time derivative

Mass balance is trivial: flow entering the tank is the same as the flow exiting the tank.

Power (rate of change of energy) balance is

" rate of change of energy inside control volume    , mass is constant inside the 

control volume so dM/dt=0, mass change needs not considered inside the said volume.

= net heat power exchange with the outside environment   

+ total energy entering the control volume per unit time due to incoming fluid   

- total energy per unit time leaving the control volume due to outgoing fluid 

"

which is written as:

Nota: , mass flow ; the term  has dimensions of power (enthalpy flow rate), we 

have incoming power  and outgoing power .

1.) Perfectly-stirred tank

We may assume , getting a model:
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Normalised representation:

 state equation ,  

 output .

2.) Imperfect stirring, assuming linear temperature profile

if the "mean" temperature is , solving for  we get: 

The model in such a case has twice as fast the transport dynamics:

Normalised representation:

 state equation:

 output equation:

3) More general Imperfect stirring (or absence thereof): exponential profile
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The equilibrium solution to the one-dimensional PDE associated to a tubular heat exchanger with 

constant environment's temperature is .

If we assume , we have , , con lo que

syms ti to a b el real
M=[ti==a+b; to==a*el+b]

M = 

solve(M,{a,b})

ans = struct with fields:
    a: -(ti - to)/(el - 1)
    b: -(to - el*ti)/(el - 1)

These are the expressions, thus, for A and B:

,     

Let us define the mean temperature ; stored energy (no phase changes, zero at 

outside temperature) is . 

Indeed , hence,  .

Carrying out the integral, we have:

Remark: as a particular case, with no heating Q and assuming heat exchanger is in steady-state, then 

 (recall that outside temperature is set to zero in our reference system), so  and 

 is the so-called  LMTD (Logarithmic mean temperature difference), . 

The LMTD plays a KEY role in many (stationary) heat-exchanger calculations.
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Common denominator gives:

And, with some operations, we can realise that coefficients for each temperature add one:

so the mean temperature is an interpolation of the inlet and outlet ones, being the interpolation 

weight . Different values for  yield:

lamLr=logspace(-2,3,80);
explamL=exp(-lamLr);
beta=(lamLr-1+explamL)./(lamLr.*(1-explamL));
semilogx(lamLr,[1-beta; beta],LineWidth=2), grid on, legend("T_{in}","T_{out}",Location="best")
ylabel('Interpolation Coefficients (\beta, 1-\beta)')
title("Interpolation between inlet/outlet temperature to compute average one"), xlabel("steady-state exponential coeff. \lambda L")

Limits
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 when  we get: , 

 when , we set 

So taking limits, we can get:

, i.e.,  .

Power balance in 1st-order model:

In the case , with , we removed the "bar" notation in mean 

temperature, for notational simplicity.

Solving for temperature at exit side: 

 This will be the state equation, with a slightly faster transport-related dynamics than that of the 

perfect mixing:

 This is the new output equation:

*Note that if  is set up to "preserve stationary regime" it will be a function of physical parameters 

(heat conductivity, dimensions) as well as the input flow and resistor heat.

Of course, in a generic simulation with varying Q, F,  such optimal  would change with time... 

unless we assume som operating point so all are close to some nominal values, so we may have an 

idea for  and furthermore, we might wish to linearise the model.
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Linearisation/ Transfer Function

Linearising the product of flow times temperatures around an operating point, we get:

being , negative if mean temperature is higher than the inlet one at the operating 

point (heating on), positive when mean temperature is lower than the input temperature (heat 

exchanger with no internal heating resistor).

Carrying out some algebraic operations on the Laplace transform under zero initial conditions, we 

would get:

Final result is:

Obviously, transient will not be too accurate (it's infinite-order PDE), but, well, the choice of  may 

help fitting the steady-state conditions to that of the PDE. Non-minimum phase components in  are 

reminiscent of Padé approximations of the time delay.

We'll see this in simulations in other materials.
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