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Prediction in nonlinear dynamic systems: extended Kalman filter (discrete time)

Outline

Motivation:
The best prediction formulae, in linear processes, allow obtaining the
minimum-error-variance state estimate x̂ , given a sequence of
measurements y . This estimator (optimal observer) is the Kalman filter,
and it is widely used. However, in many cases, the model’s equations are
nonlinear.

Objectives:
Understand the derivation of the equations of the extended Kalman filter
(linearised around an estimated trajectory).

Contents:
Review of linear Kalman filter. Linealirization around estimated trajectory. Extended
filter. Conclusions.
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Discrete-time linear stochastic processes
Let us consider a discrete-time LTI system given by a state-space
representation:

xk+1 = Axk + Buk + wk

yk = Cxk + vk

with x ∈ Rn, u ∈ Rm, y ∈ Rp, v ∈ Rn, w ∈ Rp being:

1 Vector x is the state vector,

2 Vector y is a measurable output,

3 Vector u is a deterministic input (known),

4 w is a process noise, {v0, v1, . . . , vk}, zero mean and variance W , uncorrelated
with x .

5 v is a measurement noise, {w0,w1, . . . ,wk}, zero mean and variance V ,
uncorrelated with x .
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Linear Kalman filter, propagation of expected value:

Σxk = A ·
variance after measuring yk−1︷ ︸︸ ︷

Σxk−1,posteriori ·AT +W︸ ︷︷ ︸
prediction (variance) before measuring yk

▶ Best linear prediction of xk given yk (+ prediction x̂k−1, Σxk−1,p, recurrent):

x̂k = x̄k + ΣxkykΣyk
−1(yk − ȳk)

= (Ax̂k−1+Buk−1)︸ ︷︷ ︸
prediction (mean)

+ΣxkC
T (CΣxkC

T + V )−1︸ ︷︷ ︸
observer gain, Lk

(yk − C (

x̄k︷ ︸︸ ︷
Ax̂k−1 + Buk−1))︸ ︷︷ ︸

innovation error︸ ︷︷ ︸
correction

*It’s an observer with time-varying gain, depending on the precision of the state
before measuring, i.e., Σxk .
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Linear Kalman Filter, variance update:

▶ A posteriori variance of estimation error (x − x̂) :

Σxk ,posteriori = Σxk − ΣxkykΣ
−1
yk Σ

T
xkyk

= Σxk − ΣxkC
T (CΣxkC

T + V )−1CΣxk︸ ︷︷ ︸
variance reduction by sensor info

*Using Σxk = AΣxk−1,posterioriA
T +W .

Recursive implementation: repeat everything with x̂k , Σxk ,posteriori ,
when next measurement (yk+1) becomes available.

Stationary Kalman filter: After a handful of samples, variance equations and observer gain

converge in LTI case. Many implementations are a stationary filter (Matlab’s dlqe, H2 control).
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Nonlinear processes

Consider a discrete-time system in state-space form given by:

xk+1 = f (xk , uk ,wk)

yk = h(xk , vk)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, v ∈ Rn, w ∈ Rp being:

1 Vector x is the state vector,

2 Vector y is a measurable output,

3 Vector u is a deterministic input (known),

4 w is a process noise, {v0, v1, . . . , vk}, zero mean and variance W , uncorrelated
with x .

5 v is a measurement noise, {w0,w1, . . . ,wk}, zero mean and variance V ,
uncorrelated with x .
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Linearization around estimated trajectory

If xk ≈ x̂k , y wk ≈ 0, then

xk+1 = f (xk , uk ,wk)

≈ f (x̂k , uk , 0)︸ ︷︷ ︸
x̄k+1

+
∂f

∂x

∣∣∣∣
(x̂k ,uk ,0)︸ ︷︷ ︸

A(x̂k ,uk)

· (xk − x̂k)︸ ︷︷ ︸
ek

error after measuring yk

+
∂f

∂w

∣∣∣∣
(x̂k ,uk ,0)︸ ︷︷ ︸

G(x̂k ,uk)

· wk

so, the error “before measuring yk+1”, ϵk+1 := (xk+1 − x̄k+1), will be

ϵk+1 ≈ A(x̂k , uk)︸ ︷︷ ︸
Ak

· ek + G (x̂k , uk)︸ ︷︷ ︸
Gk

wk

and will have a variance given by (approx.):
Σk+1 ≈ Ak · Σk,posteriori · AT

k + Gk ·W · GT
k
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Incorporation of info from new measurement

Regarding output equation, linearising again, if xk+1 ≈ x̄k+1, we will
approximately have:

yk+1 = h(xk+1, vk+1)

≈ h(x̄k+1, 0)︸ ︷︷ ︸
ȳk+1

+
∂h

∂x

∣∣∣∣
(x̄k+1,0)︸ ︷︷ ︸

C(x̄k+1)

· (xk+1 − x̄k+1)︸ ︷︷ ︸
ϵk+1

error before measuring yk+1

+
∂h

∂v

∣∣∣∣
(x̄k+1,0)︸ ︷︷ ︸

R(x̄k+1)

· vk+1

hence, yk+1 − ȳk+1 will be (approx.) ∼ N (0 ,Ck+1Σk+1C
T
k+1 + Rk+1VR

T
k+1)

and its covariance with ϵk+1 will be approximated by Σyk+1ϵk+1
≈ Ck+1Σk+1.
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Summary: EKF algorithm

Start with x̄0, Σ0. Make k = 0, and iterate:

1 Measure yk , update state (correct) with:

x̂k = x̄k + ΣkC
T
k (CT

k ΣkC
T
k + RkVR

T
k )−1 · (yk − h(x̄k , 0))

Σk,posteriori = Σk − ΣkC
T
k (CkΣkC

T
k + RkVR

T
k )−1CΣk

Ck , Rk stand for C(x̄k ), R(x̄k ).

2 Make an open-loop prediction (predict) of next state:

x̄k+1 = f (x̂k , uk , 0)

Σk+1 = Ak · Σk,posteriori · AT
k + Gk ·W · GT

k
Ak , Gk stand for A(x̂k , uk ), G(x̂k , uk ).

3 k = k + 1, go to step 1.
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Conclusions

A non-linear discrete-time process may be approximated by its
linearization around the estimated state trajectory.

The linearised model allows setting up an approximation of stochastic
mean, variance and covariance equations.

The approximations with Ak ,Gk ,Ck ,Rk replace the “constant”
(A,G,C,R) in non-stationary Kalman filter equations.
*Stationary Kalman filter (dlqe) is meaningless in a nonlinear case (well, a time-varying approximation of it).

The resulting expressions are called extended Kalman filter. There
are reasonably accurate for “smooth” nonlinearities (plus small Hessian,
. . . ) and initial estimates close to the “true” process state.

Warning: With initial estimate far from the true state and/or abruptly
changing nonlinearities, EKF may be far from optimal, or even unstable.
*There are alternative options (unscented, particle) trying to solve some of the EKF drawbacks.
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