Prediction in nonlinear dynamic systems: extended Kalman filter (discrete time)

Antonio Sala

Lecture Notes on Multivariable Control Systems

Dept. Ing. Sistemas y Automatica (DISA)
Universitat Politècnica de València (UPV)

Video-presentación disponible en:

Outline

Motivation:

The best prediction formulae, in linear processes, allow obtaining the minimum-error-variance state estimate \hat{x} , given a sequence of measurements y. This estimator (optimal observer) is the **Kalman filter**, and it is widely used. However, in many cases, the model's equations are **nonlinear**.

Objectives:

Understand the derivation of the equations of the extended Kalman filter (linearised around an estimated trajectory).

Contents:

Review of linear Kalman filter. Linealirization around estimated trajectory. Extended RSHA filter. Conclusions.

Discrete-time linear stochastic processes

Let us consider a discrete-time LTI system given by a state-space representation:

$$x_{k+1} = Ax_k + Bu_k + w_k$$
$$y_k = Cx_k + v_k$$

with $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$, $v \in \mathbb{R}^n$, $w \in \mathbb{R}^p$ being:

- Vector x is the state vector,
- 2 Vector y is a measurable output,
- Vector u is a deterministic input (known),
- w is a **process** noise, $\{v_0, v_1, \dots, v_k\}$, zero mean and variance W, uncorrelated with x.
- **5** v is a **measurement** noise, $\{w_0, w_1, \ldots, w_k\}$, zero mean and variance V, uncorrelated with x.

Linear Kalman filter, propagation of expected value:

$$\sum_{x_k} = A \cdot \sum_{x_{k-1}, posteriori}^{\text{variance after measuring } y_{k-1}} \cdot A^T + W$$
prediction (variance) before measuring y_k

▶ Best linear prediction of x_k given y_k (+ prediction \hat{x}_{k-1} , $\sum_{x_{k-1},p}$, recurrent):

$$\hat{x}_k = \bar{x}_k + \sum_{x_k y_k} \sum_{y_k}^{-1} (y_k - \bar{y}_k)$$

$$=\underbrace{(A\hat{x}_{k-1}+Bu_{k-1})}_{\text{prediction (mean)}} + \underbrace{\sum_{x_k} C^T (C\sum_{x_k} C^T + V)^{-1}}_{\text{observer gain, } L_k} \underbrace{(y_k - C(A\hat{x}_{k-1} + Bu_{k-1}))}_{\text{innovation error}}$$

correction

*It's an **observer** with time-varying gain, depending on the precision of the state IMERSITAT before measuring, i.e., Σ_{x_k} .

Linear Kalman Filter, variance update:

A posteriori variance of estimation error $(x - \hat{x})$:

$$\begin{split} \left[\Sigma_{x_k,posteriori} \right] &= \Sigma_{x_k} - \Sigma_{x_k y_k} \Sigma_{y_k}^{-1} \Sigma_{x_k y_k}^T \\ &= \left[\Sigma_{x_k} - \underbrace{\sum_{x_k} C^T (C \Sigma_{x_k} C^T + V)^{-1} C \Sigma_{x_k}}_{\text{variance reduction by sensor info}} \right] \end{split}$$

*Using
$$\Sigma_{x_k} = A\Sigma_{x_{k-1}, posteriori} A^T + W$$
.

Recursive implementation: repeat everything with \hat{x}_k , $\sum_{x_k,posteriori}$, when next measurement (y_{k+1}) becomes available.

Stationary Kalman filter: After a handful of samples, variance equations and observer gain converge in LTI case. Many implementations are a stationary filter (Matlab's dlqe, \mathcal{H}_2 control).

Nonlinear processes

Consider a discrete-time system in state-space form given by:

$$x_{k+1} = f(x_k, u_k, w_k)$$
$$y_k = h(x_k, v_k)$$

with $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$, $v \in \mathbb{R}^n$, $w \in \mathbb{R}^p$ being:

- Vector x is the state vector.
- 2 Vector y is a measurable output,
- 3 Vector u is a deterministic input (known),
- w is a process noise, $\{v_0, v_1, \ldots, v_k\}$, zero mean and variance W, uncorrelated with x.
- **5** v is a **measurement** noise, $\{w_0, w_1, \dots, w_k\}$, zero mean and variance V, uncorrelated with x.

Linearization around estimated trajectory

If $x_k \approx \hat{x}_k$, y $w_k \approx 0$, then

$$x_{k+1} = f(x_k, u_k, w_k)$$

$$\approx \underbrace{f(\hat{x}_k, u_k, 0)}_{\bar{x}_{k+1}} + \underbrace{\frac{\partial f}{\partial x}\Big|_{(\hat{x}_k, u_k, 0)}}_{A(\hat{x}_k, u_k)} \cdot \underbrace{(x_k - \hat{x}_k)}_{e_k} + \underbrace{\frac{\partial f}{\partial w}\Big|_{(\hat{x}_k, u_k, 0)}}_{G(\hat{x}_k, u_k)} \cdot w_k$$
error after measuring v_k

so, the error "before measuring y_{k+1} ", $\epsilon_{k+1} := (x_{k+1} - \bar{x}_{k+1})$, will be

$$\epsilon_{k+1} pprox \underbrace{A(\hat{x}_k, u_k)}_{A_k} \cdot e_k + \underbrace{G(\hat{x}_k, u_k)}_{G_k} w_k$$

and will have a variance given by (approx.):

$$\Sigma_{k+1} \approx A_k \cdot \Sigma_{k,posteriori} \cdot A_k^T + G_k \cdot W \cdot G_k^T$$

Incorporation of info from new measurement

Regarding output equation, linearising again, if $x_{k+1} \approx \bar{x}_{k+1}$, we will approximately have:

$$y_{k+1} = h(x_{k+1}, v_{k+1})$$

$$\approx \underbrace{h(\bar{x}_{k+1}, 0)}_{\bar{y}_{k+1}} + \underbrace{\frac{\partial h}{\partial x}\Big|_{(\bar{x}_{k+1}, 0)}}_{C(\bar{x}_{k+1})} \cdot \underbrace{(x_{k+1} - \bar{x}_{k+1})}_{\epsilon_{k+1}} + \underbrace{\frac{\partial h}{\partial v}\Big|_{(\bar{x}_{k+1}, 0)}}_{R(\bar{x}_{k+1})} \cdot v_{k+1}$$
error before measuring v_{k+1}

hence, $y_{k+1} - \bar{y}_{k+1}$ will be (approx.) $\sim \mathcal{N}(0, C_{k+1} \Sigma_{k+1} C_{k+1}^T + R_{k+1} V R_{k+1}^T)$ and its covariance with ϵ_{k+1} will be approximated by $\Sigma_{y_{k+1}\epsilon_{k+1}} \approx C_{k+1} \Sigma_{k+1}$.

Summary: EKF algorithm

Start with \bar{x}_0 , Σ_0 . Make k=0, and iterate:

• Measure y_k , update state (correct) with:

Make an open-loop prediction (predict) of next state:

$$\bar{x}_{k+1} = f(\hat{x}_k, u_k, 0)$$

$$\Sigma_{k+1} = A_k \cdot \Sigma_{k, posteriori} \cdot A_k^T + G_k \cdot W \cdot G_k^T$$

3 k = k + 1, go to step 1.

 A_k , G_k stand for $A(\hat{x}_k, u_k)$, $G(\hat{x}_k, u_k)$.

Conclusions

- A non-linear discrete-time process may be approximated by its linearization around the estimated state trajectory.
- The linearised model allows setting up an approximation of stochastic mean, variance and covariance equations.
- The approximations with A_k, G_k, C_k, R_k replace the "constant" (A,G,C,R) in non-stationary Kalman filter equations.
 *Stationary Kalman filter (dlge) is meaningless in a nonlinear case (well, a time-varying approximation of it).
- The resulting expressions are called **extended** Kalman filter. There are reasonably accurate for "smooth" nonlinearities (plus small Hessian, ...) and initial estimates close to the "true" process state.
 - Warning: With initial estimate far from the true state and/or abruptly changing nonlinearities, EKF may be far from optimal, or even unstable.

 *There are alternative options (unscented, particle) trying to solve some of the EKF drawbacks.