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Motivation:

The best prediction formulae, in linear processes, allow obtaining the
minimume-error-variance state estimate X, given a sequence of
measurements y. This estimator (optimal observer) is the Kalman filter,
and it is widely used. However, in many cases, the model’s equations are
nonlinear.

Objectives:
Understand the derivation of the equations of the extended Kalman filter
(linearised around an estimated trajectory).

Contents:
Review of linear Kalman filter. Linealirization around estimated trajectory. Extended

filter. Conclusions.
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Discrete-time linear stochastic processes

Let us consider a discrete-time LTI system given by a state-space

representation:
P Xk+1 = Axx + Buy + wy

Yk = Cxx + vk
with x e R”, u e R™, y € RP, v € R", w € RP being:
@ Vector x is the state vector,
@ Vector y is a measurable output,

© Vector u is a deterministic input (known),

© w is a process noise, {vo, vi,..., vk}, zero mean and variance W, uncorrelated
with x.
@ v is a measurement noise, {wy, wi, ..., wx}, zero mean and variance V,

uncorrelated with x.
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Linear Kalman filter, propagation of expected value:

variance after measuring yx_1
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*It's an observer with time-varying gain, depending on the precision of the state
before measuring, i.e., X, .
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Linear Kalman Filter, variance update:

» A posteriori variance of estimation error (x — X) :

_ —15 T
] = > — T m

*USing Zxk - Azxk,l,posterioriAT + W.

Recursive implementation: repeat everything with X, >, ,osteriori
when next measurement (yx.1) becomes available.

Stationary Kalman filter: After a handful of samples, variance equations and observer gain

converge in LTI case. Many implementations are a stationary filter (Matlab's d1ge, H» control).
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Nonlinear processes

Consider a discrete-time system in state-space form given by:
X1 = F(Xk, Uk, wk)
Yk = h(xk, vi)
with x e R", u € R™, y € RP, v € R", w € RP being:
@ Vector x is the state vector,
@ Vector y is a measurable output,

© Vector u is a deterministic input (known),

@ w is a process noise, {vg, v1,..., vk}, zero mean and variance W/, uncorrelated
with x.
© v is a measurement noise, {wp, w1, ..., wx}, zero mean and variance V,

uncorrelated with x.
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Linearization around estimated trajectory
If xx =~ Xk, y wie = 0, then

Xk+1 = f(Xk, Uy, Wk)

N of ~ of
~ (R, Uk, 0) + N ) R © Wi
— gy W |(5, u,.0)
Xk+1 A/_/ ek A,—/
AR, k) G (R, ux)

error after measuring yx

so, the error “before measuring yx+1", €xs1 = (Xkr1 — Xk+1), will be
€kt1 N A()?k, uk) - e+ G()?k, Uk)Wk
—— ——
Ak Gy

and will have a variance given by (approx.):
Zk-i-l ~ Ak : Zk,posteriori : AZ— + Gk - W GkT
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Incorporation of info from new measurement

Regarding output equation, linearising again, if xx11 ~ X1, we will
approximately have:

Vi1 = h(Xki1, Vir1)

_ Oh _ Oh
~ h(Xk4+1,0) + Ix (kg1 — Xky1)  + E © V41
" Xl(xg0) T V' (3%:+1,0)
Yk+1 N—_—— €kl N—_——
C(Xk+1) R(Xk+1)

error before measuring yy+1

hence, Vk+1 — Vk+1 Will be (approx.) ~ N(O, Crr1X k1 C,Z:H + Rit1 VR,Z_+1)
and its covariance with €, 1 will be approximated by 3>, ¢, ~ Cip1X 41,
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Summary: EKF algorithm
Start with xg, X9. Make kK = 0, and iterate:
@ Measure yi, update state (correct) with:

%=X+ Zu Q) (GL kG + RVR) ™+ (i — h(%,0))
Zk,Posteriori - Zk - ZkaT(CkszkT + Rk VRl;r)ilczk

Cy, Rk stand for C(X,), R(Xx)-
@ Make an open-loop prediction (predict) of next state:

)_<k—|—1 = f()?k, uy, 0)
Zk—l-l = Ax- Zk,posteriori : AZ— + G- W- G;;r

Ak, Gy stand for A(Xy, ug), G(Rg, ug).

Q@ k=k+1, gotostep 1.
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Conclusions

@ A non-linear discrete-time process may be approximated by its
linearization around the estimated state trajectory.

@ The linearised model allows setting up an approximation of stochastic
mean, variance and covariance equations.

@ The approximations with Ay, Gk, Cx, Ry replace the “constant”
(A,G,C,R) in non-stationary Kalman filter equations.

*Stationary Kalman filter (d1qge) is meaningless in a nonlinear case (well, a time-varying approximation of it).

@ The resulting expressions are called extended Kalman filter. There
are reasonably accurate for “smooth” nonlinearities (plus small Hessian,
...) and initial estimates close to the “true” process state.

e Warning: With initial estimate far from the true state and/or abruptly

changing nonlinearities, EKF may be far from optimal, or even unstable.
*There are alternative options (unscented, particle) trying to solve some of the EKF drawbacks
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