Control por modelo interno (Internal Model Control, IMC): Metodología de diseño

Antonio Sala

Al²-DISA-UPV

Video-presentación disponible en:

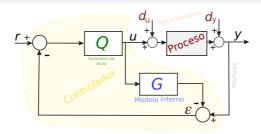
http://personales.upv.es/asala/YT/V/imcfm.html

Presentación

Motivación:

El control por modelo interno es un diagrama de bloques donde todas las funciones de transferencia de bucle cerrado dependen de forma "sencilla" (afín) de un parámetro Q que sólo requiere ser estable.

Objetivos:


Comprender cómo esa expresión sencilla de la salida en función de Q permite establecer reglas fáciles de diseño (caso G estable y fase mínima).

Contenidos:

[2]

Revisión fórmulas IMC. Metodología. Selección de modelo de referencia. Ejemplo. Conclusiones.

Revisión fórmulas IMC

$$y = GQr + (I - GQ)Gd_u + (I - GQ)d_y$$
 $u = Qr - Q(Gd_u + d_y)$

- Para seguimiento de referencias, y = Tr, T = GQ.
- Para regulación (rechazo de perturbaciones), el efecto en bucle abierto ($Gd_u + d_v$) se multiplica por S = 1 T (sensibilidad);
- a las frecuencias en las que $T \approx 1$, $S \approx 0$: se seguirán bien las referencias y se cancelarán bien las perturbaciones.

[3]

Metodología de diseño

Dado que:

- y = GQr para seguimiento de referencias,
- $y = (I GQ) \cdot (efecto pert. B.A.)$

el IMC se plantea como objetivo $QG \approx 1$, esto es $Q \approx G^{-1}$. ¡Resulta una regla muy sencilla!

Problemas:

- \bullet G^{-1} no es realizable (sube y sube a alta frecuencia).
- \circ G^{-1} será no causal (anticipativo) si G tiene retardos.

Selección de modelo de referencia

Con $Q = G^{-1}M$, se tiene $y = Mr + (I - M)(Gd_u + d_y)$, de modo que M se interpreta como un **modelo de referencia** deseado. Si G no tiene retardo ni elementos de fase no mínima G^{-1} es estable pero su respuesta en frecuencia tiende a infinito (en la mayoría de casos) cuando la frecuencia crece. Entonces:

- M debe ser paso-bajo para que $Q = G^{-1}M$ sea realizable.
- y = Mr debe tener una respuesta escalón "satisfactoria":
 - ganancia estática cercana a 1 (error de posición pequeño), o igual a 1 (error posición cero).
 - Dinámica suficientemente rápida
- La respuesta temporal ante perturbaciones de salida $y = (I M) \cdot \delta_y$ o de entrada $y = (I M)G \cdot \delta_u$ debe también ser satisfactoria.

Diseño de M: caso G fase mínima, sin retardo

La propuesta más usual es elegir $M=rac{1}{(au_Ms+1)^
u}$, siendo $u\geq ext{grado relativo}$ (grado denominador-grado numerador) de G.

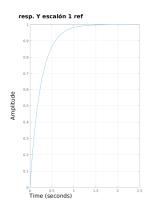
Entonces $y = Mr = \frac{1}{(\tau_{MS}+1)^{\nu}}r$ (respuesta ante referencia no oscilatoria, constante de tiempo τ_M como parámetro de diseño), $u = Qr = G^{-1} \frac{1}{(\tau_M s + 1)^{\nu}} r$:

- τ_M debe ser suficientemente pequeño (deseamos bucle rápido),
- τ_M no puede ser "demasiado" pequeño: step(Q) o bodemag(Q) es la resp. temporal/frecuencial de la acción de control ante cambios de ref., que no debería saturar ni amplificar demasiado la alta frecuencia -por robustez/durabilidad del actuador-

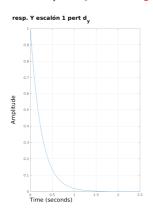
Ejemplo

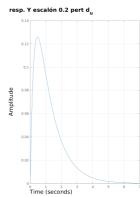
Sea el proceso $G(s) = \frac{4}{s+1}$. El objetivo es acelerarlo sin saturar actuador, mediante IMC. El actuador satura en ± 1 .

Podemos comprobar que, con $M=\frac{1}{0.25s+1}=\frac{4}{s+4}$ tenemos $Q=G^{-1}M=\frac{(s+1)}{(s+4)}$, que es estable y realizable (Matlab: Q=inv(G)*M).

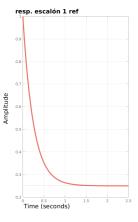

Usando la equivalencia IMC \leftrightarrow control convencional, podemos despejar el controlador equivalente (Matlab: K=minreal(feedback(Q,G,+1))):

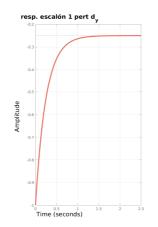
$$K = \frac{Q}{I - QG} = \frac{s+1}{s} = 1 + \frac{1}{s}$$

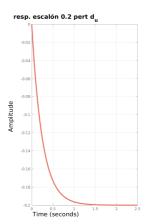

Que resulta un PI, diseñado mediante IMC, si optamos por la versión implícita (aconsejable, dado que el resultado es un controlador proporcional-integral clásico).


Respuesta temporal (variable controlada y)

La respuesta ante referencia (escalón 1), perturb. salida (escalón 1) y perturb. entrada (escalón 0.2) de y es step(M,1-M,(1-M)*G*0.2):


© 2023 A. Sala





Respuesta temporal (variable manipulada u)

La respuesta ante referencia (escalón 1), perturb. salida (escalón 1) y perturb. entrada (escalón 0.2) de u es step(Q,-Q,-Q*G*0.2):

KSTIAT ECNICA LÈNCIA

Conclusiones

- El diagrama de bloques con modelo interno (IMC) responde a la idea intuitiva de que, formalmente, la realimentación debe manejar las diferencias entre la "simulación" y la "medida". Sólo funciona con procesos estables (si son inestables, esa diferencia tiende a infinito).
- El diseño ante ref. es idéntico en bucle abierto y bucle cerrado y = GQr. Está basado en la inversa del modelo G.
- Se suele hacer $Q = G^{-1}M$, siendo M el modelo deseado y = Mr.
- Para que Q sea estable, causal, y realizable, M no puede ser arbitrario: si G es de fase mínima, $M = \frac{1}{(\tau_M s + 1)^{\nu}}$ suele ser una buena/sencilla elección, con ν y τ_M como parámetros de diseño.