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Presentation in video: http://personales.upv.es/asala/YT/V/tiger3EN.html

The code executed in Matlab R2023b

Objectives: Illustrate some issues on conditional, joint, marginal probabilities and Bayes formulae in the case 

study "Tiger behind two doors" where noisy measurements about tiger location need to be accumulated to 

improve chances of survival (correctly assessing where the tiger is before "acting" opening a door). 

Deciding the action to take will NOT be considered in this material, just dealing with updating the "belief" on 

tiger's location as observations are gathered.
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Problem statement
A zoo keeper cleans the tiger attraction and, when finishing, he must decide which door to open to get out 

without being eaten by the tiger.

Tiger lies either left or right when central gate is closed, and roaring is heard either at the left or right doors... 

We'll assume "binary" setup:

Measurements (also denoted as "observations") are binary: hear_left (1 HL), hear_right (2 HR).

Tiger "states" are binary: tiger_left (1 TL), tiger_right(2 TR).
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hear_L=1;  hear_R=2; %numbers indicate position on a list, variables are 
cathegorical and cannot be ordered/quantified.
tiger_L=1; tiger_R=2; %numbers indicate position on a list, variables are 
cathegorical and cannot be ordered/quantified.

Case 0: Central gate closes and I hear just ONE roar.
We'll define PM(m,s) is the probability of measuring "m" when state is "s". So, it is a CONDITIONAL probability 

table:

PM= [    ;

  ] 

Rows represent "observations", columns represent tiger location "states".

COLUMNS must add 1. PM does not need to be symmetric.

%PM=[.99 .9;.01 .1]; %non symmetric... different measurement noise at each 
state... most times I hear "left" even if it is "right".
PM=[.8 .1;.2 .9];
%PM=[.65 .35;.35 .65];
%PM=[.55 .001;.45 .999];
PM

PM = 2×2
    0.8000    0.1000
    0.2000    0.9000

Note that this is a table of conditional probabilities, not a "joint" probability distribution.

It will be our "model of the tiger world" and we will do "statistical inference" from it (estimate where the tiger is, 

decide which door to open, decide how many roars to hear until we are "safe enough" to open the door -- that 

depends on fear that you have, which is modeled with additional utility/cost functions--)...

Joint versus conditional probability table
We started with a CONDITIONAL probability table.

PM= [    ;

  ] ;

The "JOINT" probability table is the probability table of the 4 possible "individual" events... Considered as "a 

random variable that can take 4 values":

[ (HL TL),   (HL TR),   (HR TL),   (HR TR) ]
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Considered as a "two-dimensional random variable", we can put them in a 2x2 table, with probabilities that we 

will denote:

PJOINT= [ p(HL,TL)   p(HL, TR) ;

p(HR,TL)   p(HR,TR) ];

We changed notation with "and" connective ( ) to 2D pairs (a,b)... but it's basically the same.

But at this moment we CANNOT write down the above joint probability table: ONE PIECE OF DATA IS 

MISSING.

Conditional probability is defined as , i.e.:  .

We must then know the value of ,  ... obviously they add one so we just need to know  and 

we'll have .

Once b is available, the joint probability table reads:

PJOINT= [    ;

  ] ;

b=0.60; % b=0.5 would the the most "uncertain" non-informative prior.
PJOINT=[PM(:,1)*(1-b) PM(:,2)*b]

PJOINT = 2×2
    0.3200    0.0600
    0.0800    0.5400

sum(sum(PJOINT)) %adds 1, it's a "probability measure" on this four-thing 
set.

ans = 1.0000

PM %conditional, to have it seen 

PM = 2×2
    0.8000    0.1000
    0.2000    0.9000

Interpretation of : It is the probability of a certain measurement (observation) and of a certain place 

where the tiger is... considering both as random variables... "rolling the dice at the same time"...

But can that probability be interpreted as "percentage of times the event occurs if it is repeated many times"?

 YES and NO:

-- If repeating means that "the intermediate passage door is opened and a long time elapses (the tiger switchs 

sides if he wants), and the roar is heard only once" then YES;
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-- If repeating means "close the intermediate passage door so that the tiger is always on one side and wait until 

you hear 10 roars" then NO. In that situation (or if I open the gate but allow "very little time" to elapse before 

closing again), the probability that the tiger is on a certain side depends on where it was "a minute before"... 

and "past roars" give me information about where it could be in the past that can be extrapolated to "now". Then 

  and  require a different interpretation/usage.

Belief
Belief b is my "prior" probability of tiger_right. Of course, prior probability of tiger_left will be .

syms b real

Probability of observations (MARGINAL)

PJOINT

PJOINT = 2×2
    0.3200    0.0600
    0.0800    0.5400

marg_TLTR=sum(PJOINT) %sum of COLUMS, TIGERLOCATION marginal

marg_TLTR = 1×2
    0.4000    0.6000

marg_HLHR=sum(PJOINT,2) %sum of ROWS, HEAR marginal

marg_HLHR = 2×1
    0.3800
    0.6200

If we symbollically compute the marginals, for later use:

prob_hearL(b) = PM(hear_L,tiger_R)*b + PM(hear_L,tiger_L)*(1-b);
vpa(prob_hearL)

ans(b) = 

prob_hearR(b) = PM(hear_R,tiger_R)*b + PM(hear_R,tiger_L)*(1-b);
vpa(prob_hearR)

ans(b) = 

In matrix notation, the marginal is "conditional probability matrix" times "vector of prior probabilities":

vpa(  PM*[(1-b); b]  , 4)

ans = 

fplot([prob_hearL;prob_hearR],[0 1],LineWidth=3), grid on, ylim([0 1])
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legend("p(Hear Left)","p(Hear Right)") %OJO interpretacion, b no es 
"evento"...
xlabel("belief b :=  p(Tiger Right)"), title("Marginal hearleft, hearright 
probabilities")

Recovering conditionals from joint and marginal probabilities:

PJOINT %repeat it for convenience

PJOINT = 2×2
    0.3200    0.0600
    0.0800    0.5400

CondHearGivenTiger=PJOINT./marg_TLTR

CondHearGivenTiger = 2×2
    0.8000    0.1000
    0.2000    0.9000

sum(CondHearGivenTiger) %columns add 1

ans = 1×2
    1.0000    1.0000

The result is no surprise, because those were the initial data.

The other conditional can also be computed... which is its meaning?:

CondTigerGivenHear=PJOINT./marg_HLHR

CondTigerGivenHear = 2×2
    0.8421    0.1579
    0.1290    0.8710

sum(CondTigerGivenHear,2) %rows add 1
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ans = 2×1
    1.0000
    1.0000

The conditional probability "p(<tiger side> | observation)" makes mathematical sense (it fulfills the definitions), 

but (at first glance) not "conceptual" sense in the tiger problem. Observation is the "effect" and the tiger is the 

"cause" (condition)... the tiger stays in one side and then the roar is heard depending on the side the tiger is, 

and not the other way around: stating that "you hear the noise and the tiger decides where it goes based on 

noise" has no "physical sense"...

But the formula IS INDEED CORRECT, and it is the basis of Bayesian inference... Although the "causal chain" is 

in the other direction (first tiger decides side, gate closes, and then roars), the joint probability is what it is, and 

I can "compute probabilities of where is the tiger after hearing a roar to the left"... we call that "estimation" as "a 

posteriori probability" or "belief". That is the KEY idea of the "Bayes formula"...

Posterior belief update: Bayes rule
If I measure hear_left,

in terms of conditional tables:

bnext_ifHL(b) = PM(hear_L,tiger_R)*b/
(PM(hear_L,tiger_R)*b+PM(hear_L,tiger_L)*(1-b));
vpa(bnext_ifHL)

ans(b) = 

bnext_ifHL(b) = PM(hear_L,tiger_R)*b/prob_hearL(b);
vpa(bnext_ifHL)

ans(b) = 

If I measure hear_right,
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bnext_ifHR(b) = PM(hear_R,tiger_R)*b / prob_hearR(b);
vpa(bnext_ifHR)

ans(b) = 

Examples:  

1.) Uninformative prior .

eval(bnext_ifHL(0.5))

ans = 0.1111

eval(bnext_ifHR(0.5))

ans = 0.8182

2.) Almost sure that tiger was at the right side:

eval(bnext_ifHL(0.98))

ans = 0.8596

eval(bnext_ifHR(0.98))

ans = 0.9955

3.) Almost sure that tiger was at the left side:

eval(bnext_ifHL(0.002))

ans = 2.5044e-04

eval(bnext_ifHR(0.002))

ans = 0.0089

4.) "Fully certain" That tiger is at left side:

eval(bnext_ifHL(0))

ans = 0

eval(bnext_ifHR(0))

ans = 0

Graphical representation:

From a prior belief and an observation I get a posterior belief.

fplot([bnext_ifHL;bnext_ifHR],[0 1],LineWidth=2.5), grid on
hold on, fplot(b,[0 1],'-.',LineWidth=1), hold off
xlabel('b (Prob. right)'), ylabel('b+')
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legend("New belief if HearLeft","New belief if 
HearRight",'identity',Location="best")

There is no "fixed" point where belief new will be equal to old except total belief on right (b=1) or left (b=0). If I 

am "100% sure" of something, experimenting will not provide any new information.
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