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This script worked with Matlab R2021b

*Code, comments and related materials in description

Video-presentation: http://personales.upv.es/asala/YT/V/derivsmlEN.html 

Objectives: illustrating with a Matlab Symbolic Toolbox example how to operate with partial derivatives, chain 

rule and total derivatives.
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Preliminaries: functions we will work with
Let us define a couple of ordinary "numeric" functions in Matlab as:

f=@(x) [x(1)*x(2); ...
        1-x(1)^2; ...
        sin(x(2))/(1+x(2)^2)] %input is a vector with 2 elements

f = function_handle with value:

    @(x)[x(1)*x(2);1-x(1)^2;sin(x(2))/(1+x(2)^2)]

g=@(y) [cos(y(1)); ...
        sin(y(1)+y(2))] %input is a vector with 2 elements

g = function_handle with value:

    @(y)[cos(y(1));sin(y(1)+y(2))]

f maps , and g maps 

f([2;2])

ans = 3×1
    4.0000
   -3.0000
    0.1819

g([3;-1])
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ans = 2×1
   -0.9900
    0.9093

Arguments of f and g are numerical vectors, or any "object" that can be multiplied, divided, added and has sine 

and cosine functions defined upon.

As ordinary "plain code" in a given programming language, does not admit "derivatives" (well, they can be done 

numerically --approximately-- or with so called "automatic differentiation" code, but that's not in the scope of 

this material), then we will create their symbolic toolbox equivalents, by letting the functions be evaluated with 

"symbolic" arguments:

syms x1 x2 y1 y2 real
f_sym=f([x1;x2]) %now, f is a symbolic expression

f_sym = 

g_sym=g([y1;y2])

g_sym = 

Partial derivatives and jacobian matrix (symbolic toolbox)
The partial derivatives of each component of f with respect to, say,  can be computed one by one as, say:

diff(f_sym(3),x2)

ans = 

The command "diff" actually evaluates derivatives of each element of its first input with respect to the second 

one:

diff(f_sym,x1)

ans = 

But arranging all of them in a matrix (called Jacobian matrix, being a  matrix) yields
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[diff(f_sym,x1) diff(f_sym,x2)]

ans = 

which, actually can be computed with:

jac_f=jacobian(f_sym)

jac_f = 

Same for g, of course (Jacobian is now a  matrix):

jac_g=jacobian(g_sym)

jac_g = 

Note: the order of the variables (each is associated to a given column) is alphabetic, capital letters first, and the 

command differentiates with respect to ALL symbolic variables.

If we wished a different ordering, we need to explicitly tell Matlab:

jac_g_reordered=jacobian(g_sym,[y2 y1]) %colums are now swapped

jac_g_reordered = 

The "jacobian" command does not take derivatives of other variables apart from the ones in its second 

argument. This is helpful to, say, avoid derivatives with respect to "constants" such as mass, etc. in our 

equations. Thus, using the second argument of "jacobian" is perhaps advisable to make things clearer for you 

and your readers, when lots of symbols appear in your expressions.

Composite function and (multivariable) chain rule
Let us now consider , i.e., the symbolic expression:

z=f(g([y1;y2]))
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z = 

Then, z maps , and its Jacobian is a  matrix

jac_z=simplify(jacobian(z))

jac_z = 

However, multivariable chain rule says that this Jacobian (obtained "directly", after substitution) coincides with 

the product of the Jacobian matrices of f and g:

chainrule_tmp = jacobian(f_sym)*jacobian(g_sym) % Warning: not yet correct, we need to substitute x=g(y)!

chainrule_tmp = 

chainrule_finalform = simplify(subs(chainrule_tmp, {'x1','x2'}, {g_sym(1),g_sym(2)}))

chainrule_finalform = 
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simplify(chainrule_finalform-jac_z)

ans = 

Note: beware of variable ordering... if the symbolic inputs to f were named "(Bob,Alice)", then Jacobian 

would have derivatives with respect to "(Alice, Bob)" so the product above would mess up and provide an 

incorrect answer. If you are in doubt, you are advised to put the variables explicitly jacobian(f_sym,[x1 
x2])*jacobian(g_sym,[y1 y2]).

Summary: "chain rule" for composition of functions says that "substitution first, derivatives later" (i.e., the 

obvious direct way) gets the same result as "derivatives first, product of jacobians, substitution last".

Total derivatives
This is a naming popular in physics. Let us imagine that the actual inputs y to g are functions of "time" t. Then

syms t real
y1_t=-t; y2_t=t^2; %y1 and y2 are no longer arbitrary symbolic variables.
y_t=[y1_t; y2_t]

y_t = 

dydt=diff(y_t) %Vector of "velocities"

dydt = 

Let us now define a function which depends on time both "implicitly" (via  if they were functions of time, as 

they actually are now), and "explicitly":
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q_yt=g([y1;y2])+[t;-t]

q_yt = 

Hence, once the actual trajectory is substituted above (instead of arbitrary symbols  and ), 

results in:

q_t=g([y1_t;y2_t])+[t;-t]

q_t = 

Our goal is obtaining the velocities (time derivatives) of . In this case "total" and "partial" derivatives are the 

same (well, maybe even the terminology is meaningless or at the least misleading), as q depends only on time.

Hence, trivially, the time derivatives of q are:

the_speed_of_q=diff(q_t)

the_speed_of_q = 

Computation of derivatives of q via chain rule

Now, "the_speed_of_q" above is called "total" derivative, but chain rule gets only "partial" derivatives.

Partial derivatives of  q_yt (a function of , , and t) are:

symvar(q_yt) %note that variables are ordered alphabetically, this will be the ordering in "jacobian" command

ans = 

jac_q_yt=jacobian(q_yt,[y1 y2 t]) %let us operate in a different order of variables, to let "explicit" time be the last one

jac_q_yt = 

So, in order to compute the total derivative "the_speed_of_q"  we must apply chain rule in the two first 

columns, as above:

dqdt_tmp=jacobian(q_yt,[y1 y2])*dydt + diff(q_yt,t) %not yet correct, we need to substitute y1(t) and y2(t)

dqdt_tmp = 
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Note that jacobian(q_yt,[y1 y2]) only evaluates partial derivatives with respect to the variables in its 

second argument... it depends on a third symbol (t) but it skips it.

So when we evaluate the above dqdt_tmp replacing y1 and y2 (coming from the Jacobian evaluation) with the 

actual trajectory, we get:

dqdt_substitutionmade=subs(dqdt_tmp, {'y1','y2'}, {y1_t,y2_t})

dqdt_substitutionmade = 

And the result is, obviously, the same as  "the_speed_of_q" we previously obtained by substitution "before" 

taking derivatives.

simplify(dqdt_substitutionmade-the_speed_of_q)

ans = 

Conclusions
We showed how to manipulate Matlab functions, convert them to symbolic expressions, and verified that chain 

rule works, including in the total/partial derivative case usual in physics jargon.
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