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Outline

Motivation:
Under certain approximations, the dynamics of an aircraft can
approximate to a “point mass” mode called “phugoid”.

Objectives:
Analyze the equilibrium points and the stability of said dynamics.

Contents:
Review of prior concepts. Equilibrium points. Linearization. Stability. Conclusions.
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Longitudinal phugoid mode assumptions

@ Planar (x, y) movement, longitudinal displacement vs. elevation.

@ Negligible effect of Moment of Inertia. The aerodynamics aligns it
“infinitely fast” at a fixed angle « to the airspeed (the plane behaves like

a weathervane).
@ Negligible aircraft length with respect to trajectory curvature radius.

In other words, a 2GL dynamic is assumed, where the angle depends on
the trajectory (x,y), order 4 in positions, order 2 in speeds.

*Formulae from Zhukovski (1891)-Lanchester (1908).

https://en.wikipedia.org/wiki/Nikolay_ Zhukovsky_(scientist)
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Phugoid mode equations (normalized internal repr.)

Replacing Lift = | - v? and Drag = d - v? with expressions that, for
simplicity, we only make dependent on v? (actually, also dependent on the
orientation of the aircraft with respect to airspeed velocity vector, ...), we have:

dv sind d 2+1

— = —gsinf — — - v —u
dt £ m m

d@_ cosﬁ_l_/ ,

dt £ v m

With this state equation, we can now carry out simulations, e.g. with Matlab ode45.

*We will NOT consider the possibility of airspeed-dependen thrust, ie.e., of u(v) in later
linearizations, but it might be relevant in some cases (in particular in propeller engines).

[4]
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Equilibrium conditions

Pitch and airspeed will keep constant if derivatives are zero:

1

- 2
0= —gsinbeq — Ve + - Ueg
cosf /
O — _g—Eq + —_ . Veq
Veq m
Operating;:
mgsinfeg = —d - vezq + Uegq

mg cosleq = +1 - vezq
Two equations, three unknowns: if we fix one variable we can solve for the other two.

[5]
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[1] *glider u = 0, descent trajectory:

—d mg
0., = arctan — V2 = ————  Lift® + Drag? = Weight’
€q / eq d2 _'_ /2 ¢ g ght

[6]
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[1] *glider u = 0, descent trajectory:

—d mg
0., = arctan — V2 = ————  Lift® + Drag? = Weight’
€q / eq d2 _'_ /2 ¢ g ght

[2] Given the desired equilibrium pitch angle:

mg
Veg = 1/ —— COS Oeq

/

_ d
Ueg = MG | sinBeq + J cos Oeq
Level flight: Oy =0, veq = \/mg/l, ueg = mg -d/I.
Flaps: incrementing “I" achieves equilibrium at lower airspeeed. Thrust
depends on whether d/I chanves or not.
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[3] Given thrust, force balance is L? + (u — D)? = m?g?, hence:

+ (Ueq e2q)2 = m2g2
SO

(d° + IP)Va, — 2dueqvl, + (u2, — m*g?) =0

is a biquadratic equation to solve for veq gIven Ueg.
o dugty/(d?+P)m?g?—uZ,
Veq - d2+1?

2 . .
*If mg < u< mgy/1+ (9) there are two positive solutions, and two angles.

V2 +d

*If u > mg ¥~ there are no real solutions, so phugoid does not reach equilibrium.

[7
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Stability: linearized model

*Incremental coords.:

dv 2d - v 1
— =" v — gcosley -0+ —u (1)
dt m m
do | gcosf gsind
B e L )
dt m Vég Veg

We will exploit that 0 = —mg cos eq + /vszq, ie., &2% = # to write the normalised state-space

eq

linear equation in matrix form:

d (v [—2Y _gcoseq) (v L
at\o) =\ +2  qesnta J1p) T (0)"

Veq

This may be either stable or unstable, depending on /, d and vgq.

*Sil>0,d>0, 0 <0 is stable.
(8]
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Particular case: stability of level flight

i v B _2dr'r\,/eq _g v + %
a\o) -\ +2 o)\s) " \0)"

Characteristic equation:
2d 2],
24 g 28
m m

substituting //m = g/v2: 2d 252
“ s24 Sy g2 =0
v,

IF we write it as 52 4+ 2Cwps + wﬁ =0, we get:

_ V2 -1 _ 1 _od: A g
Wn = Y 2(\@gveq = 2dvegm™+, sale ( = mgva — W23 T I3

The natural freq. depends (inverse) on speed, damping depends on
drag/lift ratio, which is usually small. Lightly damped oscillations.

[9]
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Conclusions

o Longitudinal flight "if the moment of inertia is small” or/and "if the
corrective torque against angular deviation is large” can approximate
2 DoF, order 2 model, in speeds. The plane as a "point”.

@ There is an equilibrium point (feq, Veq, Ueq), Which may be stable
(glider or level flight) but if plane is efficient (d// is small), it is very
lightly damped, requiring pilot attention (or auto-pilot). High thrust
produces ascending flight and, from a given value onwards, unstable
phugoid dynamics.

[ 10]
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Objectives: numerically, analyze the equilibrium points and their stability, of a simplified 2nd order model of the
phugoid flight mode of an aircraft.
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Modeling and linearization

d=1/5; 1=1; m=1; g=9.8;%invented numbers
Equations of phugoid movement

m% = —mgsin® —dv’ +u [tangential]

mv% = —mgcos 8 + - v* [normal (signed: positive is anticlocwise rotation)]

syms v theta U
StateEgs=[-g*sin (theta)-d*v*2/m+U/m; —-g*cos (theta) /v+1*v/m] ;vpa (StateEqgs, 4)

ans =

—02Vv*+U - 9.8sin(9)

v 9.8 cos(0)
v

Equilibrium points

If we wish to compute the thrust and velocity for a certain desired glide angle 6., we would have:
0=—mgsinf, —dv: +u
0=-mgcosf,+1-v’

hence

Ve = \/ngcosee , Ue=mg (Si09e+%0089e>
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Particular cases
umax eqg=sqrt (1°2+d"2) /1 %Smaximum specific thrust for equilibrium to exist
umax _eq = 1.0198

Conditions for level flight 6, = 0:

Ve = ng, U, =mg -

d
l
Thrust level=d/l %$specific thrust (Thrust/weight)

Thrust level = 0.2000

Zero thrust (glider) equilibrium:

2

mg sin 0, = —dv,

mgcosale-vg
0 sea, tanf, = —%.

Theta glider=atan(-d/1)*180/pi
Theta glider = -11.3099

Of course, from either u. or v, we can solve for the other two unknowns (omitted for brevity).

Linearization (for stability analysis)

jacA=jacobian (StateEqgs, [v, theta]);vpa(jacA,4) %we need to substitute
equilibrium point, of course

ans =

—04v —9.8 cos(6)
9802“9)+1O 9.8 sin(Q)
v 14

jacB=jacobian (StateEqgs, U) ;vpa (jacB, 4)
ans =
1.0
0
Characteristic equations der(sI — A) = 0 comes from:

Syms s
collect (simplify (det (s*eye (2)-jach)), s) %$Second order...

ans =



) 245 v sin(0) — 10 v* 245 v? cos(0) — 98 sin(0) v + 2401 cos(0)?
ST+ - > s+ >
25 v v° 25

Wether it is stable or not, it depends... All the coefficients should be positive to have stability.

If operating point is "high climb angle" it may become unstable. We will verify such fact numerically.

Plots

Thmin=round (Theta glider-5);
Th range=(Thmin:0.5:89.5)*pi/180; %Range of test angles
NE=length (Th range);

Store results for plotting

grvO=zeros (NE, 1) ; grU=zeros(NE,1);
grwp=zeros (NE,1); grreal=zeros (NE,2);

for k=1:NE
% operating point
theta=Th range (k) ;
vO0=sqgrt (m*g*cos (theta) /1); %airspeed
UO0=m*g* (sin (theta) +d*cos (theta) /1) ; %$thrust
grv0 (k)=v0;
grU (k) =U00;
% Stability analysis of \dot x=Ax
A=eval (subs (jacA, {v},{v0})); %linearised model

ee=eig(A); S%eigenvalues

grreal (k, :)=real (ee); Swe store real part
wp=imag (ee(1l)); %and imaginary part (oscillation frequency)
grwp (k) =wp;

end

plot (Th range*180/pi,grU/m/g,LineWidth=2), grid on,

xlabel ("pitch angle (deg)"), ylabel ("Specific Thrust (Thrust/Weight)"),
x1lim([Thmin 907),

yline(1l,':r"'"), yline(0,':x"),

xline (Theta glider, ':b',Label="Glider pitch U=0",
LabelVerticalAlignment="middle")

x1ine (0, ':g',Label="Level flight \theta=0", LabelVerticalAlignment="middle")
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plot (Th range*180/pi,grv0, LineWidth=2), grid on, xlabel ("pitch angle (deg)"),
hold on, plot(Th_range*l80/pi,grv0.*cos(Th_range’),LineWidthzZ)

plot (Th range*180/pi,grv0.*sin(Th range'),LineWidth=2), hold off,

ylabel ("speed"),xlim([Thmin 90]), xline(Theta glider,':b'), yline(0)

x1line (0, ':g',Label="Level flight \theta=0", LabelVerticalAlignment="middle")
legend("airspeed v","Vel. horizontal speed: v _x=v*cos\theta","climb speed:
v_x=v*sin\theta")

title("Equilibrium speed given angle'")



Equilibrium speed given angle
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airspeed v
Vel. horizontal speed: v,=v*cosg

climb speed: v,=v*sing
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%$Stability analysis plots (eigenvalues)

plot (Th range*180/pi, [grreal grwp],LineWidth=2), grid on, xlabel ("pitch
angle (deg)"), ylabel ("Eigenvalues"),

xlim([Thmin 90]), xline(Theta glider, ':b',Label="Glider u=0"),

yline (0, "-.k",LineWidth=1.5)

angle unstable=atan(2*d/1)*180/pi

angle unstable = 21.8014

x1line (0, '-.g',Label="Level flight")
xline (angle unstable, '-.")
legend ("Real 1", "Real 2", "Imag.")
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e Control surfaces, flaps, etc. do change lift, drag, angle of incidence... We are dealing with simplified models
for somehow close to level flight, subsonic regime. Aggressive maneuvers may require a 3GL model of the
aircraft, including rotational moment of inertia, etc., nor have we taken into account that a propeller can vary
its thrust with airspeed, etc. That is, everything in here is approximate, with target audience being "industrial”
engineering students. Aerospace students will for sure deal with more complex (but more accurate) models in
flight dynamics.



