Tubular heater: simulation of PDE solution

© 2022, Antonio Sala Piqueras. Universitat Politècnica de València. All rights reserved.

Video-presentation: http://personales.upv.es/asala/YT/V/termedpstepEN.html

Objectives: Understand the PDE solution (step response).

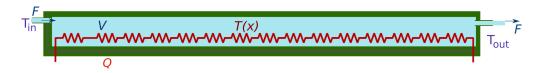


Table of Contents

Modelling	1
Partial differential equation	
Transfer function representation for constant flow (zero initial conditions)	
Exact simulation of the EDP solution (only outlet temp.)	
Simulación exacta (control systems toolbox)	
Inlet Temperature step	
Heating power step	

Modelling

Partial differential equation

This is the EDP, discussed in other materials:

$$\frac{\partial T}{\partial t} = -\frac{1}{S} F \frac{\partial T}{\partial x} - \frac{\overline{\kappa}}{S \rho C_e} T + \frac{\overline{Q}}{S \rho C_e}$$

Particular c ases of interest are:

- With $\overline{Q}=0$ and $\overline{\kappa}=0$ we get the 1D transport delay equation $\frac{\partial T}{\partial t}=-v\frac{\partial T}{\partial x}$, being $v=\frac{F}{S}$ the linear transport speed.
- Steady state, $\frac{\partial T}{\partial t} = 0$; denoting the solution as $T_{eq}(x)$, we have $\frac{\partial T_{eq}}{\partial x} = -\frac{\overline{\kappa}}{F\rho C_e} T_{eq} + \frac{1}{F\rho C_e} \overline{Q}_{eq}(x)$.

With constant heating power along all the pipe length, defining $\lambda = \frac{\overline{\kappa}}{F\rho C_e}$, we get:

$$T_{eq}(x) = T_{in} \cdot e^{-\lambda \cdot x} + (1 - e^{-\lambda \cdot x})\overline{\kappa}^{-1} \cdot \overline{Q}_{eq}$$

1

Transfer function representation for constant flow (zero initial conditions)

We will work with the EDP

$$\frac{\partial T}{\partial t} = -v \frac{\partial T}{\partial x} - aT + b\bar{Q}$$

where $a=\frac{\overline{\kappa}}{S\rho C_e}$, $b=\frac{1}{S\rho C_e}$, $v=\frac{F}{S}$, to streamline notation. For constant flow, uniform heating power, solving the EDP via Laplace method, we get the transfer function (for each x):

$$\mathbb{T}(x,s) = (1 - e^{-\frac{s+a}{v} \cdot x}) \frac{b}{(s+a)} \cdot \overline{\mathbb{Q}}(s) + \mathbb{T}_{in}(s) e^{-\frac{s+a}{v} \cdot x}$$

Steady state: if \overline{Q} and T_{in} were constant, we would obtain steady-state equations replacing s by zero:

 $T_{eq}(x) = (1 - e^{-\frac{a}{v} \cdot x}) \frac{b}{a} \cdot \overline{Q}_{eq} + T_{in,eq} e^{-\frac{a}{v} \cdot x}$, obviously coincident with the formula above for this case.

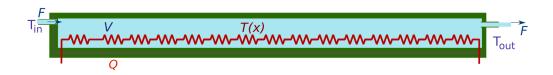
Outlet temperature transient (Laplace domain):

Denoting $\phi = L/v$, we have:

$$\mathbb{T}_{out}(s) = \left((1 - e^{-\phi \cdot s} e^{-a\phi}) \frac{b}{s+a} \qquad e^{-\phi \cdot s} e^{-a\phi} \right) \cdot \begin{pmatrix} \overline{\mathbb{Q}}(s) \\ \mathbb{T}_{in}(s) \end{pmatrix}$$

where the coefficients as a function of physical parameters are $a = \frac{\overline{\kappa}}{S\rho C_e}$, $b = \frac{1}{S\rho C_e}$, $v = \frac{F}{S}$

$$\phi = \frac{L}{v} = \frac{V}{F}$$
, and, hence, $a\phi = \frac{\bar{\kappa}L}{F\rho C_e} = \frac{\bar{\kappa}L}{vS\rho C_e}$



Exact simulation of the EDP solution (only outlet temp.)

Simulación exacta (control systems toolbox)

We'll set some values for physical parameters

S=0.0008; rho=1000; Ce=4180; barkappa=1.5e-1; Ltot=2; %Total length (later on, we'll divide in several "finite elements" of 1st order F=0.00015; %cubic meters per second

So the coefficients of the transfer functions are:

```
b=1/S/rho/Ce*1e3 %we assume input in Kw per meter

b = 0.2990

a=b*barkappa

a = 0.0449

L=Ltot; %a single element with all of the heater's length
V=S*L %cubic meters

V = 0.0016

v=F/S %linear speed

v = 0.1875

phi=L/v%flushing time.

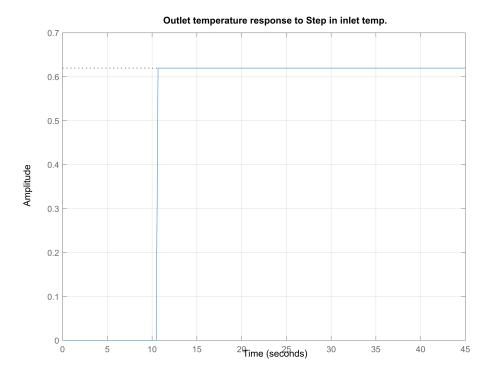
phi = 10.6667

expphia=exp(-phi*a) %longitudinal temperature decay from PDE solution
expphia = 0.6197
```

Inlet Temperature step

It is just a static gain plus delay:

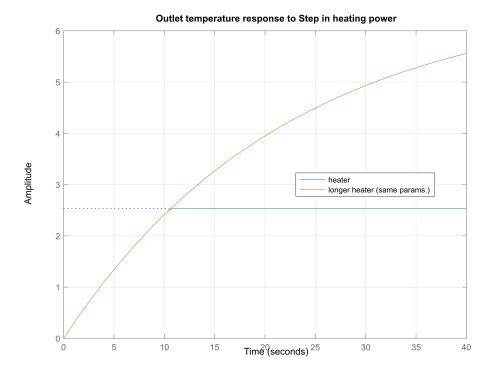
```
s=tf('s');
sysTin=exp(-a*phi)*exp(-phi*s);
sysQ=(1-sysTin)*b/(s+a);
sysPDE=[sysQ sysTin];
step(sysTin), grid on, title("Outlet temperature response to Step in inlet temp.")
```



Heating power step

It's a usual 1st-order step response but "truncated" when pipe ends and the fluid stops heating:

```
step(sysQ,b/(s+a),40), grid on, title("Outlet temperature response to Step in heating plegend("heater", "longer heater (same params.)",Location="best")
```



We can simulate two particilar cases:

- lossless (a=0): the outlet temperature is exactly T_{in} delayed by flushing time; a step in Q produces the step response of $\frac{1-e^{-\phi s}}{s}b$ which is a ramp ascending during the flushing time with slope b and later on keeping the constant value ϕb .
- With losses (a>0), what we presented above: delay plus gain in response to inle temperature and truncated 1st order response to step in Q, the response of $\frac{b}{s+a}$, truncated at $t=\phi$ constant from that instant at the value $\frac{b}{a}(1-e^{-a\phi})$.