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Video-presentation: http://personales.upv.es/asala/YT/V/termedpstepEN.html 

Objectives: Understand the PDE solution (step response).
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Modelling

Partial differential equation

This is the EDP, discussed in other materials:

Particular c ases of interest are:

 With  and  we get the 1D transport delay equation , being  the linear 

transport speed.

 Steady state, ; denoting the solution as , we have . 

WIth constant heating power along all the pipe length, defining , we get:

Transfer function representation for constant flow (zero initial conditions)
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We will work with the EDP

where , , , to streamline notation. For constant flow, uniform heating power, 

solving the EDP via Laplace method, we get the transfer function (for each x):

Steady state: if  and  were constant, we would obtain steady-state equations replacing s by zero:

, obviously coincident with the formula above for this case.

Outlet temperature transient (Laplace domain):

Denoting , we have:

where the coefficients as a function of physical parameters are , , , 

, and, hence, 

Exact simulation of the EDP solution (only outlet temp.)

Simulación exacta (control systems toolbox)

We'll set some values for physical parameters

S=0.0008;rho=1000;Ce=4180;barkappa=1.5e-1;
Ltot=2; %Total length (later on, we'll divide in several "finite elements" of 1st order)
F=0.00015; %cubic meters per second
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So the coefficients of the transfer functions are:

b=1/S/rho/Ce*1e3 %we assume input in Kw per meter

b = 0.2990

a=b*barkappa

a = 0.0449

L=Ltot; %a single element with all of the heater's length
V=S*L %cubic meters

V = 0.0016

v=F/S %linear speed

v = 0.1875

phi=L/v%flushing time.

phi = 10.6667

expphia=exp(-phi*a) %longitudinal temperature decay from PDE solution

expphia = 0.6197

Inlet Temperature step

It is just a static gain plus delay:

s=tf('s');
sysTin=exp(-a*phi)*exp(-phi*s);
sysQ=(1-sysTin)*b/(s+a);
sysPDE=[sysQ sysTin];
step(sysTin), grid on, title("Outlet temperature response to Step in inlet temp.")
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Heating power step

It's a usual 1st-order step response but "truncated" when pipe ends and the fluid stops heating:

step(sysQ,b/(s+a),40), grid on, title("Outlet temperature response to Step in heating power")
legend("heater", "longer heater (same params.)",Location="best")
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We can simulate two particilar cases:

lossless ( ): the outlet temperature is exactly   delayed by flushing time; a step in  Q 

produces the step response of  which is a ramp ascending during the flushing time with 

slope b and later on keeping the constant value .

With losses ( ), what we presented above: delay plus gain in response to inle temperature and 

truncated 1st order response to step in Q, the response of , truncated at   constant from 

that instant at the value .
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