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*Code, PDF and erratum in the link in the video description

This code ran successfully in Matlab R2021b

Objectives: Understand the PDE solution (step response), compare with some low-order (1st and 3rd 

order) approximations.
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Modelling

Partial differential equation

This is the EDP, discussed in other materials:
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Particular c ases of interest are:

 With  and  we get the 1D transport delay equation , being  the linear 

transport speed.

 Steady state, ; denoting the solution as , we have . 

WIth constant heating power along all the pipe length, defining , we get:

Transfer function representation for constant flow (zero initial conditions)

We will work with the PDE

where , , , to streamline notation. For constant flow, uniform heating power, 

solving the EDP via Laplace method, we get the transfer function (for each x):

Steady state: if  and  were constant, we would obtain steady-state equations replacing s by zero:

, obviously coincident with the formula above for this case.

Outlet temperature transient (Laplace domain):

Denoting , we have:
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where the coefficients as a function of physical parameters are , , , 

, and, hence, 

Exact simulation of the EDP solution (only outside temp.)

Simulación exacta (control systems toolbox)

We'll set some values for physical parameters

S=0.0008;rho=1000;Ce=4180;barkappa=1.5e-1;
Ltot=2; %Total length (later on, we'll divide in several "finite elements" of 1st order)
F=0.00015; %cubic meters per second

So the coefficients of the transfer functions are:

b=1/S/rho/Ce*1e3 %we assume input in Kw per meter

b = 0.2990

a=b*barkappa

a = 0.0449

L=Ltot; %a single element with all of the heater's length
V=S*L %cubic meters

V = 0.0016

v=F/S %linear speed

v = 0.1875

phi=L/v%flushing time.

phi = 10.6667

expphia=exp(-phi*a) %longitudinal temperature decay from PDE solution

expphia = 0.6197

Inlet Temperature step

It is just a static gain plus delay:

s=tf('s');
sysTin=exp(-a*phi)*exp(-phi*s);
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sysQ=(1-sysTin)*b/(s+a);
sysPDE=[sysQ sysTin];
step(sysTin), grid on, title("Outlet temperature response to Step in inlet temp.")

Heating power step

It's a usual 1st-order step response but "truncated" when pipe ends and the fluid stops heating:

step(sysQ,b/(s+a),40), grid on, title("Outlet temperature response to Step in heating power")
legend("heater", "longer heater (same params.)",Location="best")
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We can simulate two particilar cases:

lossless ( ): the outlet temperature is exactly   delayed by flushing time; a step in  Q 

produces the step response of  which is a ramp ascending during the flushing time with 

slope b and later on keeping the constant value .

With losses ( ), what we presented above: delay plus gain in response to inle temperature and 

truncated 1st order response to step in Q, the response of , truncated at   constant from 

that instant at the value .

First-order approximations of the PDE solutions
We can approximate
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,

for any .

For  we would get the Taylor series , with  we have the Padé approximation 

, and with  we get a Taylor series of its inverse: .

So, the PDE's transfer function  may be 

approximated as:

Carrying out some operations, we get:

Dividing numerator and denominator by , we finally have:

Replacind physical parameters:

, , , , y ,

this is coincident with the first-principle model of the heater element assuming that the "mean" 

temperature T is equal to , discussed in other materials.
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So, we can understand this as an approximation in the Laplace domain (here) or an approximation 

to the underlying physics (elsewhere). The second interpretations allows us to use the 1st-order 

approximation with ode45 for varying flow (Laplace would not work there as it is nonlinear).

Particular cases  (linear temperature profile, short or well insulated element) and  

(perfect stirring or long or very conductive pipe) did also have physical interpretation.

The case beta=1, [= perfect stirring]:

sysAproxUNIF=[b/(1/phi+s+a) 1/phi/(1/phi+s+a)];

The Padé approximation of exp(s+a), beta=0.5,  [= linear longitudinal temperature profile]:

sysAproxLIN =[ 2*b/(2/phi+s+a)  (2/phi-a-s)/(2/phi+s+a) ];

Arbitrary beta, exponential profile

This is  from exponential profile in PDE, details in other materials

beta=(phi*a-1+expphia)/(phi*a*(1-expphia)) 

beta = 0.5397

deno=(s+a+1/beta/phi); %the approximation's denominator
numQ=b/beta; %numerator for Q
numTin=1/beta/phi+a*(1-1/beta)+s*(1-1/beta); %numerator for inlet temperature
sysAproxEXP=[numQ numTin]/deno; %the whole 1st-order approximation

Padé approximation only of the delay (¿no physical interpretation?):

Considering the original expression
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The Padé approximation of delay  results in:

So, as we have not approximated  it will possibly be better than the other ones... but this operation 

in the Laplace domain does not have, at first glance, a clear "physical interpretation" so it cannot be 

used for non-constant flow.

sysAproxPADE1 = pade(sysPDE);

We may think of higher-order approximations 

sysAproxPADE3 = pade(sysPDE,3); %higher order Padé approx...

DC gain comparison

dcgain(sysPDE)

ans = 1×2
    2.5351    0.6197

dcgain(sysAproxUNIF) %uniform temperature, biased dc gain

ans = 1×2
    2.1575    0.6764

dcgain(sysAproxLIN) %linear profile: biased dc gain

ans = 1×2
    2.5740    0.6139

dcgain(sysAproxPADE1) %pade approx of exp(-phi*s), correct dc gain

ans = 1×2
    2.5351    0.6197

dcgain(sysAproxPADE3) %3rd order pade approx of exp(-phi*s), correct dc gain

ans = 1×2
    2.5351    0.6197
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dcgain(sysAproxEXP) %exponential temp. profile 1st order, correct dc gain

ans = 1×2
    2.5351    0.6197

Comparison of time responses

step(sysTin,sysAproxUNIF(2),sysAproxLIN(2),sysAproxPADE1(2),sysAproxPADE3(2),sysAproxEXP(2)), grid on, legend("PDE","UNIF","Linear","pade1","pade3","EXP"), title("Step in Tin")

step(sysQ,sysAproxUNIF(1),sysAproxLIN(1),sysAproxPADE1(1),sysAproxPADE3(1),sysAproxEXP(1)), grid on,legend("PDE","UNIF","Linear","pade1","pade3","EXP"), title("Step in Q")
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Finite elements (higher-order approximation with physical interpretations)
N=3;
L=Ltot/N; %we share the total length equally
V=S*L %cubic meters

V = 5.3333e-04

phi=L/v%flushing time of the element

phi = 3.5556

expphia=exp(-phi*a) %longitudinal decay of a single element

expphia = 0.8526

expphia^N %coincides with the "total" decay above

ans = 0.6197

beta=(phi*a-1+expphia)/(phi*a*(1-expphia)) %This is "beta" in one element, closer to 0.5 as it's shorter

beta = 0.5133

Shorter elements makes profile closer to "linear" one...

We repeat the code above:

deno=(s+a+1/beta/phi); 
numQ=b/beta;
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numTin=1/beta/phi+a*(1-1/beta)+s*(1-1/beta);
sysAproxEXP1trozo=[numQ numTin]/deno; %1 element

But we need to connect the elemenst in cascade (flow), and assume they have identical heating power 

per unit length.

%sys2elem=[(1+sysAproxEXPN(2))*sysAproxEXPN(1)  sysAproxEXPN(2)^2]; %TWO elements, if so wished
sys3elem=[(1+sysAproxEXP1trozo(2)+sysAproxEXP1trozo(2)^2)*sysAproxEXP1trozo(1)  sysAproxEXP1trozo(2)^3];

Comparison of static dc gain

Coincident, as expected

dcgain(sysPDE)

ans = 1×2
    2.5351    0.6197

dcgain(sysAproxEXP) %primer orden, todo 1 elemento

ans = 1×2
    2.5351    0.6197

dcgain(sys3elem) %tres elementos

ans = 1×2
    2.5351    0.6197

Comparison of time response

step(sysTin,sysAproxEXP(2),sys3elem(2),sysAproxPADE3(2)), grid on, legend("PDE (exact)","EXP1","finite elem.","PADE3",Location="best"), title("Step in Tin")
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step(sysQ,sysAproxEXP(1),sys3elem(1),sysAproxPADE3(1)), grid on, legend("PDE (exact)","EXP1","finite elem.","PADE3",Location="best"), title("Step in Q")

Comparison of frequency response

bodemag(sysPDE,'-.',sysAproxEXP,sys3elem,sysAproxPADE3),ylim([-24 8.5]), grid on, legend("PDE (true)","1st order 1elem","3 elems","PADE3")
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Modelling error in frequency domain

We add the "only-gain" model, i.e., consider only steady-state formulae for the exchanger, i.e., 

considering it to be a dc gain.

error_bound=0.2;
bodemag(sysPDE*error_bound,'-.') 
hold on %superimposing the actual modelling error due to low-order approximations
bodemag(sysPDE-dcgain(sysPDE),sysPDE-sysAproxEXP,sysPDE-sys3elem,sysPDE-sysAproxPADE3),ylim([-40 10]), grid on,
legend("PDE*bound","only GAIN err","EXP1 err","3 f.e. err","PADE3 err",Location="best")
hold off
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Conclusions
There are many approximations, with more or less accurate physical meaning. At constant flow, the 

delay can be simulated well (the Control Systems Toolbox does it)... but designing controllers for 

time-delay systems needs extra complication, and simulating rapidly changing flow rates is also more 

problematic (non-linear, ode45).

The chosen approach depends on the "bandwidth" of the technological application where the model 

is going to be used, in order to avoid an excessive computational effort in simulation or control design 

(and in control design, avoiding resulting controllers of high order), or numerical tolerance problems 

when raising the order of Padé, finite elements, etc. If the application is "slow", a "gain only without 

dynamics" model (steady exchanger formulas) could be perfectly valid.

Padé's approximations of the delay in the Laplace Transform are (for constant flow) more "exact" but 

do not have a clear physical interpretation (and are not valid for variable flow).

The "finite elements with exponential internal profile" keep the properties of the stationary regime (zero 

error at low frequency) and capture the dynamics somewhat worse than the "Padé" but maintain the 

physical meaning, and are valid for approximately simulating flow changes.

As a last observation, using a model (finite elements or Padé) of very high order, say "45", is not 

so "exact" if we take into account that in a real exchanger we have uncertainty in the physical 
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parameters ("fouling" changes conductivity), dynamics and miscalibration in the sensors, we have to 

consider the heat capacity of the metallic tubes, convection currents, turbulence, non-uniform flow 

along the section (the "central" fluid has less residence time than the fluid "attached to the edge of the 

tube")... that would require 2D or 3D EDP... Hence, excessive complications "in simulation of EDPs" 

do not "guarantee" that the results will actually work better in "practice". The "first order" models are 

a sensible compromise to approximate things in low bandwidth applications, or, at most, we might 

cascade two or three of them and maybe nothing else is needed...

SIMSCAPE Fluids has "simple" first order elements https://www.mathworks.com/help/physmod/

hydro/ref/simpleheatexchangerinterfacetl.html although, well, it also incorporates fluid compressibility 

(and the ability to make it 2nd order if "wall dynamics" is activated, etc...) and several of these 

elements can be cascaded... The world of exchangers is complicated (simulating "everything" with 

phase changes, condensers, evaporators, compressible gases, fins for better cooling in liquid/gas, 

thermodynamic tables in non-ideal fluids, turbulence, CFD... requires a "supercomputer") but we can 

design PIDs with simple approximations  and see how it works on a prototype... maybe it 

suffices.
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