Proportional control for 1st-order system, theoretical analysis
(symbolic toolbox) G(s)=2/(2*s+1)

© 2024, Antonio Sala Piqueras, Universitat Politecnica de Valencia, Spain. All rights
reserved.

Objective: understand the behaviour of proportional control (simulations in companion
videos) on a 1st-order system.

Presentations in video:
https://personales.upv.es/asala/YT/V/PteolEN.html (setpoint tracking)

https://personales.upv.es/asala/YT/V/Pteo2EN.html (input disturbance/noise)

Remark: as controller gain will be a "decision variable", we'll keep it "symbolic" and use the
"symbolic Math toolbox" for "computer algebra" operations. For a GIVEN value of controller
gain, there is a much friendlier interface in the "control systems toolbox" (and even for
control design).

Closed-loop transfer functions
In the closed-loop below:

The equations are:

syms G K r uyn du e
LoopEquations={u == K*e, y == G*(utdu), e == r-(y+n) };


https://personales.upv.es/asala/YT/V/Pteo1EN.html
https://personales.upv.es/asala/YT/V/Pteo2EN.html

Let us solve them:

sol=solve (LoopEquations, [u y e])

= struct with fields:

u: -(K*(n - r + G*du))/ (G*K + 1)
y: (G*(du - K*n + K*r))/(G*K + 1)
e: -(n - r + G*du)/ (G*K + 1)

sol

We will be interested in output (controlled variable) trajectories:

collect (sol.y, [r du n])

ans =
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Or, well, error will be r — measurement, but, anyway, we can display it:

collect(sol.e, [r du n])

ans =
r G ) (_ 1 )
GK+1+( e TR

And, later on, in manipulated variable trajectories:

collect(sol.u, [r du nJ)
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Example

clear %we discard the above code

syms s %Laplace Variable

syms K ¢ real S%proportional control constant
G(s)=2/(2*s+1) ;

DCgainG=G (0)

DCgainG = 2

K=K c; %Proportional Control (we might try other expressions in the
future)

Setpoint change response

CLref (s)=collect (simplify (G*K/ (1+G*K) ), s)

CLref (s) =



2K,
2s+2K.+1

Dynamics:

[N, D]=numden (CLref) ;
solve (D==0,s) %closed-loop poles

1
_Kg_z

Then, closed loop pole is s = —(1/2 + K,), settling time (95%) is

I
|pole] =~ 0.5+ K.

for sure you will set K. > 0 (push up if output is below setpoint), so "P" controller is

STABLE, and the LARGER K. is, the FASTER the transient is.

3r=3- . Stable if K. > —1/2... and, come on, if you are not an idiot,

To plot the closed-loop poles as a function of K. we may use the "root locus” command
from Control systems Toolbox, because you will likely be familiar with the graph below:

rlocus (tf(2,[2 11))
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Steady-state error: DC gain of CLref is

DCGainREF=CLref (0) %subs (CLref,s,0)



DCGainREF =

2K,
2K.+1

So, final value will be DCGainREF - 7 fipanaie and steady-state error will be

(1 - DCGCHI’ZREF) * T finalvalue » then:

DCGainErrREF=simplify (1-DCGainREF)

DCGainErrREF =

2K.+1

fplot (DCGainErrREF, [0 50],LineWidth=3), grid on, title ("setpoint
tracking steady-state error %ref")

xlabel ("Controller Proportional Gain K c")

yline (0.05,'r")

yline (0.02,'qg")

ylim ([0 11)
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Input Disturbance Response
CLdu (s)=collect (simplify (G/ (1+G*K) ), s)

CLdu (s) =

2
25+2K. +1

Dynamics: closed loop pole identical to setpoint TF.



Steady-steady error:

DCGain Err du=CLdu (0)

DCGain Err du =

2K.+1

The interesting "adimensional” quantity is the ratio between "no-control open loop" and
"closed-loop" error value:

RatioCL20L=DCGain Err du/DCgainG

RatioCL20L =

2K.+1

fplot (RatioCL20L, [0 50]), grid on, title("disturbance steady-state
error %OL")

xlabel ("Controller Proportional Gain K c")

yline(1l,'r',label="Open Loop')

ylim ([0 1.04]), ylabel ("percentage of closed-loop deviation w.r.t.
open—-loop one")
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Measurement Noise response
In this case we are usually interested in high-frequency noise amplification to the actuator
(manipulated variable) command:

CL dy 2 u(s)=collect (simplify(K/ (1+G*K)), s)



CL dy 2 u(s) =

2K)s+ K.
2s+2K.+1

syms w real
FregResponse=simplify( abs( CL dy 2 u(lj*w) ), 100)

FregResponse =

Kl VAIwP +1

\/(2 Ko+ 1244w

limit (FregResponse,w,inf) %high-frequency amplification
ans = |K|
Let us try several values of K._:

fl=subs (FregResponse,K c,1);

f2=subs (FreqResponse,K c,2);

f5=subs (FregResponse,K ¢, 5);

fplot ([f1 f£2 £5], [0 30]), grid on, xlabel ("frequency"),
ylabel ("Noise amplification gain")

legend ("Kc=1", "Kc=2", "Kc=5")
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Remark: this is a NON logarithmic plot; usually you will see the "Bode" diagram, which has
logarithmic scales both in "frequency"” and "amplitude gain" axes.



