
Modelado de sistema eje-polea-muelle-masa, y análisis de
propiedades

Objetivos: modelar el sistema mecánico de la figura inferior como ,

 (linealizando), y analizar sus propiedades.

© 2026, Antonio Sala Piqueras, Universitat Politècnica de València. Todos los derechos

reservados.

Presentaciones en vídeo:

https://personales.upv.es/asala/YT/V/mpmm1.html [modelado físico]

https://personales.upv.es/asala/YT/V/mpmm2.html [forma normalizada, sin Matlab]

https://personales.upv.es/asala/YT/V/mpmm3.html [forma normalizada, Symbolic toolbox,

Matlab]

https://personales.upv.es/asala/YT/V/mpmm4.html [análisis de equilibrio, simulación ode45]

https://personales.upv.es/asala/YT/V/mpmm5.html [linealización, forma normalizada

MATRICIAL]

https://personales.upv.es/asala/YT/V/mpmm6.html [análisis de estabilidad]

https://personales.upv.es/asala/YT/V/mpmm7.html [análisis de modos de la respuesta libre]

https://personales.upv.es/asala/YT/V/mpmm8.html [inestabilidad interna versus externa]

https://personales.upv.es/asala/YT/V/mpmm9.html [respuesta en frecuencia]

Tabla de Contenidos

Modelado de sistema eje-polea-muelle-masa, y análisis de propiedades...............................1
Ecuaciones del modelado dinámico NO normalizadas.. 2

Parámetros constantes.. 2
Variables de entrada (el resto serán incógnitas).. 2

(1) Ecuaciones elementales.. 2
(2) Balances (o sea, fuerzas y pares resultantes, en mecánica)......................................3
(3) Contar Ecuaciones e Incógnitas, para que sean iguales en número...........................4

1

https://personales.upv.es/asala/YT/V/mpmm1.html
https://personales.upv.es/asala/YT/V/mpmm2.html
https://personales.upv.es/asala/YT/V/mpmm3.html
https://personales.upv.es/asala/YT/V/mpmm4.html
https://personales.upv.es/asala/YT/V/mpmm5.html
https://personales.upv.es/asala/YT/V/mpmm6.html
https://personales.upv.es/asala/YT/V/mpmm7.html
https://personales.upv.es/asala/YT/V/mpmm8.html
https://personales.upv.es/asala/YT/V/mpmm9.html

(4) Revisión final, signos..5
Ec. de estado en forma NORMALIZADA..5

Forma 1, la que hay que hacer "en el examen"...6
Forma 2, sin separar las ecuaciones con/sin d·/dt, diciendo "Despeja las derivadas" a
Matlab..7

Ejemplo análisis del sistema: equilibrio.. 8
SIMULACIÓN del modelo resultante.. 8
Método Euler...10
Método ode45 (Runge-Kuta).. 10
Gráficas de resultados.. 10

Modelo linealizado normalizado en forma matricial y análisis de propiedades: estabilidad
interna/externa, respuesta en frecuencia [control systems Toolbox]......................................12

Linealización...13
Análisis de propiedades.. 16

Estabilidad ...16
*repr. interna ..16
*Función/matriz de transferencia..16
Modos de la respuesta libre... 18
Estabilidad "de los estados" (interna) versus estabilidad "de un par entrada-salida
concreto".. 24

Respuesta forzada en frecuencia..27
Impedancia mecánica.. 30

Apéndice (func. auxiliares), Método Euler... 31
Euler "explícito" paso fijo... 31

Ecuaciones del modelado dinámico NO normalizadas

Parámetros constantes

Podemos dejarlos "en letra", pero les voy a dar valores numéricos para luego hacer

simulaciones y cálculos.

Masa=2; Inercia=1; k_muelle=10; r=0.25; g=9.8;
l_natural=0.5;
coef_fric_rodamientos=2; coef_fric_aire=0.3;

Variables de entrada (el resto serán incógnitas)

syms T_motor real
Entradas=[T_motor]; %Single input
n_entradas=length(Entradas)
n_entradas =
1

(1) Ecuaciones elementales

Masa que se mueve (traslación):

2

syms p dpdt v dvdt F_result real
Modelo = [dpdt == v;
 dvdt == 1/Masa*F_result];

Sólido que gira:

syms theta dthetadt omega domegadt T_result real
Modelo=[Modelo;
 dthetadt == omega;
 domegadt == T_result/Inercia]; %añadimos

 Muelle:

syms F_muelle longitud_muelle real
Modelo=[Modelo;
 F_muelle == k_muelle*(longitud_muelle-l_natural)];

 Una polea:

syms Tension_Cuerda Par_Cuerda real
Modelo = [Modelo;
 Par_Cuerda == r*Tension_Cuerda];

 Rozamiento en el giro de motor y polea, y rozamiento con aire

syms T_rozamiento F_rozamiento real
Modelo=[Modelo;
 T_rozamiento == coef_fric_rodamientos*omega;
 F_rozamiento == coef_fric_aire * v];

(2) Balances (o sea, fuerzas y pares resultantes, en mecánica)

Modelo = [Modelo;
 T_result == T_motor - Par_Cuerda - T_rozamiento;
 Tension_Cuerda == F_muelle;
 F_result == F_muelle - Masa*g - F_rozamiento;
 longitud_muelle == r*theta - p];
Modelo %Objeto symbolic toolbox
Modelo =

3

(3) Contar Ecuaciones e Incógnitas, para que sean iguales en número

N_ecuaciones=length(Modelo)
N_ecuaciones =
12

Letras=symvar(Modelo)'
Letras =

length(Letras)

4

ans =
17

NOTA: El modelo está completo porque, aunque son símbolos diferentes para Matlab,

realmente:

• "v" y "dvdt" se refieren a la misma incógnita "física" velocidad,

• "p" y "dpdt" también,

• "theta" y "dthetadt" también,

• "omega" y "domegadt" también.

O sea, esas letras en particular son ocho "syms" que son realmente cuatro "incógnitas"

sobre variables del sistema físico (estados).

n_incognitas=length(Letras)-4-n_entradas
n_incognitas =
12

if N_ecuaciones == n_incognitas
 disp("Modelo BIEN PLANTEADO, COMPLETO")
else
 error("No puedo continuar, el modelo no es correcto")
end
Modelo BIEN PLANTEADO, COMPLETO

Las cuentas coinciden, ¡bien!: EL MODELO ESTÁ COMPLETO (no falta ningún fenómeno

físico para ser "resoluble" por los matemáticos, o "simulable" por métodos numéricos).

(4) Revisión final, signos...
Bueno, ya lo he revisado, je... ¡Están bien!.

*NOTA 1: Los signos están pensados en sistema de referencia de "desplazamiento positivo

hacia arriba", "giro positivo antihorario".

*NOTA 2: una cuerda no puede trabajar a compresión, por tanto Tension_Cuerda no

puede cambiar de signo (positivo o negativo según sistema de referencia, en este caso

según gráfica, Tension_Cuerda debe ser positiva, de modo que el muelle hará "cero"

fuerza si la fórmula de su fuerza resulta negativa... Este tipo de modelos con "cambios

estructurales" y ecuaciones con máximos/mínimos, colisiones entre objetos, etc. quedan

fuera de los objetivos de la asignatura SAU.

Ec. de estado en forma NORMALIZADA
Debemos despejar únicamente "la derivada de las cosas", aunque Matlab despeja "TODO"

lo que se pueda despejar, lo que requerirá enumerar todas esas letras explícitamente.

5

Separemos las ecuaciones "estáticas" de las "dinámicas" en el modelo

ModeloParteEstatica=Modelo(5:end)
ModeloParteEstatica =

EcuacionesDeEstadoNoNormalizadas=Modelo(1:4)
EcuacionesDeEstadoNoNormalizadas =

La forma "normalizada" será de orden 4:

VectorDeEstados=[p; v; theta; omega];

Forma 1, la que hay que hacer "en el examen"
Debemos ser capaces de despejar "todo lo que no es estado ni entrada" en función de

estados y entradas, manipulando las ecuaciones "sin derivadas":

VariablesAEliminar= ...

[F_muelle,F_result,Par_Cuerda,Tension_Cuerda,T_result,longitud_muell
e,T_rozamiento,F_rozamiento];
length(VariablesAEliminar)
ans =
8

length(ModeloParteEstatica)
ans =
8

Todo cuadra, "¡bingo!"

6

solVarsEliminar=solve(ModeloParteEstatica,VariablesAEliminar)
solVarsEliminar = struct with fields:
 F_muelle: (5*theta)/2 - 10*p - 5
 F_result: (5*theta)/2 - 10*p - (3*v)/10 - 123/5
 Par_Cuerda: (5*theta)/8 - (5*p)/2 - 5/4
 Tension_Cuerda: (5*theta)/2 - 10*p - 5
 T_result: T_motor - 2*omega + (5*p)/2 - (5*theta)/8 + 5/4
 longitud_muelle: theta/4 - p
 T_rozamiento: 2*omega
 F_rozamiento: (3*v)/10

Por lo que ya podemos sustituir eso en el lado derecho de las ecuaciones de estado:

EcuacionesDeEstadoNormalizadas=subs(EcuacionesDeEstadoNoNormalizadas
,solVarsEliminar);
vpa(EcuacionesDeEstadoNormalizadas)
ans =

Nota: en la variable "sol" están todas las posibles ecuaciones de "salida" si alguna de las

variables "eliminadas" fuera de interés para la aplicación tecnológica concreta.

Forma 2, sin separar las ecuaciones con/sin d·/dt, diciendo "Despeja las
derivadas" a Matlab

QuitoEntradasyEstadosDeLasLetras= ...

[F_muelle,F_result,Par_Cuerda,Tension_Cuerda,T_result,T_rozamiento,F
_rozamiento,domegadt,dpdt,dthetadt,dvdt,longitud_muelle];
sol_forma2=solve(Modelo,QuitoEntradasyEstadosDeLasLetras);
VectorDeEstados'

ans =

DerivadasDelEstado=[sol_forma2.dpdt;
 sol_forma2.dvdt;
 sol_forma2.dthetadt;
 sol_forma2.domegadt]; %en el mismo orden que vector de
estados, ojo!
vpa(DerivadasDelEstado)
ans =

7

Ejemplo análisis del sistema: equilibrio
El equilibrio ("estática") se alcanzará cuando la fuerza del muelle sea igual al peso y esa

fuerza*radio sea igual al par Tmotor.

Peso=Masa*g
Peso =
19.6000

T_motor_equilibrio=Peso*r %par producido por el peso en la polea
T_motor_equilibrio =
4.9000

Cuando esté todo en equilibrio, las variables se mantendrán constantes... y sus derivadas

serán cero:

PtoEquilib0=solve(DerivadasDelEstado==0,[VectorDeEstados; T_motor])
PtoEquilib0 = struct with fields:
 p: -123/50
 v: 0
 theta: 0
 omega: 0
 T_motor: 49/10

Matlab encuentra un punto de equilibrio... pero el sistema tiene equilibrio "indiferente" (en

la jerga de Física) y hay "infinitos" puntos de equilibrio, NO hay que fiarse de las máquinas.

Estamos resolviendo 4 ecuaciones con 5 incógnitas, ¡OJO!.

Si añadimos, por ejemplo, posición angular prefijada, resulta un equilibrio diferente:

PtoEquilib1=solve([DerivadasDelEstado==0;theta==1],
[VectorDeEstados;T_motor])
PtoEquilib1 = struct with fields:
 p: -221/100
 v: 0
 theta: 1
 omega: 0
 T_motor: 49/10

NOTA: un sistema con múltiples puntos de equilibrio "indiferente" es "marginalmente

inestable" y tendrá "polos en el origen", si sabes a lo que me estoy refiriendo. Se discutirá

más adelante en este material.

SIMULACIÓN del modelo resultante

8

Expresamos el modelo en forma "numérica" y no como "objeto simbólico": no es lo mismo

el "objeto simbólico con un carácter "2", otro carácter "+" y otro carácter "2" que el "número

en coma flotante 4.0000".

EcsEstadoNUM=matlabFunction(DerivadasDelEstado,Vars={VectorDeEstados
,Entradas});

Por supuesto, si hemos hecho los cálculos en "Lápiz y Papel" y no tenemos "expresiones

simbólicas", entonces tendríamos que teclear en "código Matlab" una función como sigue:

EcsEstadoNUM_LapizYPapel=@(p,v,theta,omega,Tmotor) ...
 [v;
 1.25*theta-5*p-0.15*v-12.3;
 omega;
 Tmotor-2*omega+2.5*p-0.625*theta+1.25];

*Esto segundo es lo que harás en las prácticas de laboratorio donde no utilizamos la

manipulación simbólica.

La simulación necesita de unos valores explícitamente introducidos de la entrada y de un

estado inicial al principio de la simulación (energía/información almacenada del "pasado"):

ejemplo=4;
switch ejemplo %CUATRO EJEMPLOS DIFERENTES
 case 1 %La simulación no debería moverse nada
 T_motor=@(t) T_motor_equilibrio;
 p_inicial=double(PtoEquilib0.p);
 v_inicial=double(PtoEquilib0.v);
 theta_inicial=double(PtoEquilib0.theta);
 omega_inicial=double(PtoEquilib0.omega);
 case 2 %respuesta "LIBRE"
 T_motor=@(t) T_motor_equilibrio;
 p_inicial=double(PtoEquilib0.p)-1;
 v_inicial=double(PtoEquilib0.v)+0;
 theta_inicial=double(PtoEquilib0.theta)+0;
 omega_inicial=double(PtoEquilib0.omega)+0;
 case 3%respuesta "FORZADA" desde cond.inic. de equilibrio
 T_motor=@(t) T_motor_equilibrio + 0.2*(t<20) + 3*sin(7*t);
 p_inicial=double(PtoEquilib0.p);
 v_inicial=double(PtoEquilib0.v);
 theta_inicial=double(PtoEquilib0.theta);
 omega_inicial=double(PtoEquilib0.omega)+0;
 case 4%respuesta forzada genérica desde cond.inic. arbitrarias
 T_motor=@(t) T_motor_equilibrio + 0.2*(t<20) + 3*sin(7*t);
 p_inicial=double(PtoEquilib0.p)+1;
 v_inicial=double(PtoEquilib0.v)+0;
 theta_inicial=double(PtoEquilib0.theta)+0;
 omega_inicial=double(PtoEquilib0.omega)+0;
end

9

CondIniciales=[p_inicial;
 v_inicial;
 -theta_inicial;
 omega_inicial];

Método Euler
Cuanta más exactitud queramos, más coste computacional tendremos.

PasoDeIntegracion=0.01;

Ya podemos hacer la simulación (integración numérica) por ejemplo por Euler (lo más

sencillo posible):

[TiemposSim,EstadosSim]=...
 odeEuler(@(t,x) EcsEstadoNUM(x,T_motor(t)), [0 30],
CondIniciales, PasoDeIntegracion);
size(TiemposSim)

ans = 1×2
 3001 1

size(EstadosSim)

ans = 1×2
 3001 4

Método ode45 (Runge-Kuta)
En principio este método es mejor... vamos a "machacar" los resultados anteriores.

Cuanta más exactitud queramos, más coste computacional tendremos:

opts=odeset('RelTol',1e-5,'AbsTol',1e-5);

Ya podemos hacer la simulación (integración numérica) por ejemplo por Runge-Kuta RK45:

[TiemposSim,EstadosSim]=...
 ode45(@(t,x) EcsEstadoNUM(x,T_motor(t)), [0 50], CondIniciales,
opts);

Gráficas de resultados
Analicemos y representemos el resultado:

size(TiemposSim)

ans = 1×2
 1713 1

size(EstadosSim)

ans = 1×2
 1713 4

10

%plot(Tiempos,Tmotor(Tiempos)), grid on, title("Par motor
(Entrada)")
plot(TiemposSim,EstadosSim(:,[1 3])), grid on
legend("Posicion Masa","\theta",Location="best"), title("Posiciones
simuladas")

Como otra "salida de interés" aparte de las posiciones, nos gustaría representar la tensión

de la cuerda (por decir algo: las salidas es "lo que queramos que nos interese porque

queremos ver qué le pasa a esa señal, porque vamos a instalar un sensor que la mide...),

por lo que vamos a crear una ecuación de salida:

EcSalidaSym=[p;theta;solVarsEliminar.Tension_Cuerda]
EcSalidaSym =

EcSalidaNum=matlabFunction(EcSalidaSym,Vars={VectorDeEstados})
EcSalidaNum = function_handle with value:
 @(in1)[in1(1,:);in1(3,:);in1(1,:).*-1.0e+1+in1(3,:).*(5.0./2.0)-5.0]

SalidasPlot=zeros(length(TiemposSim),length(EcSalidaSym));
size(SalidasPlot)

ans = 1×2
 1713 3

for k=1:size(EstadosSim,1)

11

 SalidasPlot(k,:)=EcSalidaNum(EstadosSim(k,:)')';
end
plot(TiemposSim,SalidasPlot), title("Salidas"), grid on
yline(Peso,':',Label="Peso suspendido")
legend("Posicion Masa","Ángulo \theta","Tension
Cuerda",Location="best")

Modelo linealizado normalizado en forma matricial y análisis de
propiedades: estabilidad interna/externa, respuesta en frecuencia
[control systems Toolbox]
Revisemos resultado del modelado, ecuación de estado:

VectorDeEstados,Entradas
VectorDeEstados =

Entradas =

vpa(DerivadasDelEstado) %en "número real", no en "fracción
simbólica"
ans =

12

Linealización

El sistema es "casi" lineal, excepto los términos 12.3 y 1.25 por longitud natural de muelle y

peso de la masa colgante.

Pero, en "coordenadas incrementales", desaparecerán. Por ejemplo:

Nota: el resultado es idéntico a la "linealización rápida" de como ,

pero como era "afín" (lineal + constantes) realmente NO hay ninguna aproximación,

sólo un "cambio del origen de coordenadas al punto donde se supone que se verifica

, de modo que .

La idea general justificando era:

Claro, en una función con forma de "recta" (o hiperplano en general) donde derivadas

segundas y sucesivas sean cero, la serie de Taylor termina en la derivada primera y se

verifica igualdad, sin ninguna aproximación:

13

Por tanto, en "incrementos" desde una posición de equilibrio, podremos expresar

EXACTAMENTE (en el caso afin) al sistema como , esto es, la

forma normalizada matricial, siendo A, B, C, y D:

A=double(jacobian(DerivadasDelEstado,VectorDeEstados)) %"eval", en
versiones anteriores a 2024b

A = 4×4
 0 1.0000 0 0
 -5.0000 -0.1500 1.2500 0
 0 0 0 1.0000
 2.5000 0 -0.6250 -2.0000

B=double(jacobian(DerivadasDelEstado,Entradas))

B = 4×1
 0
 0
 0
 1

Las salidas que se habían considerado "de interés" eran posición lineal, posición angular, y

tensión de la cuerda.

En forma normalizada, las ecuaciones de salida eran:

vpa(EcSalidaSym)
ans =

Para expresarlas en forma de matriz:

C=double(jacobian(EcSalidaSym,VectorDeEstados))

C = 3×4
 1.0000 0 0 0
 0 0 1.0000 0
 -10.0000 0 2.5000 0

D=double(jacobian(EcSalidaSym,Entradas))

D = 3×1
 0
 0
 0

Con lo que ya estamos en condiciones de crear un objeto "sistema state space" de la

Control Systems Toolbox:

sys=ss(A,B,C,D); %objeto Control System Toolbox
sys.InputName='Tmot';
sys.StateName={'p','v','theta','w'};

14

sys.OutputName={'p','theta','Tension Cuerda'};

Los nombres arriba son meramente "cosméticos", opcionales, para que Matlab etiquete los

resultados con ellos.

Con él, podremos, por ejemplo, simularlo con código "especializado en sistemas lineales"

más eficiente/exacto que algoritmos genéricos (Runge-Kuta).

step(sys,12), grid on %12 segundos ante escalón unitario de par

Ante formas de entrada no estándar:

Tsim=0:0.025:14;
TmotSim = 1*(Tsim<1.4) + (-1)*(Tsim>=1.4 & Tsim<2.1);
lsim(sys,TmotSim,Tsim)

15

Análisis de propiedades

Estabilidad

*repr. interna

lospolos=eig(A)

lospolos = 4×1 complex
 -0.1404 + 2.3196i
 -0.1404 - 2.3196i
 -1.8692 + 0.0000i
 -0.0000 + 0.0000i

*Función/matriz de transferencia

 resulta en una FdT donde el denominador es , por

fórmulas de matriz inversa. Matlab obtiene:

systf=zpk(sys) %Los polos son raíces de denominador
systf =

 From input "Tmot" to output...
 1.25
 p: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

 (s^2 + 0.15s + 5)
 theta: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

16

 2.5 s (s+0.15)
 Tension Cuerda: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

systf.P
ans = 3×1 cell

1

1 [-0.1404 + 2.3196i;-0.1404 - 2.3196i;-1.8692 + 0i;0 + 0i]

2 [-0.1404 + 2.3196i;-0.1404 - 2.3196i;-1.8692 + 0i;0 + 0i]

3 [-0.1404 + 2.3196i;-0.1404 - 2.3196i;-1.8692 + 0i;0 + 0i]

Como hay un polo en cero, el sistema es INESTABLE (marginalmente).

Nótese que la "tensión de la cuerda" NO es inestable (eso lo analizaremos luego).

minreal(systf)
ans =

 From input "Tmot" to output...
 1.25
 p: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

 (s^2 + 0.15s + 5)
 theta: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

 2.5 (s+0.15)
 Tension Cuerda: -------------------------------
 (s+1.869) (s^2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

*Los sistemas con equilibrio "indiferente" tienen polos en el origen (su respuesta libre

contiene constantes: alejados del "cero" algo se mantiene constante sin volver al

"cero", luego lo vemos en detalle).

Pero el sistema es INESTABLE "Bounded Input Bounded Output" porque existen

"entradas acotadas" que resultan en "salidas NO acotadas":

En efecto, la masa desenrollará la polea hasta el infinito si en la realidad pesa "un gramo

más" que el equilibrio calculado... o el motor enrollará totalmente la cuerda si la masa pesa

"un gramo menos" que el equilibrio calculado.

17

El cálculo de T_equilibrio NUNCA será exacto y, sin un sistema de "control en bucle

cerrado", el proceso no podrá ser estabilizado en la práctica, aunque las simulaciones

digan que sí poniendo "exactamente" el par de giro que compensa al peso.

La inestabilidad es "marginal": no se irá a infinito "exponencialmente" sino que, ante un

par de entrada constante ligeramente desequilibrado, la solución de determinadas variables

contendrá la integral de esta entrada (o sea, tendrá forma de "rampa").

step(sys,30), grid on

La justificación, en el dominio de Laplace es la siguiente: si , entonces

la respuesta escalón será y las fracciones simples serán en la forma

términos dependientes de las raíces de . El término antitransforma a

, que va a infinito.

Modos de la respuesta libre

Los autovectores nos darán información adicional, porque si , entonces significa

que si , en tenemos , y como no cambia la direccion de v,

18

continuara siendo un autovector en el futuro si lo es, de modo que la solución de

las EDO será .

[V,Dia]=eig(A);
V

V = 4×4 complex
 -0.0223 - 0.3676i -0.0223 + 0.3676i -0.0710 + 0.0000i 0.2425 + 0.0000i
 0.8557 + 0.0000i 0.8557 + 0.0000i 0.1327 + 0.0000i -0.0000 + 0.0000i
 -0.0824 + 0.1177i -0.0824 - 0.1177i -0.4664 + 0.0000i 0.9701 + 0.0000i
 -0.2613 - 0.2077i -0.2613 + 0.2077i 0.8717 + 0.0000i -0.0000 + 0.0000i

diag(Dia)'

ans = 1×4 complex
 -0.1404 - 2.3196i -0.1404 + 2.3196i -1.8692 + 0.0000i -0.0000 + 0.0000i

El cambio de variable resulta

con T siendo la matriz de vectores propios da lugar a la "forma canónica modal con

coeficientes complejos" con diagonal (poco útil en "ingeniería" que preferimos

números reales, pero con cierta "interpretación" que vamos a discutir):

Anew=inv(V)*A*V

Anew = 4×4 complex
 -0.1404 + 2.3196i -0.0000 + 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i
 -0.0000 - 0.0000i -0.1404 - 2.3196i 0.0000 + 0.0000i -0.0000 + 0.0000i
 0.0000 - 0.0000i 0.0000 + 0.0000i -1.8692 + 0.0000i 0.0000 - 0.0000i
 0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i -0.0000 + 0.0000i

Bnew=inv(V)*B

Bnew = 4×1 complex
 -0.0873 - 0.0650i
 -0.0873 + 0.0650i
 1.1259 - 0.0000i
 0.5106 + 0.0000i

Cnew=C*V

Cnew = 3×4 complex
 -0.0223 - 0.3676i -0.0223 + 0.3676i -0.0710 + 0.0000i 0.2425 + 0.0000i
 -0.0824 + 0.1177i -0.0824 - 0.1177i -0.4664 + 0.0000i 0.9701 + 0.0000i
 0.0164 + 3.9699i 0.0164 - 3.9699i -0.4561 + 0.0000i -0.0000 + 0.0000i

Dnew=D

Dnew = 3×1

19

 0
 0
 0

Los elementos igual a cero en Bnew y Cnew detectan, respectivamente, modos "no

controlables" (la entrada no los puede mover) o "no observables" (esa salida no se desviará

del equilibrio aunque el estado asociado al modo sí esté desviado).

*Con valores propios repetidos (forma de Jordan, triangular) hay que refinar la discusión,

no objeto de este material introductorio.

sys_modal=canon(sys,'modal') %Variación para tener coeficientes
reales, conceptualmente parecida a la "compleja"
sys_modal =

 A =
 x1 x2 x3 x4
 x1 -0.1404 2.32 0 0
 x2 -2.32 -0.1404 0 0
 x3 0 0 -1.869 0
 x4 0 0 0 -1.73e-16

 B =
 Tmot
 x1 1.345
 x2 2.189
 x3 3.552
 x4 4.431

 C =
 x1 x2 x3 x4
 p -0.03118 -0.0009035 -0.0225 0.02795
 theta 0.009304 0.007846 -0.1478 0.1118
 Tension Cuer 0.3351 0.02865 -0.1446 0

 D =
 Tmot
 p 0
 theta 0
 Tension Cuer 0

Continuous-time state-space model.
Model Properties

modo_a_analizar=1;
exp_asociada=diag(Dia(modo_a_analizar,modo_a_analizar))
exp_asociada =
-0.1404 + 2.3196i

direccionmodo=V(:,modo_a_analizar)

direccionmodo = 4×1 complex
 -0.0223 - 0.3676i
 0.8557 + 0.0000i
 -0.0824 + 0.1177i
 -0.2613 - 0.2077i

Los modos 1:2 son modos "oscilatorios" (parte imaginaria no nula). Los 3 y 4 no lo son.

La frecuencia de las oscilaciones propias del modo analizado es:

20

imag(exp_asociada)
ans =
2.3196

y la exponencial de la parte real, como es estrictamente negativa, decae un 98% en

, o sea

log(0.02)./real(exp_asociada) %aprox -4/parte_real_polo
ans =
27.8614

%log(0.02)

*Modos 1 y 2: un modo es el "conjugado" del otro, es "hacia adelante" o "hacia atrás" en el

sentido de giro, pero son físicamente lo mismo.

Las amplitudes relativas (caen exponencialmente) y desfases de posiciones y velocidades

las podemos ver en un diagrama polar:

figure()
polarplot(direccionmodo(1,1),'*b'), hold on
polarplot(direccionmodo(3,1),'*r')
polarplot(direccionmodo(2,1),'ob')
polarplot(direccionmodo(4,1),'or')
hold off
legend("p","theta","v","w")

Relación entre posición y velocidades:

21

 su derivada es , estaría desfasada 90º si , como en

las ecuaciones de condensador y bobina ideal sin resistencias, pongamos, o en sistemas

mecánicos sin rozamiento. El desfase será "cero" o "180" en modos no oscilatorios

().

angle(exp_asociada)*180/pi
ans =
93.4641

angle(direccionmodo(2,1)/direccionmodo(1,1))*180/pi
ans =
93.4641

angle(direccionmodo(4,1)/direccionmodo(3,1))*180/pi
ans =
93.4641

abs(exp_asociada)
ans =
2.3238

abs(direccionmodo(2,1)/direccionmodo(1,1))
ans =
2.3238

abs(direccionmodo(4,1)/direccionmodo(3,1))
ans =
2.3238

figure()
initial(sys,abs(direccionmodo(:,1)).*cos(angle(direccionmodo(:,1))))
grid on

22

Las trayectorias en el plano complejo son espirales logarítmicas en el caso de polos

complejos:

timerange=linspace(0,21,600);
%theta = % Angle parameter
radius = exp((Dia(modo_a_analizar,modo_a_analizar)) * timerange); %
Radius as a function of theta
if modo_a_analizar==4
 plot(real(radius),imag(radius),LineWidth=2,Marker="o")
else
 plot(real(radius),imag(radius),LineWidth=2)
end
grid on
hold on
theta_circle = linspace(0, 2*pi, 100);
radius_in = 0.05;
x_circle = radius_in * cos(theta_circle);
y_circle = radius_in * sin(theta_circle);
plot(x_circle, y_circle, 'r:', 'LineWidth', 2), grid on
axis equal
xlabel('real-axis')
ylabel('imag-axis')
hold off

23

Estabilidad "de los estados" (interna) versus estabilidad "de un par entrada-salida
concreto"

Los valores propios de A son las raíces de denominador de las funciones de transferencia,

porque :

zpk(sys) %hace el cálculo C(sI-A)^{-1}B+D y factoriza la fracción
resultante
ans =

 From input "Tmot" to output...
 1.25
 p: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

 (s^2 + 0.15s + 5)
 theta: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

 2.5 s (s+0.15)
 Tension Cuerda: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

Pero no todas las "salidas" son inestables: la velocidad de las cosas y la tensión de la

cuerda (salida 3 arriba) llegan a un equilibrio.

minreal(zpk(sys)) %cancelamos polos y ceros (simplificamos
fracciones)

24

ans =

 From input "Tmot" to output...
 1.25
 p: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

 (s^2 + 0.15s + 5)
 theta: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

 2.5 (s+0.15)
 Tension Cuerda: -------------------------------
 (s+1.869) (s^2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

Comprobemos lo de las velocidades, viendo las funciones de transferencia:

sys2=ss(A,B,[0 1 0 0;0 0 0 1;C(3,:)],zeros(3,1));
sys2.InputName='Tmot';
sys2.OutputName={'v','omega','Tension_Cuerda'};
zpk(sys2)
ans =

 From input "Tmot" to output...
 1.25 s
 v: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

 s (s^2 + 0.15s + 5)
 omega: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

 2.5 s (s+0.15)
 Tension_Cuerda: ---------------------------------
 s (s+1.869) (s^2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

minreal(zpk(sys2))
ans =

 From input "Tmot" to output...
 1.25
 v: -------------------------------
 (s+1.869) (s^2 + 0.2808s + 5.4)

 (s^2 + 0.15s + 5)
 omega: -------------------------------
 (s+1.869) (s^2 + 0.2808s + 5.4)

 2.5 (s+0.15)
 Tension_Cuerda: -------------------------------
 (s+1.869) (s^2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

25

Aunque la FdT de cierta salida (después de "cancelar" la "s" en numerador y denominador)

sea estable, el sistema "internamente" no lo es: hay estados (variables internas)

que pueden irse a infinito NO OBSERVABLES sólo con medidas de ciertas salidas.

Se dice que el sistema es "externamente" estable entrada/salida (para las salidas
mencionadas: velocidades, tensión cuerda), pero "internamente" inestable, o en la

jerga, existe una "inestabilidad (marginal) interna no detectable" con solamente

sensores de velocidad o tensión de la cuerda. Ello indicaría, que en una aplicación

práctica de "monitorización" o "control", utilizar sólo estos "sensores" sería una decisión

de ingeniería errónea.

sys3=minreal(sys2);
1 state removed.

polosestables=pole(sys3)

polosestables = 3×1 complex
 -0.1404 + 2.3196i
 -0.1404 - 2.3196i
 -1.8692 + 0.0000i

4./real(polosestables) %Tiempo de Establecimiento

ans = 3×1
 -28.4880
 -28.4880
 -2.1400

imag(polosestables) %Frecuencia de las oscilaciones propias

ans = 3×1
 2.3196
 -2.3196
 0

step(sys3), grid on

26

dcgain(sys3) %Valor final (por unidad de Tmot de entrada)

ans = 3×1
 0.1238
 0.4954
 0.0372

*Pero, recordemos que estos cálculos NO sirven de NADA: el sistema es "internamente
inestable" y, por tanto, si lo hacemos funcionar tal y como está, algo se romperá en la

práctica, habrá colisiones de la carga con el suelo o con la polea tarde o temprano.

Será obligatorio utilizar un "sistema de control*" para "estabilizarlo" y dicho sistema de

control deberá tener sensores donde ese modo "s=0" sea "observable", y la inestabilidad

pueda ser "detectada" a partir de las medidas.

*El sistema de control puede, obviamente, ser un "operador humano" (control "manual"),
dado que con su sensor de "visión" podrá "observar" la posición del sistema y "detectar"
que el sistema se está cayendo sin control y subir el par para que pare de caer, o viceversa

(bajar el par si la masa está subiendo sin parar y colisionará con la polea si no se actúa).

Respuesta forzada en frecuencia

Podríamos dibujar el Diagrama de Bode graficando siendo la función de

transferencia, que, a partir de una representación interna es .

A una frecuencia en concreto:

27

Frdat=freqresp(sys,0.25)

Frdat = 3×1 complex
 -0.0723 - 0.4914i
 -0.2709 - 1.9432i
 0.0459 + 0.0560i

abs(Frdat)

ans = 3×1
 0.4967
 1.9620
 0.0724

angle(Frdat)*180/pi

ans = 3×1
 -98.3716
 -97.9364
 50.6647

(Frdat(1)-r*Frdat(2))*k_muelle %Comprobamos tensión cuerda
ans =
-0.0459 - 0.0560i

En el Bode, voy a "escalar" multiplicando por el radio, para tener las posiciones en

"metros" (o sea, posición de la punta de la "cuerda", incremental).

h=bodeplot(sys(1),r*sys(2),sys(3),tf(1/r),logspace(-1.5,3,400));
grid on
h.Responses(1).LineWidth=1.5;
h.Responses(2).LineWidth=1.5;
h.Responses(3).LineWidth=1.5;h.Responses(3).LineStyle='-.';
h.Responses(4).LineStyle=':';
legend("p","r·\theta","Tens.Cuerda",'',Location="best")

28

*La inestabilidad marginal se nota como que la amplitud de la respuesta en frecuencia

tiende a infinito a baja frecuencia... Pero, en un caso general, podría ser que la

inestabilidad "exponencial" no se viera en la respuesta en frecuencia : el sistema

 tiene una respuesta en frecuencia acotada a todas las frecuencias

, pero el transitorio exponencial es inestable.

También se observa una resonancia mecánica alrededor de 2.3 rad/s, que es la frecuencia

"propia" de las oscilaciones de la respuesta libre: aunque las frecuencias de resonancia no

coinciden "exactamente" con las "propias" del sistema suelen estar muy cerca en sistemas

poco amortiguados.

Si quisiéramos ver la aceleración lineal y angular en el rango de frecuencias entre y

, por ejemplo, haríamos:

s=tf('s');
Acels=minreal(s^2*sys(1:2,:)); %Minreal cancela "s" en numerador y
denominador
4 states removed.

Acels.OutputName={'Acel. p','Acel. theta'};
zpk(Acels)
ans =

 From input "Tmot" to output...
 1.25 s
 Acel. p: -------------------------------
 (s+1.869) (s^2 + 0.2808s + 5.4)

29

 s (s^2 + 0.15s + 5)
 Acel. theta: -------------------------------
 (s+1.869) (s^2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

h=bodeplot(Acels(1),r*Acels(2),logspace(-2,2,400));
h.Responses(1).LineWidth=2;
h.Responses(2).LineWidth=2;
grid on
legend("acel. lineal","r*acel. angular",location="best")

Las amplitudes de "posiciones" en resonancia servirían, por ejemplo, para comprobar si

no habrá colisiones al ser excitado a determinada frecuencia, las aceleraciones (o sea,

fuerzas) están relacionadas con el confort de ocupantes de un ascensor, por ejemplo...

Cada aplicación tecnológica tiene unas "salidas de interés" diferentes.

Impedancia mecánica

Es la resp. en frecuencia de la dinámica entre velocidad angular y par del punto de "interfaz

rotacional" con el exterior.

sys_Tmot_to_w=minreal(ss(A,B,[0 0 0 1],0));
1 state removed.

ImpedanciaMecanica=1/sys_Tmot_to_w;
dcgain(ImpedanciaMecanica)
ans =
2.0187

30

coef_fric_equiv=coef_fric_rodamientos+r*r*coef_fric_aire
coef_fric_equiv =
2.0187

h=bodeplot(ImpedanciaMecanica,Inercia*s,tf(coef_fric_equiv));
h.Responses(1).LineWidth=2; grid on

Apéndice (func. auxiliares), Método Euler
¡NO USAR Euler!: Esto solamente tiene una función didáctica... precisamente los códigos

de simulación y animación "profesionales" ("production ready" en la jerga informática) están

hechos para solventar el mal compromiso entre exactitud/eficiencia computacional de éste

método "trivialmente sencillo" Euler explícito/forward.

Euler "explícito" paso fijo

function
[TiemposSIM,EstadosSIM]=odeEuler(dEstadodt,Tintervalo,EstadoInicial,
PasoDeIntegracion)
 TiemposSIM=Tintervalo(1):PasoDeIntegracion:Tintervalo(2);
 Npasos=length(TiemposSIM);
 OrdenSistema=length(EstadoInicial);
 EstadosSIM=zeros(OrdenSistema,Npasos);
 EstadosSIM(:,1)=EstadoInicial;

31

Esto de abajo es el bucle principal de simulación:

 for k=1:(Npasos-1)
 EstadosSIM(:,k+1)= EstadosSIM(:,k) ...
 + dEstadodt(TiemposSIM(k),EstadosSIM(:,k)) *
PasoDeIntegracion;
 end
 EstadosSIM=EstadosSIM'; %cosmético, para coincidir con ode45 el
formato.
 TiemposSIM=TiemposSIM';
end

32

