Modelado de sistema eje-polea-muelle-masa, y analisis de
propiedades

Objetivos: modelar el sistema mecanico de la figura inferior como % = Ax + Bu,

vy = Cx + Du (linealizando), y analizar sus propiedades.

© 2026, Antonio Sala Piqueras, Universitat Politecnica de Valéncia. Todos los derechos
reservados.
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MATRICIAL]
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Ecuaciones del modelado dinamico NO normalizadas

Parametros constantes
Podemos dejarlos "en letra”, pero les voy a dar valores numéricos para luego hacer
simulaciones y célculos.

Masa=2; Inercia=1l; k muelle=10; r=0.25; g=9.8;
1 natural=0.5;
coef fric rodamientos=2; coef fric aire=0.3;

Variables de entrada (el resto seran incognitas)

syms T motor real
Entradas=[T motor]; %Single input
n_entradas=length (Entradas)

n entradas =
1

(1) Ecuaciones elementales

e Masa que se mueve (traslacion):



syms p dpdt v dvdt F result real
Modelo = [dpdt == v;
dvdt == 1/Masa*F result ¥

e Solido que gira:

syms theta dthetadt omega domegadt T result real
Modelo=[Modelo;
dthetadt == omega;
domegadt == T result/Inercia 1; %afiadimos
e Muelle:
syms F muelle longitud muelle real
Modelo=[Modelo;
F muelle == k muelle* (longitud muelle-1 natural) ];
e Una polea:
syms Tension Cuerda Par Cuerda real
Modelo = [Modelo;
Par Cuerda == r*Tension Cuerda 17

e Rozamiento en el giro de motor y polea, y rozamiento con aire

syms T rozamiento F rozamiento real
Modelo=[Modelo;
T rozamiento == coef fric rodamientos*omega;
F rozamiento == coef fric aire * v 17

(2) Balances ( 0 sea, fuerzas y pares resultantes, en mecéanica)

Modelo = [Modelo;
T result == T motor - Par Cuerda - T rozamiento;
Tension Cuerda == F muelle;
F result == F muelle - Masa*g - F rozamiento;
longitud muelle == r*theta - p ];

Modelo %$Objeto symbolic toolbox

Modelo =



dpdt =v

_ F result
dvdt = >

dthetadt = w
domegadt = Tiesule

Fruenle = 10 1()l'lgitll(:lmuelle -5

Tensioncyuerda

Parcyerda = T
Trozamiento = 2 @
3y

F rozamiento — T
10

Tresult = Tmotor - ParCuerda - Troz.amicnto
Tensioncyerda = Fmuelle

98

F result = F muelle — F rozamiento — ?

longitudmyelle = g— p

(3) Contar Ecuaciones e Incognitas, para que sean iguales en numero

N ecuaciones=length (Modelo)

N ecuaciones =
12

Letras=symvar (Modelo) '

Letras =
Fiuelle
Fresurt
Frozamiento
Parcyerda
Trnotor
Tresure
Trozamiento
Tensioncyerda
domegadt
dpdt
dthetadt
dvdt
longitudmyelie

w

P
0
v

length (Letras)



ans =
17

NOTA: El modelo esta completo porque, aunque son simbolos diferentes para Matlab,
realmente:

« "v"y "dvdt" se refieren a la misma incognita "fisica" velocidad,
e "p"y "dpdt" también,

» "theta" y "dthetadt" también,

* "omega"y "domegadt" también.

O sea, esas letras en particular son ocho "syms" que son realmente cuatro "incognitas
sobre variables del sistema fisico (estados).

n_incognitas=length (Letras)-4-n entradas

n_incognitas =
12

if N ecuaciones == n_incognitas

disp ("Modelo BIEN PLANTEADO, COMPLETO")
else

error ("No puedo continuar, el modelo no es correcto")
end

Modelo BIEN PLANTEADO, COMPLETO

Las cuentas coinciden, jbien!: EL MODELO ESTA COMPLETO (no falta ningtin fenémeno
fisico para ser "resoluble" por los matematicos, o "simulable" por métodos numéricos).

(4) Revision final, signos...
Bueno, ya lo he revisado, je... jEstan bien!.

*NOTA 1: Los signos estan pensados en sistema de referencia de "desplazamiento positivo
hacia arriba", "giro positivo antihorario”.

*NOTA 2: una cuerda no puede trabajar a compresion, por tanto Tension Cuerda NO
puede cambiar de signo (positivo 0 negativo segun sistema de referencia, en este caso
segun grafica, Tension Cuerda debe ser positiva, de modo que el muelle hara "cero”
fuerza si la férmula de su fuerza resulta negativa... Este tipo de modelos con "cambios
estructurales" y ecuaciones con maximos/minimos, colisiones entre objetos, etc. quedan
fuera de los objetivos de la asignatura SAU.

Ec. de estado en forma NORMALIZADA

Debemos despejar unicamente "la derivada de las cosas", aunque Matlab despeja "TODO"
lo que se pueda despejar, o que requerira enumerar todas esas letras explicitamente.



Separemos las ecuaciones "estaticas” de las "dinamicas" en el modelo

ModeloParteEstatica=Modelo (5:end)

ModeloParteEstatica =

quelle =10 1Ongiufldmuelle -5

Tensioncyerda

Parcuerdﬂ = T
Trozamiento = 2 @
3v

F rozamiento — T~
10

Tresult = Tmotor - ParCuerda - Trozamicmo
TenSionCuerda =F muelle
98

Fresult = quelle - Frozamiento - ?

longitudmyene = g —p

EcuacionesDeEstadoNoNormalizadas=Modelo (1:4)

EcuacionesDeEstadoNoNormalizadas =
dpdt = v
Fresur
2
dthetadt = w
domegadt = Tresult

dvdt =

La forma "normalizada" sera de orden 4:

VectorDeEstados=[p; v,; theta; omegal;

Forma 1, la que hay que hacer "en el examen"
Debemos ser capaces de despejar "todo lo que no es estado ni entrada” en funcion de
estados y entradas, manipulando las ecuaciones "sin derivadas":

VariablesAEliminar=

[F muelle,F result,Par Cuerda,Tension Cuerda,T result,longitud muell
e, T rozamiento,F rozamiento];
length (VariablesAEliminar)

ans =
8

length (ModeloParteEstatica)

ans =
8

Todo cuadra, "jbingo!"



solVarsEliminar=solve (ModeloParteEstatica,VariablesAEliminar)

solVarsEliminar = struct with fields:
F muelle: (5*theta)/2 - 10*p - 5
F result: (5*theta)/2 - 10*p - (3*v)/10 - 123/5
)

Par Cuerda: (5*theta)/8 - (5*p)/2 - 5/4
Tension Cuerda: (5*theta)/2 - 10*p - 5
T result: T motor - 2*omega + (5*p)/2 - (5*theta)/8 + 5/4

longitud muelle: theta/4 - p
T rozamiento: 2*omega
F rozamiento: (3*v)/10

Por lo que ya podemos sustituir eso en el lado derecho de las ecuaciones de estado:

EcuacionesDeEstadoNormalizadas=subs (EcuacionesDeEstadoNoNormalizadas
,solVarsEliminar) ;
vpa (EcuacionesDeEstadoNormalizadas)

ans =

dpdt =v
dvdt =125 -50p—-0.15v—12.3
dthetadt = w

domegadt = Thotor —2.0w +2.5 p —0.6250 + 1.25

Nota: en la variable "sol" estan todas las posibles ecuaciones de "salida" si alguna de las
variables "eliminadas” fuera de interés para la aplicacion tecnoldgica concreta.

Forma 2, sin separar las ecuaciones con/sin d-/dt, diciendo "Despeja las
derivadas" a Matlab

QuitoEntradasyEstadosDelasLetras=

[F muelle,F result,Par Cuerda,Tension Cuerda,T result,T rozamiento,F
_rozamiento, domegadt, dpdt,dthetadt,dvdt, longitud muelle];

sol formaZ=solve (Modelo,QuitoEntradasyEstadosDeLasLetras);
VectorDeEstados'

ans = (p v 0 w)

DerivadasDelEstado=[sol formaZ2.dpdt;
sol formaZ2.dvdt;
sol formaZ.dthetadt;
sol formaZ2.domegadt ]; %en el mismo orden que vector de

estados, ojo!
vpa (DerivadasDelEstado)

ans =
v
1256 -50p—-0.15v-123
1)
Tmotor —2.0w +2.5 p—0.6250 + 1.25



Ejemplo analisis del sistema: equilibrio
El equilibrio ("estéatica") se alcanzara cuando la fuerza del muelle sea igual al peso y esa
fuerza*radio seaigual al par Tmotor.

Peso=Masa*g

Peso =
19.6000

T motor equilibrio=Peso*r Spar producido por el peso en la polea

T motor equilibrio =

4.9000
Cuando esté todo en equilibrio, las variables se mantendran constantes... y sus derivadas
seran cero:

PtoEquilibO=solve (DerivadasDelEstado==0, [VectorDeEstados; T motor])

PtoEquilib0 = struct with fields:
p: -123/50
v: 0
theta: 0
omega: 0
T motor: 49/10

Matlab encuentra un punto de equilibrio... pero el sistema tiene equilibrio "indiferente™ (en
la jerga de Fisica) y hay "infinitos" puntos de equilibrio, NO hay que fiarse de las maquinas.
Estamos resolviendo 4 ecuaciones con 5 incognitas, jOJO!.

Si afiadimos, por ejemplo, posicion angular prefijada, resulta un equilibrio diferente:

PtoEquilibl=solve ([DerivadasDelEstado==0;theta==1],
[VectorDeEstados; T motor])

PtoEquilibl = struct with fields:
p: -221/100
v: 0
theta: 1
omega: 0
T motor: 49/10

NOTA: un sistema con multiples puntos de equilibrio "indiferente" es "marginalmente
inestable" y tendr& "polos en el origen", si sabes a lo que me estoy refiriendo. Se discutira
mas adelante en este material.

SIMULACION del modelo resultante



Expresamos el modelo en forma "numeérica" y no como "objeto simbdlico": no es lo mismo
el "objeto simbdlico con un caracter "2", otro caracter "+" y otro caracter "2" que el "namero
en coma flotante 4.0000".

EcsEstadoNUM=matlabFunction (DerivadasDelEstado, Vars={VectorDekEstados
,Entradas}) ;

Por supuesto, si hemos hecho los célculos en "Lapiz y Papel" y no tenemos "expresiones
simbdlicas”, entonces tendriamos que teclear en "codigo Matlab" una funcién como sigue:

EcsEstadoNUM LapizYPapel=@ (p, v, theta, omega, Tmotor)
[ v;
1.25*theta-5*p-0.15*v-12.3;
omega;
Tmotor-2*omega+2.5*p-0.625*theta+1.25 ];

*Esto segundo es lo que haras en las practicas de laboratorio donde no utilizamos la
manipulacion simbolica.

La simulacidon necesita de unos valores explicitamente introducidos de la entrada y de un
estado inicial al principio de la simulacién (energia/informacién almacenada del "pasado”):

ejemplo=4;
switch ejemplo %CUATRO EJEMPLOS DIFERENTES
case 1 %$La simulacidén no deberia moverse nada
T motor=@(t) T motor equilibrio;
p _inicial=double (PtoEquilib0.p) ;
v_inicial=double (PtoEquilib0.v) ;
theta inicial=double (PtoEquilib0.theta);
omega inicial=double (PtoEquilib0.omega) ;
case 2 Srespuesta "LIBRE"
T motor=@(t) T motor equilibrio;
p inicial=double (PtoEquilib0.p)-1;
v_inicial=double (PtoEquilib0.v)+0;
theta inicial=double (PtoEquilib0.theta)+0;
omega inicial=double (PtoEquilib0.omega)+0;
case 3%respuesta "FORZADA" desde cond.inic. de equilibrio
T motor=@(t) T motor equilibrio + 0.2*(t<20) + 3*sin(7*t);
p inicial=double (PtoEquilib0.p) ;
v_inicial=double (PtoEquilib0.v);
theta inicial=double (PtoEquilib0.theta);
omega inicial=double (PtoEquilib0.omega)+0;
case 4%respuesta forzada genérica desde cond.inic. arbitrarias
T motor=@(t) T motor equilibrio + 0.2*(t<20) + 3*sin(7*t);
p inicial=double (PtoEquilib0.p)+1;
v_inicial=double (PtoEquilib0.v)+0;
theta inicial=double (PtoEquilib0.theta)+0;
omega inicial=double (PtoEquilib0.omega)+0;
end



CondIniciales=[p inicial;
v_inicial;
-theta inicial;
omega iniciall;

Método Euler
Cuanta mas exactitud queramos, mas coste computacional tendremos.

PasoDeIntegracion=0.01;

Ya podemos hacer la simulacion (integracion numeérica) por ejemplo por Euler (lo mas
sencillo posible):

[TiemposSim, EstadosSim]=...

odeEuler (@ (t,x) EcsEstadoNUM(x,T motor(t)), [0 30],
CondIniciales, PasoDelntegracion);
size (TiemposSim)

ans =
3001 1

size (EstadosSim)

ans =
3001 4

Método ode45 (Runge-Kuta)
En principio este método es mejor... vamos a "machacar" los resultados anteriores.

Cuanta mas exactitud queramos, mas coste computacional tendremos:
opts=odeset ('RelTol',le-5, 'AbsTol',1le-5);
Ya podemos hacer la simulacion (integracion numeérica) por ejemplo por Runge-Kuta RK45:

[TiemposSim, EstadosSim]=...
oded5 (@ (t,x) EcsEstadoNUM(x,T motor(t)), [0 50], CondIniciales,
opts) ;

Gréficas de resultados
Analicemos y representemos el resultado:
size (TiemposSim)

ans =
1713 1

size (EstadosSim)

ans =
1713 4
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$plot (Tiempos, Tmotor (Tiempos)), grid on, title ("Par motor
(Entrada)")

plot (TiemposSim, EstadosSim(:, [1 3])), grid on

legend ("Posicion Masa","\theta",Location="best"), title("Posiciones
simuladas")

Posiciones simuladas
T T T

Posicion Masa | |
0

Como otra "salida de interés" aparte de las posiciones, nos gustaria representar la tension
de la cuerda (por decir algo: las salidas es "lo que queramos que nos interese porque
gueremos ver qué le pasa a esa sefal, porque vamos a instalar un sensor que la mide...),
por lo que vamos a crear una ecuacion de salida:

EcSalidaSym=[p;theta;solVarsEliminar.Tension Cuerda]

EcSalidaSym =
p
0
56
27 _10p-—
3 Op-5

EcSalidaNum=matlabFunction (EcSalidaSym,Vars={VectorDeEstados})

EcSalidaNum = function handle with value:
@(inl) [inl(1,:);inl(3,:);inl(1l,:).*-1.0e+1+inl(3,:).*(5.0./2.0)-5.0]

SalidasPlot=zeros (length (TiemposSim), length (EcSalidaSym)) ;
size (SalidasPlot)

ans =
1713 3

for k=1l:size(EstadosSim, 1)
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SalidasPlot (k, :)=EcSalidaNum (EstadosSim(k,:)"')"';

end
plot (TiemposSim, SalidasPlot), title("Salidas"), grid on
yline (Peso, ':',Label="Peso suspendido")

legend ("Posicion Masa", "Angulo \theta","Tension
Cuerda", Location="best")

30 T T T T

T T T T
Posicion Masa
Angulo 0
Tension Cuerda

20 Peso suspendido_|

15+ b

0 5 10 15 20 25 30 35 40 45 50

Modelo linealizado normalizado en forma matricial y analisis de
propiedades: estabilidad interna/externa, respuesta en frecuencia
[control systems Toolbox]

Revisemos resultado del modelado, ecuaciéon de estado:

VectorDeEstados, Entradas

VectorDeEstados =
p

1%

0

w
Entradas = Totor

vpa (DerivadasDelEstado) %en "numero real", no en "fraccidn
simbdélica"

ans =

12



1%
1250 -50p—-0.15v-123
(0]
Tmotor —2.0w +2.5 p—0.6256 + 1.25
Linealizacion
El sistema es "casi" lineal, excepto los términos 12.3 y 1.25 por longitud natural de muelle y
peso de la masa colgante.

Pero, en "coordenadas incrementales”, desapareceran. Por ejemplo:
dAv _ dv_dve _ dv
d — dt dt — dt
= 1.25(0py + AO) — 5(peg + Ap) — 0.15(vey + Av) — 123 =
= 1.250,4; — 5pey — 0.15v,, — 12.3 + (1.25A0 — 5Ap — 0.15Av) =

-0 =125 -5p—-0.15v =123 =

0
= 1.25A60 — 5Ap — 0.15Av
dx af
Nota: el resultado es idéntico a la "linealizacion rapida" de 7 f(x) omo dt R o Ax

pero como f(x) era "afin" (lineal + constantes) realmente NO hay ninguna aproximacion,

s6lo un "cambio del origen de coordenadas al punto x., donde se supone que se verifica

dx,
f(xeq) =0, de modo que %= 0.

La idea general justificando dA a—fo era:

dAx _ dx dxeq _ N of _ 9f
dt - dt_ dt _f(x) ~ f(jex)"' ax'(x_xeq) axAx

———

0

Claro, en una funcion con forma de "recta” (o hiperplano en general) donde derivadas
segundas y sucesivas sean cero, la serie de Taylor termina en la derivada primera y se
verifica igualdad, sin ninguna aproximacion:

0
f) = f()ocex) + % (X = Xeg)

13



Por tanto, en "incrementos” desde una posicion de equilibrio, podremos expresar

EXACTAMENTE (en el caso afin) al sistema como % = Ax+ Bu, y = Cx+ Du esto es, la
forma normalizada matricial, siendo A, B, C, y D
A=double (jacobian (DerivadasDelEstado,VectorDeEstados)) %"eval", en

versiones anteriores a 2024b

A =

0 1.0000 0 0
-5.0000 -0.1500 1.2500 0
0 0 0 1.0000
2.5000 0 -0.6250 -2.0000

B=double (jacobian (DerivadasDelEstado, Entradas))

B =

= O O O

Las salidas que se habian considerado "de interés" eran posicion lineal, posicion angular, y
tension de la cuerda.

En forma normalizada, las ecuaciones de salida eran:

vpa (EcSalidaSym)

ans =

P
0

256-100p—-5.0
Para expresarlas en forma de matriz:

C=double (jacobian (EcSalidaSym, VectorDeEstados) )

C =

1.0000 0 0 0
0 0 1.0000 0
-10.0000 0 2.5000 0

D=double (jacobian (EcSalidaSym,Entradas))

D =
0
0
0

Con lo que ya estamos en condiciones de crear un objeto "sistema state space" de la
Control Systems Toolbox:

sys=ss (A,B,C,D); %objeto Control System Toolbox

sys.InputName='Tmot"';
sys.StateName={'p', 'v', 'theta', 'w'};

14



sys.OutputName={"'p', "theta', 'Tension Cuerda'};

Los nombres arriba son meramente "cosmeéticos", opcionales, para que Matlab etiquete los
resultados con ellos.

Con él, podremos, por ejemplo, simularlo con codigo "especializado en sistemas lineales"
mas eficiente/exacto que algoritmos genéricos (Runge-Kuta).

step(sys,12), grid on %12 segundos ante escaldn unitario de par

Step Response

From: Tmot
T

=
6]
T
I

To: p
©
6] =
T T
1 1

o

(o]

Amplitude
To: theta
N e

T T
1 1

To: Tension Cuerda

| 1 1 1 1

0 2 4 6 8 10 12
Time (seconds)

Ante formas de entrada no estandar:
Tsim=0:0.025:14;

TmotSim = 1* (Tsim<1l.4) + (-1)*(Tsim>=1.4 & Tsim<2.1);
lsim(sys, TmotSim, Tsim)
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Linear Simulation Results
1 T T T T

05 8

To: p

05 3

To: theta
o

Amplitude

To: Tension Cuerda
o
(62}
T
1

1 1 1

0 2 4 6 8 10 12 14
Time (seconds)

Analisis de propiedades
Estabilidad

*repr. interna % = Ax + Bu

lospolos=eig (A7)

lospolos =
-0.1404 + 2.31961
-0.1404 - 2.31961
-1.8692 + 0.00001
-0.0000 + 0.00001

*Funcidn/matriz de transferencia
G(s) = C(sI — A)"'B + D resulta en una FdT donde el denominador es det(s] — A), por
férmulas de matriz inversa. Matlab obtiene:

systf=zpk(sys) %Los polos son raices de denominador

systf =

From input "Tmot" to output...

1.25
P: e
s (s+1.869) (s”2 + 0.2808s + 5.4)
(s”"2 + 0.15s + 5)
theta: ------- -7

s (s+1.869) (s”2 + 0.2808s + 5.4)
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2.5 s (s+0.15)
Tension Cuerda: ——-—-————————————————————————————
s (s+1.869) (s”2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

systf.P
ans =
)
1 [-0.1404 + 2.3196i;-0.1404 - 2.3196i;-1.8692 + 0i;0 + 0i]
2 [-0.1404 + 2.3196i;-0.1404 - 2.3196i;-1.8692 + 0i;0 + 0i]
5 [-0.1404 + 2.3196i;-0.1404 - 2.3196i;-1.8692 + 0i;0 + 0i]

Como hay un polo en cero, el sistema es INESTABLE (marginalmente).
Notese que la "tension de la cuerda” NO es inestable (eso lo analizaremos luego).

minreal (systf)

ans =

From input "Tmot" to output...

1.25
P: e
s (s+1.869) (s”2 + 0.2808s + 5.4)
(s”"2 + 0.15s + 5)
theta: ------——777----"--—-——————————————

s (s+1.869) (s”2 + 0.2808s + 5.4)
2.5 (s+0.15)
Tension Cuerda: ———————————————————————————————

(s+1.869) (s”2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

*Los sistemas con equilibrio "indiferente"” tienen polos en el origen (su respuesta libre
contiene ¢ = 1 constantes: alejados del "cero" algo se mantiene constante sin volver al

“cero”, luego lo vemos en detalle).

Pero el sistema es INESTABLE "Bounded Input Bounded Output” porque existen
"entradas acotadas" que resultan en "salidas NO acotadas":

En efecto, la masa desenrollara la polea hasta el infinito si en la realidad pesa "un gramo
mas" que el equilibrio calculado... o el motor enrollaré totalmente la cuerda si la masa pesa
"un gramo menos" que el equilibrio calculado.
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El calculo de T_equilibrio NUNCA sera exacto y, sin un sistema de "control en bucle
cerrado", el proceso no podra ser estabilizado en la practica, aunque las simulaciones
digan que si poniendo "exactamente" el par de giro que compensa al peso.

La inestabilidad es "marginal”: no se ira a infinito "exponencialmente" sino que, ante un
par de entrada constante ligeramente desequilibrado, la solucion de determinadas variables
contendra la integral de esta entrada (o sea, tendra forma de "rampa”").

step(sys,30), grid on

Step Response

From: Tmot
T

To: theta
=

o

T

1

Amplitude
(6]
T
1

To: Tension Cuerda

0 5 10 15 20 25 30
Time (seconds)

La justificacidon, en el dominio de Laplace es la siguiente: si G(s) = Gl(s)%, entonces

; 1 , 1 . . )
la respuesta escalon G(s) - 5 serd Gi(s) Y las fracciones simples seran en la forma
S

M N . . : ] A :
= + = +términos dependientes de las raices de G,. El término N/s* antitransforma a

s K

N - t, que va a infinito.

Modos de la respuesta libre
Los autovectores nos daran informacién adicional, porque si Av = Av, entonces significa

dx

It no cambia la direccion de Vv, x(r)

gue si x(0) =v, en t =0 tenemos % = Av, y como
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continuara siendo un autovector en el futuro si x(0) = v lo es, de modo que la solucién de

las EDO serd x(¢) = ¢* - x(0) = & - v.

[V,Dial=eig(A);

\Y%

VvV =
-0.0223 - 0.3676i =-0.0223 + 0.36761i -0.0710 + 0.0000i  0.2425 + 0.0000i
0.8557 + 0.0000i  0.8557 + 0.0000i  0.1327 + 0.0000i -0.0000 + 0.0000i
-0.0824 + 0.1177i -0.0824 - 0.1177i -0.4664 + 0.0000i  0.9701 + 0.0000i
-0.2613 - 0.2077i -0.2613 + 0.2077i  0.8717 + 0.0000i =-0.0000 + 0.0000i

diag (Dia) '

ans =

-0.1404 - 2.31961i -0.1404 + 2.3196i -1.8692 + 0.00001i -0.0000 + 0.00001

El cambio de variable Tx,,, = x resulta

dxnew — T_1 @

f— _1 o _1 . _1 .
7 dt_T (Ax+Bu)= T AT xpe+ 1T B -u

Anew Bew

y=Cx+ Du= CT - xp., + Du
CHC‘W

con 7 siendo la matriz de vectores propios da lugar a la "forma candnica modal con
coeficientes complejos” con A,,,, diagonal (poco util en “ingenieria" que preferimos

nameros reales, pero con cierta “interpretacion” que vamos a discutir):

Anew=inv (V) *A*V

Anew =
-0.1404 + 2.3196i -0.0000 + 0.00004i 0.0000 - 0.00001i -0.0000 - 0.00004i
-0.0000 - 0.0000i -0.1404 - 2.31961 0.0000 + 0.00001i -0.0000 + 0.00004i
0.0000 - 0.00001 0.0000 + 0.00001i -1.8692 + 0.00001 0.0000 - 0.00001
0.0000 - 0.00001 0.0000 + 0.00001 0.0000 - 0.00001i -0.0000 + 0.00004i

Bnew=inv (V) *B

Bnew =
-0.0873 - 0.06501
-0.0873 + 0.06501
1.1259 - 0.00001
0.5106 + 0.00001
Cnew=C*V
Cnew =

-0.0223 - 0.36761i -0.0223 + 0.3676i -0.0710 + 0.00001 0.2425 + 0.00001
-0.0824 + 0.11771 -0.0824 - 0.1177i -0.4664 + 0.00001 0.9701 + 0.00001
0.0164 + 3.96991 0.0164 - 3.9699i -0.4561 + 0.0000i -0.0000 + 0.00001

Dnew=D

Dnew =
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0
0
0

Los elementos igual a cero en Bnew y Cnew detectan, respectivamente, modos "no
controlables" (la entrada no los puede mover) o "no observables" (esa salida no se desviara
del equilibrio aunque el estado asociado al modo si esté desviado).

*Con valores propios repetidos (forma de Jordan, triangular) hay que refinar la discusion,
no objeto de este material introductorio.

sys_modal=canon(sys, 'modal') %Variacidn para tener coeficientes
reales, conceptualmente parecida a la "compleja"

sys _modal =

A =
x1 X2 x3 x4
x1 -0.1404 2.32 0 0
X2 -2.32 -0.1404 0 0
x3 0 0 -1.869 0
x4 0 0 0 -1.73e-16
B =
Tmot
x1 1.345
x2 2.189
x3 3.552
x4  4.431
CcC =
x1 X2 x3 x4
o) -0.03118 -0.0009035 -0.0225 0.02795
theta 0.009304 0.007846 -0.1478 0.1118
Tension Cuer 0.3351 0.02865 -0.144¢6 0
D =
Tmot
o) 0
theta 0
Tension Cuer 0

Continuous-time state-space model.
Model Properties

modo_a analizar=1l;
exp asocilada=diag(Dia(modo a analizar,modo a analizar))

exp asociada =
-0.1404 + 2.31961

direccionmodo=V (:,modo_a analizar)

direccionmodo =
-0.0223 - 0.36761
0.8557 + 0.00001
-0.0824 + 0.11771
-0.2613 - 0.20771

Los modos 1:2 son modos "oscilatorios" (parte imaginaria no nula). Los 3y 4 no lo son.

La frecuencia de las oscilaciones propias del modo analizado es:
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imag (exp asociada)

ans =
2.3196

y la exponencial de la parte real, como es estrictamente negativa, decae un 98% en
RPNt = 0.02, 0 sea Re(polo) - t,y = 0.02

log(0.02) ./real (exp asociada) %aprox -4/parte real polo

ans =
27.8614

%$1og (0.02)
*Modos 1y 2: un modo es el "conjugado” del otro, es "hacia adelante" o "hacia atras" en el
sentido de giro, pero son fisicamente lo mismo.

Las amplitudes relativas (caen exponencialmente) y desfases de posiciones y velocidades
las podemos ver en un diagrama polar:

figure ()
polarplot (direccionmodo (1,1), "*b'), hold on
polarplot (direccionmodo (3,1), "*r")
polarplot (direccionmodo (2,1), 'ob'")
polarplot (direccionmodo (4,1), 'or'")
hold off
legend("p", "theta", HVH, "W")
90°
120° 60°
0.8
0.6
150° 30°
0.4
0.2
* *p
o o h
180 0 00 é:/eta
Oow
o]
*
210° 330°
240° 300°

270°

Relacion entre posicion y velocidades:
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E=C -9 sy derivada es & = (a + bj) - £, estaria desfasada 90° si a = 0, como en
las ecuaciones de condensador y bobina ideal sin resistencias, pongamos, 0 en sistemas
mecanicos sin rozamiento. El desfase sera "cero" o0 "180" en modos no oscilatorios

(b=0).
angle (exp_asociada) *180/pi

ans =
93.4641

angle (direccionmodo (2,1) /direccionmodo (1,1))*180/pi

ans =
93.4641

angle (direccionmodo (4,1) /direccionmodo (3,1))*180/pi

ans =
93.4641

abs (exp asociada)

ans =
2.3238

abs (direccionmodo (2,1) /direccionmodo (1,1))

ans =
2.3238

abs (direccionmodo (4, 1) /direccionmodo (3,1))

ans =
2.3238

figure ()
initial (sys,abs(direccionmodo(:,1)) .*cos (angle(direccionmodo(:,1))))
grid on
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Response to Initial Conditions
T T T

0.4 T

0.2 3

To: p
o
T

Amplitude
To: theta

To: Tension Cuerda

0 5 10 15 20 25 30 35 40 45
Time (seconds)

Las trayectorias en el plano complejo son espirales logaritmicas en el caso de polos
complejos:

timerange=linspace (0,21,600);

stheta = % Angle parameter
radius = exp((Dia(modo a analizar,modo_a analizar)) * timerange); 5

Radius as a function of theta
i1f modo a analizar==4

plot (real (radius), imag(radius) ,LineWidth=2,Marker="0")
else

plot (real (radius), imag (radius) ,LineWidth=2)

end

grid on

hold on

theta circle = linspace(0, 2*pi, 100);
radius _in = 0.05;

x circle = radius_in * cos(theta circle);
y circle = radius in * sin(theta circle);

plot(x circle, y circle, 'r:', 'LineWidth', 2), grid on
axis equal

xlabel ('real-axis"')

ylabel ('imag-axis"')

hold off
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0.2

imag-axis

-0.2

041

-0.6 -

1 | 1 I 1 1 1 1 1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
real-axis

Estabilidad "de los estados™ (interna) versus estabilidad "de un par entrada-salida
concreto”

Los valores propios de A son las raices de denominador de las funciones de transferencia,

_ 1 .
porque (SI— A) I= m . ad]( (SI — A)T)Z

zpk (sys) Shace el céalculo C(sI-A)"{-1}B+D y factoriza la fraccidn
resultante

ans =

From input "Tmot" to output...

1.25
P:  mommm oo mm oo
s (s+1.869) (s"2 + 0.2808s + 5.4)
(s”2 + 0.15s + 5)
theta: -------"-""""""""""""""""-"-"-"-"--"—

s (s+1.869) (s"2 + 0.2808s + 5.4)
2.5 s (s+0.15)
Tension Cuerda: -——-——————————————————————————————

s (s+1.869) (s”2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

Pero no todas las "salidas" son inestables: la velocidad de las cosas y la tension de la
cuerda (salida 3 arriba) llegan a un equilibrio.

minreal (zpk (sys)) %$cancelamos polos y ceros (simplificamos
fracciones)

24



ans =

From input "Tmot" to output...

1.25
P: T m oo
s (s+1.869) (s"2 + 0.2808s + 5.4)
(s”2 + 0.15s + 5)
theta: ------""""""""""""""""""-"-"-"-"-"-"——

s (s+1.869) (s"2 + 0.2808s + 5.4)
2.5 (s+0.15)
Tension Cuerda: ——-————————————————————————————

(s+1.869) (s"2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

Comprobemos lo de las velocidades, viendo las funciones de transferencia:

sys2=ss(A,B, [0 1 0 0;0 0 0 1;C(3,:)],zeros(3,1));
sys2.InputName='Tmot"';
sys2.0OutputName={'v', 'omega', 'Tension Cuerda'};
zpk (sys2)

ans =

From input "Tmot" to output...

1.25 s
Vi mmmmm e
s (s+1.869) (s”2 + 0.2808s + 5.4)
s (s”2 4+ 0.15s + 5)
omega: —mmmmmmm

s (s+1.869) (s”2 + 0.2808s + 5.4)
2.5 s (s+0.15)
Tension Cuerda: ——-——————————————————————————————

s (s+1.869) (s"2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

minreal (zpk (sys2))
ans =

From input "Tmot" to output...

1.25
A it
(s+1.869) (s”2 + 0.2808s + 5.4)
(s"2 + 0.15s + 5)
omega: —o-mmT oo m oo oo ————

(s+1.869) (s”2 + 0.2808s + 5.4)
2.5 (s+0.15)
Tension Cuerda: ——-———-—————————————————————————

(s+1.869) (s"2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties
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Aunque la FdT de cierta salida (después de "cancelar” la "s" en numerador y denominador)
sea estable, el sistema "internamente” no lo es: hay estados (variables internas)

gue pueden irse a infinito NO OBSERVABLES so6lo con medidas de ciertas salidas.

Se dice que el sistema es "externamente" estable entrada/salida (para las salidas
mencionadas: velocidades, tensidén cuerda), pero "internamente" inestable, o en la
jerga, existe una "inestabilidad (marginal) interna no detectable" con solamente
sensores de velocidad o tension de la cuerda. Ello indicaria, que en una aplicacion
practica de "monitorizacion™ o “control”, utilizar sélo estos "sensores" seria una decision

de ingenieria errénea.

sys3=minreal (sys2);
1 state removed.
polosestables=pole (sys3)

polosestables =
-0.1404 + 2.31961
-0.1404 - 2.31961
-1.8692 + 0.00001

4./real (polosestables) %Tiempo de Establecimiento

ans =
-28.4880
-28.4880
-2.1400

imag (polosestables) %Frecuencia de las oscilaciones propias

ans =
2.3196
-2.3196

0

step(sys3), grid on
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Step Response
From: Tmot
T

0.2 T T
0.15 - al
s 0.1 7
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©
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Amplitude

o

To: Tensioncuerda

0 5 10 15 20 25 30 35 40
Time (seconds)

dcgain(sys3) %Valor final (por unidad de Tmot de entrada)

0.1238
0.4954
0.0372

*Pero, recordemos que estos céalculos NO sirven de NADA: el sistema es "internamente
inestable" y, por tanto, si lo hacemos funcionar tal y como estd, algo se rompera en la
practica, habra colisiones de la carga con el suelo o con la polea tarde o temprano.

Sera obligatorio utilizar un "sistema de control*" para "estabilizarlo" y dicho sistema de
control debera tener sensores donde ese modo "s=0" sea "observable", y la inestabilidad
pueda ser "detectada" a partir de las medidas.

*El sistema de control puede, obviamente, ser un "operador humano" (control "manual”),
dado que con su sensor de "vision" podra "observar" la posicion del sistema y "detectar"
gue el sistema se esta cayendo sin control y subir el par para que pare de caer, o viceversa
(bajar el par si la masa esta subiendo sin parar y colisionara con la polea si no se actua).

Respuesta forzada en frecuencia

Podriamos dibujar el Diagrama de Bode graficando G(jw) siendo G(s) la funcion de

transferencia, que, a partir de una representacion interna es G(s) = C - (sl — A ' B+D.

A una frecuencia en concreto:
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Frdat=freqresp(sys,0.25)

Frdat =
-0.0723 - 0.49141
-0.2709 - 1.94321
0.0459 + 0.05601

abs (Frdat)

ans =
0.4967
1.9620
0.0724

angle (Frdat) *180/pi

ans =
-98.3716
-97.9364
50.6647

(Frdat (1) -r*Frdat (2) ) *k muelle %Comprobamos tensidén cuerda

ans =
-0.0459 - 0.05601

En el Bode, voy a "escalar" multiplicando & por el radio, para tener las posiciones en

"metros" (o0 sea, posicidén de la punta de la "cuerda”, incremental).

h=bodeplot (sys(l),r*sys(2),sys(3),tf(1/r),logspace(-1.5,3,400));

grid on
h.Responses (1
h.Responses (
h.Responses (
h.Responses (
legend ("p","

3

)
2)
)
4)
r

.LineWidth=1.5;

.LineWidth=1.5;
.LineWidth=1.5;h.Responses (3) .LineStyle="'-.";
.LineStyle=":";

‘\theta", "Tens.Cuerda", '', Location="best")
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Bode Diagram
From: Tmot To: Out(1)
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*La inestabilidad marginal se nota como que la amplitud de la respuesta en frecuencia
tiende a infinito a baja frecuencia... Pero, en un caso general, podria ser que la

inestabilidad "exponencial” no se viera en la respuesta en frecuencia G(jw): el sistema
G(s) = 1/(s — 2) tiene una respuesta en frecuencia acotada a todas las frecuencias

1/(jw — 1), pero el transitorio exponencial es inestable.

También se observa una resonancia mecanica alrededor de 2.3 rad/s, que es la frecuencia
"propia" de las oscilaciones de la respuesta libre: aunque las frecuencias de resonancia no

coinciden "exactamente" con las "propias" del sistema suelen estar muy cerca en sistemas
poco amortiguados.

Si quisiéramos ver la aceleracion lineal y angular en el rango de frecuencias entre 1072 y
107, por ejemplo, hariamos:
s=tf('s');

Acels=minreal (s"2*sys(l1:2,:)); %Minreal cancela "s" en numerador y
denominador

4 states removed.

Acels.OutputName={"'Acel. p', "Acel. theta'};
zpk (Acels)

ans =

From input "Tmot" to output...
1.25 s
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s (s”2 + 0.15s + 5)
Acel. theta: -----"""""""""""""""""-"—"-"--"-"———
(s+1.869) (s"2 + 0.2808s + 5.4)

Continuous-time zero/pole/gain model.
Model Properties

h=bodeplot (Acels (1), r*Acels (2), logspace(-2,2,400));
h.Responses (1) .LineWidth=2;

h.Responses (2) .LineWidth=2;

grid on

legend("acel. lineal","r*acel. angular",location="best")

Bode Diagram
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Las amplitudes de "posiciones" en resonancia servirian, por ejemplo, para comprobar si
no habra colisiones al ser excitado a determinada frecuencia, las aceleraciones (o sea,
fuerzas) estan relacionadas con el confort de ocupantes de un ascensor, por ejemplo...
Cada aplicacion tecnoldgica tiene unas "salidas de interés" diferentes.

Impedancia mecanica
Es la resp. en frecuencia de la dinamica entre velocidad angular y par del punto de "interfaz
rotacional" con el exterior.

sys Tmot to w=minreal(ss(A,B,[0 0 0 1],0));

1 state removed.

ImpedanciaMecanica=1/sys Tmot to w;
dcgain (ImpedanciaMecanica)

ans =
2.0187
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coef fric equiv=coef fric rodamientos+r*r*coef fric aire

coef fric equiv =
2.0187

h=bodeplot (ImpedanciaMecanica, Inercia*s, tf (coef fric equiv));

h.Responses (1) .LineWidth=2; grid on

Bode Diagram
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Apéndice (func. auxiliares), Método Euler

10?

iNO USAR Euler!: Esto solamente tiene una funcién didactica... precisamente los cédigos
de simulacion y animacion "profesionales” ("production ready" en la jerga informatica) estan
hechos para solventar el mal compromiso entre exactitud/eficiencia computacional de éste

método "trivialmente sencillo” Euler explicito/forward.

Euler "explicito™ paso fijo

function

[TiemposSIM, EstadosSIM]=odeEuler (dEstadodt, Tintervalo,EstadoInicial,

PasoDeIntegracion)

TiemposSIM=Tintervalo (l) :PasoDelIntegracion:Tintervalo (2);

Npasos=length (TiemposSIM) ;
OrdenSistema=length (EstadoInicial);
EstadosSIM=zeros (OrdenSistema, Npasos) ;
EstadosSIM(:,1)=EstadoInicial;
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Esto de abajo es el bucle principal de simulacion:

for k=1: (Npasos-1)
EstadosSIM(:, k+1)= EstadosSIM(:, k)
+ dEstadodt (TiemposSIM (k) ,EstadosSIM(:,k)) *

PasoDeIntegracion;

end

EstadosSIM=EstadosSIM'; %cosmético, para coincidir con ode4d5 el
formato.

TiemposSIM=TiemposSIM';
end
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