
Robust performance, Matlab SISO case study, 5/(s+1)^2: mu-
synthesis
© 2022, Antonio Sala Piqueras, Universitat Politècnica de València. All rights reserved.

This code ran with no errors in Matlab R2022a

Presentations (video):

http://personales.upv.es/asala/YT/V/cerp4muEN.html , http://personales.upv.es/asala/YT/V/

cerp5muEN.html .

Objectives: Understand the ideas behind the theory of robust performance and scaled small gain,

with a second-order single-variable example, executed with -synthesis (looking for multipliers in an

iterative automated way) instead of looking for multipliers "by hand" as in previous videos that were

only of didactic/illustrative interest, but not advised as a go-to option in actual control design problems.

Table of Contents

Plant Model..1
Target robust performance bound (in frecuency domain).. 2

Mu-Synthesis design for robust performance.. 2
Theoretical goal..2
Generalized Plant (2x2) for musyn... 3
Generalized Plant 3x3 from 2x2 + uncertainty inside (for comparison, this is NOT necessary).........4

Weighted generalised plant (2x2) for musyn..5
Mu-synthesis..6
Reduced-order controller... 6

Controller order reduction...7
Direct MUSYN optimization of a PID regulator...8

Time and frequency simulation..9

Plant Model
s=tf('s');
G=5/(s+1)^2; %model, NOMINAL

BoundDelta=0.5; %Unstructured additive uncertainty size
Greal=G+BoundDelta*ultidyn("DeltaNormalized"); %uncertain model for mu-síntesis

Greal_simul=G+BoundDelta*ultidyn("DeltaNormalized")*1/(0.03*s+1);
%we kill things from 33 rad/s onwards in simulations.

step(Greal_simul,G,12), grid on

1

http://personales.upv.es/asala/YT/V/cerp4muEN.html
http://personales.upv.es/asala/YT/V/cerp5muEN.html
http://personales.upv.es/asala/YT/V/cerp5muEN.html

bodemag(Greal_simul,logspace(-1,2)), grid on, hold on
bodemag(G,logspace(-1,2)), hold off, legend("Delta*LowPass", "Nominal",Location="best")

Target robust performance bound (in frecuency domain)

TargetBandwidth=1.01; %approx. inverse prop. to rise time
templateErr=makeweight(0.01,TargetBandwidth,1.8);
bodemag(templateErr,tf(1)), grid on
title("Ref->Error Bode Diagram maximum modulus, template")
legend("desired maximum template","0 dB (100% error)",Location='best')

Note: for simplicity, we do not limit the control action by "performance" reasons (saturation, etc.),

although in applications it would be recommended. In any case, the robustness in the face of additive

uncertainty is achieved by limiting "u", so, actually, we are implicitly limiting "u" somehow.

Mu-Synthesis design for robust performance
Theoretical goal

2

We would try to build a generalized 3x3 plant with uncertainty to apply (for example) scaled small gain

theorem if we wanted to run the multiplier search on our own (as "manually" done in other previous

videos).

If, however, we build with an uncertain model only the 2x2 part that refers to groups 2 and 3, Matlab's

Robust Control Toolbox takes care of extracting the uncertainty and (internally) setting up the 3x3

plant. [When I say 2x2 or 3x3 I mean "groups" of signals, each group has different dimensions,

depending on each specific problem to be solved].

*If we want to "explicitly" see the 3x3 plant that musyn uses, we can do it with the lftdata command

(see below), but this explicit use is not necessary in most simple cases (musyn already takes care of

it), and we'll pose the generalized plant with the uncertainty "inside".

Generalized Plant (2x2) for musyn

We will write [err;err]=[1 -Greal;1 -Greal]*[ref;u] avoiding multi-incidence of Greal:

PGenMu=minreal([[1;1] [-1;-1]*Greal])%if we execute "ss" then uncertainty is destroyed. Matlab does it in state-space form anyway.

3

PGenMu =

 Uncertain continuous-time state-space model with 2 outputs, 2 inputs, 2 states.
 The model uncertainty consists of the following blocks:
 DeltaNormalized: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences

Type "PGenMu.NominalValue" to see the nominal value, "get(PGenMu)" to see all properties, and "PGenMu.Uncertainty" to interact with the uncertain elements.

Generalized Plant 3x3 from 2x2 + uncertainty inside (for comparison, this is NOT necessary)

We extract the uncertainty with lftdata as follows (it is really NOT necessary to do this; it is already

done, internally, by musyn, transparent to us):

[M,Delta]=lftdata(PGenMu);
size(M)

State-space model with 3 outputs, 3 inputs, and 2 states.

Delta

Delta =

 Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 0 states.
 The model uncertainty consists of the following blocks:
 DeltaNormalized: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences

Type "Delta.NominalValue" to see the nominal value, "get(Delta)" to see all properties, and "Delta.Uncertainty" to interact with the uncertain elements.

zpk(M)

ans =

 From input 1 to output...
 1: 0

 2: -0.5

 3: -0.5

 From input 2 to output...
 1: 0

 2: 1

 3: 1

 From input 3 to output...
 1: 1

 -5
 2: -------
 (s+1)^2

 -5
 3: -------
 (s+1)^2

Continuous-time zero/pole/gain model.

4

It coincides with what we had proposed when searching "by hand" for the multiplier in other earlier

videos. Indeed:

PGenOtherVideo=minreal(ss([0 0 1;-1 1 -G;-1 1 -G])); %NOT NEEDED when using musyn
zpk(PGenOtherVideo*blkdiag(BoundDelta,1,1)) %We add input weight with size of uncertainty %NOT NEEDED when using musyn

ans =

 From input 1 to output...
 1: 0

 2: -0.5

 3: -0.5

 From input 2 to output...
 1: 0

 2: 1

 3: 1

 From input 3 to output...
 1: 1

 -5
 2: -------
 (s+1)^2

 -5
 3: -------
 (s+1)^2

Continuous-time zero/pole/gain model.

Weighted generalised plant (2x2) for musyn

Wref=1;
Win=blkdiag(Wref,1);

5

Wout=minreal(blkdiag(1/templateErr,1));

1 state removed.

PGenPond=Wout*PGenMu*Win %uncertainty is inside PGenMu

PGenPond =

 Uncertain continuous-time state-space model with 2 outputs, 2 inputs, 3 states.
 The model uncertainty consists of the following blocks:
 DeltaNormalized: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences

Type "PGenPond.NominalValue" to see the nominal value, "get(PGenPond)" to see all properties, and "PGenPond.Uncertainty" to interact with the uncertain elements.

Mu-synthesis

Automated hinfsyn plus scaled-small-gain multiplier search (iterative) is done with:

tic, [Kmu,GAM]=musyn(PGenPond,1,1); toc, GAM %we do not explicitly use "M" "Delta" from lftdata, musyn does that internally

D-K ITERATION SUMMARY:

 Robust performance Fit order

 Iter K Step Peak MU D Fit D
 1 1.021 1.021 1.025 4
 2 1.001 1.001 1.005 8
 3 0.9986 0.9986 0.9987 8
 4 0.9981 0.9981 0.9984 8

Best achieved robust performance: 0.998

Elapsed time is 1.991494 seconds.
GAM = 0.9981

*The scaling for an ultidyn SISO is a dynamic one, , which improves the performance GAM that

can be proven (with respect to a constant multiplier seen in other preliminary videos). See D fit,
Fit Order.

It would be a "theoretically better" option if the uncertainty is linear and time invariant... but notice

how the dynamic multiplier raises the order of the resulting regulator. However, it would not prove

robustness against non-linearity with harmonic distortion or variation in time.

size(Kmu) %lti uncertainty permite pesos en frecuencia, por eso sube el orden.

State-space model with 1 outputs, 1 inputs, and 11 states.

Reduced-order controller

There are several options:

• reduce the order of the controller obtained with musyn,

• Tell musyn with some options to reduce the "fit order" of the "D" scaling

• Directly optimize a tunable fixed-structure controller of lower order (such as a PID)

6

We'll discuss first and third options.

Controller order reduction

hsvd(Kmu) %many small singular values is good news

ans = 11×1
 10.9823
 0.4618
 0.2640
 0.0316
 0.0006
 0.0005
 0.0003
 0.0001
 0.0001
 0.0000

Kmu_reduced=balred(Kmu,3);
wcgain(lft(PGenPond,Kmu_reduced))

ans = struct with fields:
 LowerBound: 0.9984
 UpperBound: 1.0005
 CriticalFrequency: 0.9415

zpk(Kmu_reduced)

ans =

 -0.063784 (s-9031) (s+1.182) (s+0.895)

 (s+665.3) (s+4.892) (s+0.008398)

Continuous-time zero/pole/gain model.

There is a "very fast" pole we will remove with freqsep, to see what we can get:

[Kslow,Kfast]=freqsep(Kmu_reduced,150);
zpk(Kslow)

ans =

 -0.063784 (s-0.3137) (s+43.86)

 (s+0.008398) (s+4.892)

Continuous-time zero/pole/gain model.

zpk(Kfast)

ans =

 621.13

 (s+665.3)

Continuous-time zero/pole/gain model.

7

Kmu_reduced2=Kslow+dcgain(Kfast);
wcgain(lft(PGenPond,Kmu_reduced2)) %we still have robust performance

ans = struct with fields:
 LowerBound: 0.9965
 UpperBound: 0.9983
 CriticalFrequency: 0.7940

zpk(Kmu_reduced2) %it's a PID+'noise filter' controller

ans =

 0.86976 (s+0.915) (s+1.151)

 (s+0.008398) (s+4.892)

Continuous-time zero/pole/gain model.

The resulting controller closely resembles a PID with a noise filter... this suggests direct optimization of

a PID, which we'll see below.

Direct MUSYN optimization of a PID regulator

PID=tunablePID('PIDtest','PID');
ClosedLoopWithPID=lft(PGenPond,PID);tic
[TunedCL,GAM]=musyn(ClosedLoopWithPID); GAM,toc

D-K ITERATION SUMMARY:

 Robust performance Fit order

 Iter K Step Peak MU D Fit D
 1 1.022 1.022 1.024 4
 2 1.005 1.005 1.008 8
 3 1.002 1.001 1.002 8
 4 1.001 1.001 1.001 8

Best achieved robust performance: 1
GAM = 1.0009
Elapsed time is 2.996113 seconds.

Well, we haven't lost practically anything with respect to the generic "state space" regulator. Well, it

would still be necessary to reduce the bandwidth a bit to be "below" 1 as conceptually required, but

0.001 excess norm is not going to matter in practice (the internal tolerance of the H-infinity solvers by

default is already 1 percent)...

TunedPID=pid(TunedCL.Blocks.PIDtest)

TunedPID =

 1 s
 Kp + Ki * --- + Kd * --------
 s Tf*s+1

 with Kp = 0.332, Ki = 0.189, Kd = 0.11, Tf = 0.206

8

Name: PIDtest
Continuous-time PIDF controller in parallel form.

zpk(TunedPID) %quite similar to Kmu_reduced2 above, they achieve basically the same, apart from numerical tolerance stuff

ans =

 0.86741 (s+1.19) (s+0.8884)

 s (s+4.863)

Name: PIDtest
Continuous-time zero/pole/gain model.

Time and frequency simulation
Kfinal=Kmu_reduced2;
%Kfinal=TunedPID;
step(feedback(Greal*Kfinal,1),feedback(Greal_simul*Kfinal,1),8), grid on
legend(" Delta 0.5"," Delta 0.5*LowPass")

bodemag(feedback(1,Greal*Kfinal),feedback(1,Greal_simul*Kfinal),templateErr,logspace(-2.5,2.5)), grid on
h_line=findobj(gcf,'type','line');
h_line(46).LineWidth=4; %trial and error to get the right line to make thicker
legend("Delta 0.5","Delta 0.5*LowPass","cota máx. PR",Location="best") %error

Control action? Any "final" control design must have a "sensible" control action. We have not limited it

theoretically, but it is important in practice, so let's see what it is:

step(feedback(Kfinal,Greal_simul),6), grid on
title("ref->u time response (step)")

9

bodemag(feedback(Kfinal,Greal_simul),tf(1/BoundDelta),logspace(-2.5,2.5))
grid on, title("ref->u frequency response"),legend("Closed Loop","Small gain bound (robust stability)")

Of course, it is below the robust stability bound (non-scaled small gain theorem), as robust

performance is more stringent than robust stability. [robust stability requires the NOMINAL

 being below the bound].

10

