Total Least Squares (TLS): multivariate example with 5 random
variables

© 2022, Antonio Sala Pigueras, Universitat Politecnica de Valéncia. All rights reserved.
This code successfully executed on Matlab R2022a
Obijective: illustrating a Total Least Squares case study involving five correlated variables.

Presentations in video:

http://personales.upv.es/asala/YT/V/t1ls51EN.html , http://
personales.upv.es/asala/YT/V/tls52EN.html

Table of Contents

Data generation (W @re GOO).......iiiiiieiiiie e eeeiiis e et e et e e e e e e e s e e e e et e e e e e e et e e e e e eataareeeeeessaneeaas
L@ o [T =T A ISR (o] = ST o | TR TP
LS =E] (] 1 1= LT PR O PP PPTTTRRRT

Data generation (we are God)

Let us consider a "hidden" model where two variables (yy, y,) are a linear function of other three ones

(x1,x2,x3). Well, TLS will seek finding correlations in the vector (y1, y2, x1, X2, x3).
The model will be in the form
(V1 Y2Inxe = (x1 X2 X3)nx3 - O3x2

so each sample of data has the variables in a "row", being /Vthe number of samples.
We may express an equivalent model in "column” form, of course, just transposing.

Xclean=randn (90000, 3) *diag ([25 1.7 18]);%random X data
ThetaClean=[2 40 5;-2 10 3]

ThetaClean =
2 -2

40 10

5 3

Yclean=Xclean*ThetaClean;

%TLS assumes clean linearly-related data are corrupted by independent
$measurement noise in all channels, let's do it...

stdxl=6; stdx2=0.4; stdx3=5; stdyl=0.5; stdy2=7.5;

stdX=diag ([stdxl stdx2 stdx3]); stdY=diag([stdyl stdy2]);
X=Xclean+randn (size (Xclean)) *stdX; %measurement noise in X

http://personales.upv.es/asala/YT/V/tls51EN.html
http://personales.upv.es/asala/YT/V/tls52EN.html
http://personales.upv.es/asala/YT/V/tls52EN.html

Y=Yclean+randn (size (Yclean)) *stdY¥; $measurement noise in Y
%of course, only X and Y are actually "accessible" to the data engineer in the code bel

Ordinary LS (biased)
Y = X@, we may obtain 6 with:

Th LS biased=pinv (X) *Y

Th LS biased =

1.8891 -1.8880
37.8767 9.4249
4.6395 2.7845
ThetaClean
ThetaClean =
2 -2
40 10
5 3

Biased because we do not recover the correct theta even with "a lot" of data.

TLS estimate
*We'll assume that standard deviations of the random additive noise are known... that assumption may
actually be difficult in practice!.

Data in rows
size (X)

ans =
90000 3

size (Y)

ans =
90000 2

stdX=diag ([stdxl stdx2 stdx3]); %we repeat because we cannot access (supposedly) the d:

stdY=diag([stdyl stdy2]); S%Swe repeat because we cannot access (supposedly) the data ger
Xesc=(X-mean (X)) *inv (stdX); %we scale to zero mean and unit variance measurement noise
Yesc=(Y-mean (Y)) *inv (std¥); %we scale to zero mean and unit variance measurement noise
Data esc=[Yesc Xesc]; %Now all five columns have "unit variance measurement noise|

[N,m]=size (Data esc)

N 90000
m = 5

*Note: in the video, | first divided by standard deviation and | subtracted the mean later on... It's
OK but, well, what everybody does to center data is first subtracting the mean and then dividing by
standard deviation, so | changed it in the materials.

tic

[U,S,V]:svd(Data_esc/sqrt(N—l),'econ'); %$TLS and SVD are the same with the proposed sc:
%$dividing by sqgrt (N-1), S has units of standard deviation

toc %$svd is fast.

Elapsed time is 0.008457 seconds.

The standard deviation of each principal component is:
diag(S)' %I should find the model as "unit noise" singular values, given the above| scal

ans =
247.0704 10.1631 4.2263 0.9999 0.9987

size (U)

ans =
90000 5

size (V) %$the 5x5 matrix is the one to use in TLS

ans =
5 5

Model scaled=V(:,4:5) %model relating scaled variables

Model scaled =
-0.0163 0.0062
0.2895 0.2725
0.8526 0.2881
0.3664 -0.3414
0.2340 -0.8522

So we have "[Yesc Xesc]*Model_scaled =~ 0". TLS does not know whether any of these variables are

"inputs” or "outputs". As we generated data with Y = X0, let us solve for Y to check what we get.
Once we undo the scaling, we will have

YM,+XM>=0, thus YM,=—-XM,, andfinally Y = —X - M,M7".

ModX sc=Model scaled(3:5,:)

ModX sc =
0.8526 0.2881
0.3664 -0.3414
0.2340 -0.8522

ModY sc=Model scaled(1l:2,:)

ModY sc =

-0.0163 0.0062
0.2895 0.2725

ModX=stdX\ModX sc %matrix multiplying X in original units in the found model (M2 above)

ModX =
0.1421 0.0480
0.9160 -0.8534
0.0468 -0.1704

ModY=stdY\ModY sc S%matrix multiplying Y in original units in the found model (M1l above

ModY =
-0.0325 0.0123
0.0386 0.0363

ThetaEstimTLS=-ModX*inv (ModY) %estimated TLS parameter, solving for Y explicitly

ThetaEstimTLS =
1.9968 -1.9982
39.9640 9.9556
4.9960 2.9992

It's unbiased when comparing to our ideal "clean” parameter we used when generating the data:

ThetaClean

ThetaClean =
2 -2
40 10
5 3

Data arranged in "columns"

X=X"';Y=Y"';
size (X)

ans =
3 90000

size (Y)

ans =
2 90000

We would now have

stdX=diag ([stdxl stdx2 stdx3]):;
stdY=diag ([stdyl stdy2]):;
Xesc=1inv (stdX) *X;

Yesc=inv (std¥) *Y;

Data esc=[Yesc; Xesc];

[m,N]=size (Data esc)

m = 5
N = 90000

Data esc=Data esc-sum(Data esc,2)/N; S%$subtract the mean, now summing along dimension 2
[U,S,V]=svd(Data esc/sqrt (N-1), 'econ');
diag(S)"'

ans =
247.0704 10.1631 4.2263 0.9999 0.9987

size (U) %choose 5x5 for TLS

ans =
5 5

Model scaled=U(:,4:5)"' %new model, now it's the transpose of the earlier one, but it's

Model scaled =
-0.0163 0.2895 0.8526 0.3664 0.2340
0.0062 0.2725 0.2881 -0.3414 -0.8522

ModX sc=Model scaled(:,3:5);
ModY sc=Model scaled(:,1:2);
ModX=ModX sc/stdX

ModX =
0.1421 0.9160 0.0468
0.0480 -0.8534 -0.1704

ModY=ModY sc/stdY

ModY =
-0.0325 0.0386
0.0123 0.0363

ThetaEstimTLS=-inv (ModY) *ModX $%$this is how we now must solve Y=\theta X

ThetaEstimTLS =
1.9968 39.9640 4.9960
-1.9982 9.9556 2.9992

ThetaClean'

ans =
2 40 5
-2 10 3

So it's irrelevant whether | arrange data in rows or columns, results are equivalent, of course.

Addenda: what would happen if my scaling is wrong?... well, TLS won't work
well!

DataWrong=[Y; X]; S$NO scaling, because I (wrongly) thought measurement noise was alreac
DataWrong=DataWrong-sum (DataWrong, 2) /N;
[U,S,V]=svd(DataWrong/sqgrt (N-1), "econ') ;

diag(S)' %only one equation relating things? (significantly smaller singular value)?

ans =
129.0442 71.6624 12.0066 5.8477 0.7345

Model wrong scaling=U(:,4:5)"' %no need of undoing the scaling step, because there was 1

Model wrong scaling =
-0.0709 0.3061 0.7511 0.0200 -0.5803
0.0221 -0.0021 -0.0457 -0.9940 -0.0972

Theta wrong scaling=-inv (Model wrong scaling(:,1:2))*Model wrong scaling(:,3:5) 3%blasec

Theta wrong scaling =

1.8763 45.8866 4.6662
-2.0191 10.5645 2.9768
ThetaClean'
ans =
2 40 5
-2 10 3

idealModel=[eye (2) -ThetaClean'];
Model good scaling=[ModY ModX] %the "good TLS one", in original un-scaled coordinates

Model good scaling =
-0.0325 0.0386 0.1421 0.9160 0.0468
0.0123 0.0363 0.0480 -0.8534 -0.1704

Saying that Model * Data ~ 0 amounts to saying that the allowed data according to the model are
the subspace given by null (Model) . Let us compute the "angle" between these subspaces to
summarise the modelling error in a single number:
subspace(null(Model_wrong_scaling),null(idealModel))*180/pi %angle in degrees
ans = 3.0736
subspace(null(Model_good_scaling),null(idealModel))*180/pi %angle in degrees
ans = 0.1118
subspace (null ([-eye (2) Th_LS_biased']),null(idealModel))*180/pi
ans = 1.1526

So, the "angle" bias due to wrong TLS scaling is even worse than the bias of the standard LS solution.
Wow! Nevertheless, the bias less than 3 degrees might not be so much in applications (I would have,
say, more severe "variance-related" problems if | had 50 data instead of 90000). Note however, that
"subspace angle" depends on the "chosen" scaling, so changing a variable from volts to milivolts would
change the angle output above.

Conclusions

If data are "very abundant”, and generated in accordance with theory and | know the "measuring noise
variance", then everything works as theory predicts.

If I have not so many data, or | make a wrong guess with the scaling, then TLS may be biased. Real
life is hard.

